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1 Introduction

As the limit process from a weak polymers model, the following doubly perturbed Brownian
motion

xt = Bt + α max
0≤s≤t

xs + β min
0≤s≤t

xs, (1.1)

was studied by P. Carmona [4] and J. R. Norris [11]. Because of its important application,
many people have devoted their investigation to this model and obtained a lot of results, for
example, see [2,3,5–7,12,14]. Motivated by above mentioned works, R. A. Doney and T. Zhang
[8] studied the singly perturbed Skorohod equations

xt = x0 +
∫ t

0
σ(xs)dBs +

∫ t

0
b(xs)ds + α max

0≤s≤t
xs. (1.2)

they proved the existence and uniqueness of the solution to equation(1.2) where the coeffi-
cients b, σ satisfy the global Lipschitz conditions; Hu and Ren [9] and Luo [10] extended the
global Lipschitz conditions of [8] to the case of non-Lipschitz conditions which are imposed by
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[13,17,18], they proved the existence and uniqueness of solutions to doubly perturbed neutral
stochastic functional equations and doubly perturbed jump-diffusion processes, respectively.

However, for many practical situations, the nonlinear terms do not obey the global Lips-
chitz and linear growth condition, even the non-Lipschitz condition. For example, consider
the singly perturbed semi-linear stochastic differential equations

dx(t) = ax(t)dt + σ(x(t))b(t, x(t))dBt + β max
0≤s≤t

x(s), t ∈ [0, T]. (1.3)

where a ∈ R, β ∈ (0, 1), and σ(x) satisfies the local Lipschitz condition: For any integer
N > 0, there exists a positive constant kN such that for all x, y ∈ R with |x|, |y| ≤ N, it follows
that

|σ(x)− σ(y)| ≤ kN |x− y|. (1.4)

Let us take

ρ(u) =


0, u = 0,

u[log(u−1)]r, u ∈ (0, δ],

δ[log (δ−1)]r, u ∈ [δ,+∞],

where r ∈ [0, 1
2 ) and δ ∈ (0, 1) is sufficiently small, Assume b(t, x) satisfies the non-Lipschitz

condition
|b(t, x)− b(t, y)| ≤ ρ(|x− y|). (1.5)

From the analysis of Section 5, the coefficients of equation (1.3) do not satisfy the global Lip-
schitz condition [8] or non-Lipschitz condition [9, 10]. In other words, the main results of
[8–10] do not apply to equation (1.3). Therefore, it is very important to establish the existence
and uniqueness theory of perturbed stochastic differential equations under some weaker con-
ditions. The purpose of this paper is to study the existence and uniqueness of solutions to
equation (2.1) with the local non-Lipschitz coefficients. Meantime, we will give the pth expo-
nential estimates and the pth moment continuity of solutions.

This paper is organized as follows. In Section 2, we first give some preliminaries and
assumptions on equation (2.1). In Section 3, we state and prove our main results. While in
Section 4, we show that the pth moment of solution will grow at most exponentially. As an
application of the pth exponential estimates, we give the continuity of the pth moment of
solutions. Finally, we give an example to illustrate the theory in Section 5.

2 Preliminaries

Let (Ω,F , {Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions (i.e. it is increasing and right continuous while F0 contains all P-null
sets). Let {w(t)}t≥0 be a one-dimensional Brownian motion defined on the probability space
(Ω,F , P). Let { p̄ = p̄(t), t ≥ 0} be a stationary Ft-adapted and R-valued Poisson point pro-
cess. Then, for A ∈ B(R− {0}), here B(R− {0}) denotes the Borel σ-field on R− {0} and
0 6∈ the closure of A, we define the Poisson counting measure N associated with p̄ by

N((0, t]× A) := #{0 < s ≤ t, p̄(s) ∈ A} = ∑
t0<s≤t

IA( p̄(s)),

where # denotes the cardinality of set {·}. It is known that there exists a σ-finite measure π

such that

E[N((0, t]× A)] = π(A)t, P(N((0, t]× A) = n) =
exp(−tπ(A))(π(A)t)n

n!
.
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This measure π is called the Lévy measure. Moreover, by Doob–Meyer’s decomposition theo-
rem, there exists a unique {Ft}-adapted martingale Ñ((0, t]× A) and a unique {Ft}-adapted
natural increasing process N̂((0, t]× A) such that

N((0, t]× A) = Ñ((0, t]× A) + N̂((0, t]× A), t > 0.

Here Ñ((0, t]× A) is called the compensated Lévy jumps and N̂((0, t]× A) = π(A)t is called
the compensator.

Let p ≥ 2, Lp([a, b]; R) denote the family of Ft-measurable, R-valued process f (t) =

{ f (t, ω)}, t ∈ [a, b] such that
∫ b

a | f (t)|
pdt < ∞. For Z ∈ B(R− {0}), consider the following

doubly perturbed stochastic differential equations (SDEs) with Lévy jumps

x(t) = x(0) +
∫ t

0
f (s, x(s))ds +

∫ t

0
g(s, x(s))dw(s)

+
∫ t

0

∫
Z

h(s, x(s−), v)N(ds, dv) + α max
0≤s≤t

x(s) + β min
0≤s≤t

x(s), (2.1)

where α, β ∈ (0, 1), the initial value x(0) = x0 ∈ R and f : [0, T]× R → R, g : [0, T]× R →
R, h : [0, T] × R × Z → R are both Borel-measurable functions. In this paper, we assume
that Lévy jumps N is independent of Brownian motion w and the random variable x0 is
independent of w, N and satisfies E|x0|p < ∞.

To obtain the main results, we suppose
∫

Z π(dv) = π(Z) < ∞ and give the following
conditions.

Assumption 2.1. For any x, y ∈ R and t ∈ [0, T], there exist two functions k(.), ρ(.) such that

| f (t, x)− f (t, y)| ∨ |g(t, x)− g(t, y)| ≤ λ(t)k(|x− y|),∫
Z
|h(t, x, v)− h(t, y, v)|2π(dv) ≤ λ2(t)ρ2(|x− y|),

where λ(t) ∈ L2([0, T], R), and k(u), ρ(u) are two concave nondecreasing functions such that
k(0) = ρ(0) = 0 and

∫
0+

u
k2(u)+ρ2(u)du = ∞.

Assumption 2.2. There exist two positive constants K1, K2 such that

sup
0≤t≤T

{| f (t, 0)| ∨ |g(t, 0)|} ≤ K1, sup
0≤t≤T

∫
Z
|h(t, 0, v)|2π(dv) ≤ K2.

Assumption 2.3. The coefficients satisfy |α|+ |β| < 1.

Assumption 2.4. For any integer N > 0, there exist two positive constants kN and ρN such
that

| f (t, x)− f (t, y)| ∨ |g(t, x)− g(t, y)| ≤ λ(t)kN(|x− y|),

and ∫
Z
|h(t, x, v)− h(t, y, v)|2π(dv) ≤ λ2(t)ρ2

N(|x− y|),

for any x, y ∈ R with |x|, |y| ≤ N. Here kN(u), ρN(u) are two concave and nondecreasing
functions such that kN(0) = ρN(0) = 0 and

∫
0+

u
k2

N(u)+ρ2
N(u)

du = ∞.
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Remark 2.5. Clearly, Assumptions 2.1 and 2.2 imply the linear growth condition. Since k(·) is
concave and k(0) = 0, we can find a pair of positive constants a and b such that

k(u) ≤ a + bu, for u ≥ 0.

Therefore, for any x ∈ R and t ∈ [0, T],

| f (t, x)| ∨ |g(t, x)| ≤ λ(t)k(|x|) + K1,

≤ aλ(t) + K1 + bλ(t)|x|.

Similarly, we can obtain∫
Z
|h(t, x, v)|2π(dv) ≤ 4λ2(t)a2 + 2K2 + 4λ2(t)b2|x|2.

In the sequel, to prove our main results we recall the following two lemmas.

Lemma 2.6 ([1]). Let k : R+ → R+ be a continuous, non-decreasing function satisfying k(0) = 0
and

∫
0+

ds
k(s) = +∞. Let u(·) be a Borel measurable bounded non-negative function defined on [0, T]

satisfying

u(t) ≤ u0 +
∫ t

0
v(s)k(u(s))ds), t ∈ [0, T]

where u0 > 0 and v(·) is a non-negative integrable function on [0, T]. Then we have

u(t) ≤ G−1
(

G(u0) +
∫ t

0
v(s)ds

)
,

where G(t) =
∫ t

t0

du
k(u) is well defined for some t0 > 0, and G−1 is the inverse function of G.

In particularly, if u0 = 0, then u(t) = 0 for all t ∈ [0, T].

Lemma 2.7 ([15]). Let φ : R+ × Z → Rn and assume that∫ t

0

∫
Z
|φ(s, v)|pπ(dv)ds < ∞, p ≥ 2.

Then, there exists Dp > 0 such that

E

(
sup

0≤t≤u

∣∣∣∣∫ t

0

∫
Z

φ(s, v)Ñ(ds, dv)
∣∣∣∣p
)

≤ Dp

{
E
(∫ u

0

∫
Z
|φ(s, v)|2π(dv)ds

) p
2

+ E
∫ u

0

∫
Z
|φ(s, v)|pπ(dv)ds

}
.

3 Existence and uniqueness theorem

In this section, we study the existence and uniqueness of solutions to doubly perturbed SDEs
with Lévy jumps and the local non-Lipschitz coefficients.

Let us consider the following equation

x(t) = x(0) +
∫ t

0
f (s)ds +

∫ t

0
g(s)dw(s) +

∫ t

0

∫
Z

h(s−, v)N(ds, dv)

+ α max
0≤s≤t

x(s) + β min
0≤s≤t

x(s), (3.1)

with the initial data x(0) = x0 and f ∈ L2([0, T]; R), g ∈ L2([0, T]; R) and h ∈ L2([0, T]×Z; R).
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Proposition 3.1. Under Assumptions 2.2–2.3, Equation (3.1) has a unique solution x(t) on [0, T].

The proof of Proposition 3.1 is given in the Appendix.
Now, we construct a successive approximation sequence using a Picard type iteration. Let

x0(t) = x0, t ∈ [0, T], define the following Picard sequence:

xn(t) = x(0) +
∫ t

0
f (s, xn−1(s))ds +

∫ t

0
g(s, xn−1(s))dw(s)

+
∫ t

0

∫
Z

h(s, xn−1(s−), v)N(ds, dv)+α max
0≤s≤t

xn(s) +β min
0≤s≤t

xn(s). (3.2)

Obviously, according to proposition 3.1, the solution xn(t) of equation (3.2) exists.
In what follows, C > 0 is a constant which can change its value from line to line.

Lemma 3.2. Under Assumptions 2.1–2.3, there exists a constant C1 > 0 such that for any t ∈ [0, T]

E max
0≤t≤T

|xn(t)|2 ≤ C1. (3.3)

Proof. For any s ≥ 0, it follows that from (3.2)

|xn(s)| ≤ |x(0)|+
∣∣∣∣∫ s

0
f (σ, xn−1(σ))dσ

∣∣∣∣+ ∣∣∣∣∫ s

0
g(σ, xn−1(σ))dw(σ)

∣∣∣∣
+

∣∣∣∣∫ s

0

∫
Z

h(σ, xn−1(σ−), v)N(dσ, dv)
∣∣∣∣+ |α| ∣∣∣∣max

0≤σ≤s
xn(σ)

∣∣∣∣+ |β| ∣∣∣∣ min
0≤σ≤s

xn(σ)

∣∣∣∣
≤ |x(0)|+

∣∣∣∣∫ s

0
f (σ, xn−1(σ))dσ

∣∣∣∣+ ∣∣∣∣∫ s

0
g(σ, xn−1(σ))dw(σ)

∣∣∣∣
+

∣∣∣∣∫ s

0

∫
Z

h(σ, xn−1(σ−), v)N(dσ, dv)
∣∣∣∣+ (|α|+ |β|) max

0≤σ≤s
|xn(σ)|. (3.4)

Taking the maximal value on both sides of (3.4), by the Hölder inequality, the Doob’s martin-
gale inequality and Assumption 2.3, we have

(1− |α| − |β|)2E max
0≤s≤t

|xn(s)|2

≤ E|x(0)|2 + E max
0≤s≤t

∣∣∣∣∫ s

0
f (σ, xn−1(σ))dσ

∣∣∣∣2 + E max
0≤s≤t

∣∣∣∣∫ s

0
g(σ, xn−1(σ))dw(σ)

∣∣∣∣2
+ E max

0≤s≤t

∣∣∣∣∫ s

0

∫
Z

h(σ, xn−1(σ−), v)N(dσ, dv)
∣∣∣∣2

≤ C
[

E|x(0)|2 + E
∫ t

0
| f (s, xn−1(s))|2ds + E

∫ t

0
|g(s, xn−1(s))|2ds

+[8 + Tπ(Z)]E
∫ t

0

∫
Z
|h(s, xn−1(s−), v)|2π(dv)ds

]
.

Therefore, we get

E max
0≤s≤t

|xn(s)|2

≤ C
(1− |α| − |β|)2 [E|x(0)|

2 + 2E
∫ t

0

[
| f (s, xn−1(s))− f (s, 0)|2 + |g(s, xn−1(s))− g(s, 0)|2

]
ds

+ 2[8 + Tπ(Z)]E
∫ t

0

∫
Z
|h(s, xn−1(s−), v)− h(s, 0, v)|2π(dv)ds

+ 2E
∫ t

0

[
| f (s, 0)|2 + |g(s, 0)|2

]
ds + 2[8 + Tπ(Z)]E

∫ t

0

∫
Z
|h(s, 0, v)|2π(dv)ds].
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By Assumptions 2.1 and 2.2, we have

E max
0≤s≤t

|xn(s)|2 ≤ C
(1− |α| − |β|)2

{
E|x(0)|2 + 4K2

1T + 2[8 + Tπ(Z)]K2T

+ 4E
∫ t

0
|λ(s)|2k2(|xn−1(s)|)ds

+ 2[8 + Tπ(Z)]E
∫ t

0
|λ(s)|2ρ2(|xn−1(s−)|)ds

}
.

Then the Jensen inequality implies that

E max
0≤s≤t

|xn(s)|2 ≤ C
(1− |α| − |β|)2

{
E|x(0)|2 + 4K2

1T + 2[8 + Tπ(Z)]K2T

+ 4
∫ t

0
|λ(s)|2k2((E|xn−1(s)|2) 1

2 )ds

+ 2[8 + Tπ(Z)]
∫ t

0
|λ(s)|2ρ2((E|xn−1(s)|2) 1

2 )ds
}

.

Letting γ(x) = k2(x
1
2 ) + ρ2(x

1
2 ), it follows that

E max
0≤s≤t

|xn(s)|2 ≤ C
(1− |α| − |β|)2

{
E|x(0)|2 + 4K2

1T + 2[8 + Tπ(Z)]K2T

+ 2[8 + Tπ(Z)]
∫ t

0
|λ(s)|2γ(E|xn−1(s)|2)ds

}
. (3.5)

By Assumption 2.1, we have that γ is a non-decreasing continuous function, γ(0) = 0 and∫
0+

1
γ(x)dx = ∞. Since k(x)

x , ρ(x)
x , k′+(x) and ρ′+(x) are non-negative, non-increasing functions,

we have that
γ′+(x) = x−

1
2

[
k(x

1
2 )k′+(x) + ρ(x

1
2 )ρ′+(x)

]
is a non-negative, non-increasing function, thus γ is a non-negative, non-decreasing concave
function. Since γ(·) is concave and γ(0) = 0, we can find a pair of positive constants a and b
such that

γ(u) ≤ a + bu, for u ≥ 0,

we obtain

E max
0≤s≤t

|xn(s)|2 ≤ C
(1− |α| − |β|)2

{
1 + E|x(0)|2 + a

∫ t

0
|λ(s)|2ds

+ b
∫ t

0
|λ(s)|2E max

0≤σ≤s
|xn−1(σ)|2ds

}
. (3.6)

Set

r(t) =
[

C
(1− |α| − |β|)2 (1 + E|x(0)|2 + a

∫ t

0
|λ(s)|2ds

]
eb
∫ t

0 |λ(s)|
2ds,

then r(·) is the solution to the following ordinary differential equation:

r(t) =
C

(1− |α| − |β|)2

{
1 + E|x(0)|2 + a

∫ t

0
|λ(s)|2ds + b

∫ t

0
|λ(s)|2r(s)ds

}
.
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By recurrence, it is easy to verify that for each n ≥ 0,

E max
0≤s≤t

|xn(s)|2 ≤ r(t).

Since r(t) is continuous and bounded on [0, T], we have

E max
0≤s≤t

|xn(s)|2 ≤ C1 < +∞,

for any n ≥ 1. The proof is complete.

Lemma 3.3. Let Assumptions 2.1–2.3 hold, then {xn(t)}n≥1 defined by (3.2) is a Cauchy sequence.

Proof. For any n, m ≥ 1, we have

|Xn(t)− Xm(t)|

≤
∣∣∣∣∫ t

0

[
f (s, xn−1(s))− f (s, xm−1(s))

]
ds
∣∣∣∣+ ∣∣∣∣∫ t

0

[
g(s, xn−1(s))− g(s, xm−1(s))

]
dw(s)

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
Z

[
h(s, xn−1(s−), v)− h(s, xn−1(s−), v)

]
N(ds, dv)

∣∣∣∣
+ |α|

∣∣∣∣max
0≤s≤t

xn(s)− max
0≤s≤t

xm(s)
∣∣∣∣+ |β| ∣∣∣∣min

0≤s≤t
xn(s)− min

0≤s≤t
xm(s)

∣∣∣∣
≤
∣∣∣∣∫ t

0

[
f (s, xn−1(s))− f (s, xm−1(s))

]
ds
∣∣∣∣+ ∣∣∣∣∫ t

0

[
g(s, xn−1(s))− g(s, xm−1(s))

]
dw(s)

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
Z

[
h(s, xn−1(s−), v)− h(s, xn−1(s−), v)

]
N(ds, dv)

∣∣∣∣
+ (|α|+ |β|) max

0≤s≤t
|xn(s)− xm(s)|. (3.7)

Taking the maximal value on both sides of (3.7), by the Hölder inequality, the Doob’s martin-
gale inequality and Assumption 2.3, we have

(1− |α| − |β|)2E max
0≤s≤t

|xn(s)− xm(s)|2

≤ E max
0≤s≤t

∣∣∣∣∫ s

0

[
f (σ, xn−1(σ))− f (σ, xm−1(σ))

]
dσ

∣∣∣∣2
+ E max

0≤s≤t

∣∣∣∣∫ s

0

[
g(σ, xn−1(σ))− g(σ, xm−1(σ))

]
dw(σ)

∣∣∣∣2
+ E max

0≤s≤t

∣∣∣∣∫ s

0

∫
Z

[
h(σ, xn−1(σ−), v)− h(σ, xm−1(σ−), v)

]
N(dσ, dv)

∣∣∣∣2
≤ TE

∫ t

0

∣∣∣ f (s, xn−1(s))− f (s, xm−1(s))
∣∣∣2 ds + 4E

∫ t

0

∣∣∣g(s, xn−1(s))− g(s, xm−1(s))
∣∣∣2 ds

+ [8 + 2Tπ(Z)]E
∫ t

0

∫
Z

∣∣∣h(s, xn−1(s−), v)− h(s, xm−1(s−), v)
∣∣∣2 π(dv)ds.

By Assumption 2.1 and Jensen’s inequality, we get

E max
0≤s≤t

|xn(s)− xm(s)|2

≤ 1
(1− |α| − |β|)2

[
(T + 4)

∫ t

0
|λ(s)|2k2((E|xn−1(s)− xm−1(s)|2) 1

2 )ds

+ (8 + 2Tπ(Z))
∫ t

0
|λ(s)|2ρ2((E|xn−1(s)− xm−1(s)|2) 1

2 )ds
]

.
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Similar to (3.5), we obtain

E max
0≤s≤t

|xn(s)− xm(s)|2 ≤ 12 + T + 2Tπ(Z)
(1− |α| − |β|)2

∫ t

0
|λ(s)|2γ(E|xn−1(s)− xm−1(s)|2)ds. (3.8)

By the inequality (3.3) and Fatou’s lemma, it is easily seen that

lim sup
n,m→∞

E(max
0≤s≤t

|xn(s)− xm(s)|2)

≤ 12 + T + 2Tπ(Z)
(1− |α| − |β|)2

∫ t

0
|λ(s)|2γ

(
lim sup
n,m→∞

E max
0≤σ≤s

|xn(σ)− xm(σ)|2
)

ds. (3.9)

Owing to Lemma 2.6, we immediately get that

lim sup
n,m→∞

E(max
0≤s≤t

|xn(s)− xm(s)|2) = 0, for all t ∈ [0, T], (3.10)

Then {xn(t)}n≥1 is a Cauchy sequence. The proof is complete.

Now, we state and prove our main results.

Theorem 3.4. Let Assumptions 2.1–2.3 hold, then equation (2.1) has a unique solution x(t) on [0, T].

Proof. According to (3.10), it follows that there exists x(t) ∈ L2([0, T]; R) such that

lim
n→∞

E sup
0≤s≤t

|xn(s)− x(s)|2 = 0.

Then the Borel–Cantelli lemma can be used to show that xn(t) converges to x(t) almost surely
uniformly on [0, T] as n → ∞. Taking limits on both sides of (3.2) and letting n → ∞, we
obtain that x(t) is a solution of equation (2.1).

Now we devote to proving the uniqueness of equation (2.1). Suppose x(t) and y(t) are
two solutions of equation (2.1) with initial value x0 and y0, we have

|x(t)− y(t)|

≤ |x0 − y0|+
∣∣∣∣∫ t

0
[ f (s, x(s))− f (s, y(s))] ds

∣∣∣∣+ ∣∣∣∣∫ t

0
[g(s, x(s))− g(s, y(s))] dw(s)

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
Z
[h(s, x(s−), v)− h(s, y(s−), v)]N(ds, dv)

∣∣∣∣+ |α| ∣∣∣∣max
0≤s≤t

x(s)− max
0≤s≤t

y(s)
∣∣∣∣

+ |β|
∣∣∣∣min
0≤s≤t

x(s)− min
0≤s≤t

y(s)
∣∣∣∣ .

Then, in the same way as the proof of (3.8) one can show that

E max
0≤s≤t

|x(s)− y(s)|2 ≤ C|x0 − y0|2 + C
∫ t

0
|λ(s)|2γ

(
E
(

max
0≤σ≤s

|x(σ)− y(σ)|2
))

ds

for t ∈ [0, T]. By Lemma 2.6, we get

E max
0≤s≤t

|x(s)− y(s)|2 ≤ G−1
[

G(C|x0 − y0|2) + C
∫ t

0
|λ(s)|2ds

]
,

where G(t) =
∫ t

1
ds

γ(s) . In particular, if x0 = y0, then

G(C|x0 − y0|2) = −∞, G(C|x0 − y0|2) + C
∫ t

0
|λ(s)|2ds = −∞.
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Obviously, G is a strictly increasing function, then G has an inverse function which is strictly
increasing, and G−1(−∞) = 0. Finally, we obtain

E max
0≤s≤t

|x(s)− y(s)|2 = 0,

for any t ∈ [0, T] which implies the uniqueness. This completes the proof.

Example 3.5. We define the functions k(·), ρ(·) by k(u) =
√

u and

ρ(u) =


0, u = 0,

u
√

log(u−1), u ∈ (0, e−2],

C
(

u +
1

3e2

)
, u ∈ (e−2, ∞)

where C > 0. Then k(·) and ρ(·) satisfy Assumption 2.1 in Theorem 3.4.

Theorem 3.6. Let Assumptions 2.2–2.4 hold. Then, there exists a unique solution {x(t)}0≤t≤T to
equation (2.1).

Proof. Let T0 ∈ (0, T), for each N ≥ 1, we define the truncation function fN(t, x) as follows:

fN(t, x) =

 f (t, x), |x| ≤ N,

f
(

t, N x
|x|

)
, |x| > N,

and gN(t, x), hN(t, x, v) similarly. Then fN , gN and hN satisfy Assumption 2.1 due to that the
following inequality about fN , gN and hN hold:

| fN(t, x)− fN(t, y)| ∨ |gN(t, x)− gN(t, y)| ≤ 2λ(t)kN(|x− y|),∫
Z
|hN(t, x, v)− hN(t, y, v)|2π(dv) ≤ 2λ2(t)ρ2

N(|x− y|),

where x, y ∈ R and t ∈ [0, T0]. Therefore, by Theorem 3.4, there exists a unique solution xN(t)
and xN+1(t), respectively, to the following equations

xN(t) = x(0) +
∫ t

0
fN(s, xN(s))ds +

∫ t

0
gN(s, xN(s))dw(s)

+
∫ t

0

∫
Z

hN(s, xN(s−), v)N(ds, dv) + α max
0≤s≤t

xN(s) + β min
0≤s≤t

xN(s),

xN+1(t) = x(0) +
∫ t

0
fN+1(s, xN+1(s))ds +

∫ t

0
gN+1(s, xN+1(s))dw(s)

+
∫ t

0

∫
Z

hN+1(s, xN+1(s−), v)N(ds, dv) + α max
0≤s≤t

xN+1(s) + β min
0≤s≤t

xN+1(s).

Define the stopping times

σN := T0 ∧ inf{t ∈ [0, T] : |xN(t)| ≥ N},
σN+1 := T0 ∧ inf{t ∈ [0, T] : |xN+1(t)| ≥ N + 1},

τN := σN ∧ σN+1,
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where we set inf{φ} = ∞ as usual. Similar to (3.7), we obtain

|xN+1(t)− xN(t)|

=

∣∣∣∣∫ t

0
[ fN+1(s, xN+1(s))− fN(s, xN(s))]ds

∣∣∣∣+ ∣∣∣∣∫ t

0
[gN+1(s, xN+1(s))− gN(s, xN(s))]dw(s)

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
Z
[hN+1(s, xN+1(s−), v)− hN(s, xN(s−), v)]N(ds, dv)

∣∣∣∣
+ (|α|+ |β|) max

0≤s≤t
|xN+1(s)− xN(s)|.

Again the Hölder inequality, the Doob’s martingale inequality imply that

E max
0≤s≤t∧τN

|xN+1(s)− xN(s)|2

≤ 1
(1− |α| − |β|)2

[
5TE

∫ t∧τN

0
| fN+1(s, xN+1(s))− fN(s, xN(s))|2ds

+ 20E
∫ t∧τN

0
|gN+1(s, xN+1(s))− gN(s, xN(s))|2ds

+20[2 + Tπ(Z)]E
∫ t∧τN

0

∫
Z
|hN+1(s, xN+1(s−), v)− hN(s, xN(s−), v)|2π(dv)ds

]
. (3.11)

Noting that for any 0 ≤ s ≤ τN ,

fN+1(s, xN(s)) = fN(s, xN(s)), gN+1(s, xN(s)) = gN(s, xN(s)),

hN+1(s, xN(s−), v) = hN(s, xN(s−), v),

we derive that

E max
0≤s≤t∧τN

|xN+1(s)− xN(s)|2

≤ 1
(1− |α| − |β|)2

[
5TE

∫ t∧τN

0
| fN+1(s, xN+1(s))− fN+1(s, xN(s))|2ds

+ 20E
∫ t∧τN

0
|gN+1(s, xN+1(s))− gN+1(s, xN(s))|2ds

+ 20[2 + Tπ(Z)]E
∫ t∧τN

0

∫
Z
|hN+1(s, xN+1(s−), v)− hN+1(s, xN(s−), v)|2π(dv)ds

]
.

Then it follows from Assumption 2.4 that

E max
0≤s≤t

|xN+1(s ∧ τN)− xN(s ∧ τN)|2

≤ 5T + 20 + 20[2 + Tπ(Z)]
(1− |α| − |β|)2

∫ t∧τN

0
|λ(s)|2γN+1(E|xN+1(s)− xN(s)|2)ds

≤ 5T + 20 + 20[2 + Tπ(Z)]
(1− |α| − |β|)2

∫ t

0
|λ(s)|2γN+1

(
E max

0≤σ≤s
|xN+1(σ ∧ τN)− xN(σ ∧ τN)|2

)
ds,

where γN(·) = k2
N(·

1
2 ) + ρ2

N(·
1
2 ). Obviously, by Assumption 2.4, we have that γN(·) is a

non-negative, non-decreasing concave function, γN(0) = 0 and
∫

0+
1

γN(x)dx = ∞. By using
Lemma 2.6 again, it follows that

E sup
0≤s≤t

|xN+1(s ∧ τN)− xN(s ∧ τN)|2 = 0.
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Therefore, we obtain that

xN+1(t) = xN(t), for t ∈ [0, T0 ∧ τN ].

For each ω ∈ Ω, there exists an N0(ω) > 0 such that 0 < T0 ≤ τN0 . Now define x(t) by
x(t) = xN0(t) for t ∈ [0, T0]. Since x(t ∧ τN) = xN(t ∧ τN), it follows that

x(t ∧ τN) = x(0) +
∫ t∧τN

0
fN(s, xN(s))ds +

∫ t∧τN

0
gN(s, xN(s))dw(s)

+
∫ t∧τN

0

∫
Z

hN(s, xN(s−), v)N(ds, dv) + α max
0≤s≤t∧τN

xN(s) + β min
0≤s≤t∧τN

xN(s)

= x(0) +
∫ t∧τN

0
f (s, x(s))ds +

∫ t∧τN

0
g(s, x(s))dw(s)

+
∫ t∧τN

0

∫
Z

h(s, x(s−), v)N(ds, dv) + α max
0≤s≤t∧τN

x(s) + β min
0≤s≤t∧τN

x(s).

Letting N → ∞, then yields

x(t) = x(0) +
∫ t

0
f (s, x(s))ds +

∫ t

0
g(s, x(s))dw(s)

+
∫ t

0

∫
Z

h(s, x(s−), v)N(ds, dv) + α max
0≤s≤t

x(s) + β min
0≤s≤t

x(s), t ∈ [0, T0].

Since T0 is arbitrary, then we have x(t) is the solution of equation (2.1) on [0, T]. The proof is
complete.

4 p-th moment exponential estimates

In this section, we will give the pth exponential estimates of solutions to equation (2.1).

Assumption 4.1. Assume λ(t) ∈ Lp([0, T], R), p > 2. For any x, y ∈ R and t ∈ [0, T], there
exists a function ρ(·) and a constant K3 such that∫

Z
|h(t, x, v)− h(t, y, v)|pπ(dv) ≤ λp(t)ρp(|x− y|),

sup
0≤t≤T

∫
Z
|h(t, 0, v)|pπ(dv) ≤ K3,

where ρ(.) is defined as Assumption 2.1.

Remark 4.2. In particular, we see clearly that if let ρ(u) = Ku, L > 0, then Assumption 4.1
reduces to the linear growth condition. That is, for any x ∈ R and t ∈ [0, T], we have∫

Z
|h(t, x, v)|pπ(dv) ≤ 2p−1λp(t)Kp|x|p + 2p−1K3.

Theorem 4.3. Let Assumptions 2.1–2.3 and 4.1 hold, for any p ≥ 2

E max
0≤t≤T

|x(t)|p ≤ (1 + CE|x(0)|p + C4T)eC5
∫ T

0 |λ(t)|
pdt, (4.1)

where C4 and C5 are two positive constants of the inequality (4.11).
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Proof. For any t ≥ 0, it follows from (2.1) that

|x(t)| ≤ |x(0)|+
∣∣∣∣∫ t

0
f (s, x(s))ds

∣∣∣∣+ ∣∣∣∣∫ t

0
g(s, x(s))dw(s)

∣∣∣∣
+

∣∣∣∣∫ t

0

∫
Z

h(s, x(s−), v)N(ds, dv)
∣∣∣∣+ (|α|+ |β|) max

0≤s≤t
|x(s)|. (4.2)

Taking the maximal value on both sides of (4.2), by Holder’s inequality, the Burkholder in-
equality and Assumption 2.3, we have

(1− |α| − |β|)pE max
0≤s≤t

|x(s)|p

≤ 4p−1
[

E|x(0)|p + E max
0≤s≤t

∣∣∣∣∫ s

0
f (σ, x(σ))dσ

∣∣∣∣p + E max
0≤s≤t

∣∣∣∣∫ s

0
g(σ, x(σ))dw(σ)

∣∣∣∣p
+ E max

0≤s≤t

∣∣∣∣∫ s

0

∫
Z

h(σ, x(σ−), v)N(dσ, dv)
∣∣∣∣p ].

Therefore, we get

E max
0≤s≤t

|x(s)|p ≤ C
[

E|x(0)|p + E max
0≤s≤t

∣∣∣∣∫ s

0
f (σ, x(σ))dσ

∣∣∣∣p + E max
0≤s≤t

∣∣∣∣∫ s

0
g(σ, x(σ))dw(σ)

∣∣∣∣p
+ E max

0≤s≤t

∣∣∣∣∫ s

0

∫
Z

h(σ, x(σ−), v)N(dσ, dv)
∣∣∣∣p ]. (4.3)

where C = 4p−1

(1−|α|−|β|)p . Using Hölder’s inequality, we get

E max
0≤s≤t

∣∣∣∣∫ s

0
f (σ, x(σ))dσ

∣∣∣∣p ≤ Tp−1E
∫ t

0
| f (s, x(s))|pds

≤ Tp−1E
∫ t

0
| f (s, x(s))− f (s, 0)|pds

By the basic inequality

|a + b|p ≤
[
1 + ε

1
p−1

]p−1
(
|a|p + |b|

p

ε

)
, p > 1, a, b ∈ Rn,

for any ε > 0, it follows that

E max
0≤s≤t

∣∣∣∣∫ s

0
f (σ, x(σ))dσ

∣∣∣∣p ≤ Tp−1
[
1 + ε

1
p−1

]p−1
E
∫ t

0

(
| f (s, x(s))− f (s, 0)|p + | f (s, 0)|p

ε

)
ds.

By Assumptions 2.1, 2.2 and letting ε = Kp−1
1 , we obtain

E max
0≤s≤t

∣∣∣∣∫ s

0
f (σ, x(σ))dσ

∣∣∣∣p ≤ Tp−1(1 + K1)
p−1E

∫ t

0
[λp(s)kp(|x(s)|) + K1]ds.

In fact, because the function k(·) is concave and increasing, there must exist a positive number
L such that

kp(|x|) ≤ L(1 + |x|p), for all p ≥ 2. (4.4)



Doubly perturbed stochastic differential equations with jumps 13

Hence,

E max
0≤s≤t

∣∣∣∣∫ s

0
f (σ, x(σ))dσ

∣∣∣∣p ≤ LTp−1(1 + K1)
p−1

∫ t

0
|λ(s)|p(1 + E|x(s)|p)ds

+ TpK1(1 + K1)
p−1. (4.5)

By using the Burkholder–Davis–Gundy inequality and the Hölder inequality, we have a posi-
tive real number Cp such that the following inequality holds:

E max
0≤s≤t

∣∣∣∣∫ s

0
g(σ, x(σ))dw(σ)

∣∣∣∣p ≤ CpE
(∫ t

0
|g(s, x(s))|2ds

) p
2

≤ CpT
p
2−1E

∫ t

0
|g(s, x(s))|pds.

By the similar arguments, we have

E max
0≤s≤t

∣∣∣∣∫ s

0
g(σ, x(σ))dw(σ)

∣∣∣∣p ≤ LCpT
p
2−1(1 + K1)

p−1
∫ t

0
|λ(s)|p(1 + E|x(s)|p)ds

+ CpT
p
2 K1(1 + K1)

p−1. (4.6)

Now, we will estimate the fourth term of (4.3). Using the basic inequality |a+ b|p ≤ 2p−1(|a|p +
|b|p), we have

E max
0≤s≤t

∣∣∣∣∫ s

0

∫
Z

h(σ, x(σ−), v)N(dσ, dv)
∣∣∣∣p

≤ 2p−1E
(

max
0≤s≤t

∣∣∣∣∫ s

0

∫
Z

h(σ, x(σ−), v)Ñ(dσ, dv)
∣∣∣∣p)

+ 2p−1E
(

max
0≤s≤t

∣∣∣∣∫ s

0

∫
Z

h(σ, x(σ−), v)π(dv)dσ

∣∣∣∣p) . (4.7)

By Lemma 2.7 and Hölder’s inequality, it follows that,

E
(

max
0≤s≤t

∣∣∣∣∫ s

0

∫
Z

h(σ, x(σ−), v)Ñ(dσ, dv)
∣∣∣∣p)

≤ Dp

{
T

p
2−1E

∫ t

0

[∫
Z
|h(s, x(s−), v)|2π(dv)

] p
2

ds + E
∫ t

0

∫
Z
|h(s, x(s−), v)|pπ(dv)ds

}
(4.8)

and

E
(

max
0≤s≤t

∣∣∣∣∫ s

0

∫
Z

h(σ, x(σ−), v)π(dv)dσ

∣∣∣∣p)
≤ Tp−1[π(Z)]

p
2 E
∫ t

0

[∫
Z
|h(s, x(s−), v)|2π(du)

] p
2

ds. (4.9)

Inserting (4.8) and (4.9) into (4.7), and by Assumption 4.1, we have

E max
0≤s≤t

∣∣∣∣∫ s

0

∫
Z

h(σ, x(σ−), v)N(dσ, dv)
∣∣∣∣p

≤ 2p−1(DpT
p
2−1 + Tp−1[π(Z)]

p
2 )E

∫ t

0

[
2|λ(s)|2ρ2(|x(s−)|) + 2K2

] p
2 ds

+ 22p−2DpE
∫ t

0
[|λ(s)|pρp(|x(s−)|) + K3]ds.
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Similar to (4.4), we have

ρp(|x|) ≤ L(1 + |x|p), for all p ≥ 2.

Hence,

E
(

max
0≤s≤t

∣∣∣∣∫ s

0

∫
Z

h(σ, x(σ−), v)π(dv)dσ

∣∣∣∣p) ≤ (C2 + C3)L
∫ t

0
|λ(s)|p(1 + E|x(s)|p)ds

+ (C2K
p
2
2 + C3K3)T, (4.10)

where C2 = 22p−2[DpT
p
2−1 + Tp−1[π(Z)]

p
2 ], C3 = 22p−2Dp. Substituting (4.5), (4.6) and (4.10)

into (4.3), we deduce that

1 +E max
0≤s≤t

|x(s)|p ≤ 1 +CE|x(0)|p +C4T +C5

∫ t

0
|λ(s)|p

(
1 + E max

0≤σ≤s
|x(σ)|p

)
ds, (4.11)

where

C4 = K1(1 + K1)
p−1(Tp−1 + CpT

p
2−1) + (C2K

p
2
2 + C3K3),

C5 = (1 + K1)
p−1L(Tp−1 + CpT

p
2−1) + (C2 + C3)L.

Let

u(t) = 1 + E max
0≤s≤t

|x(s)|p, u0 = 1 + CE|x(0)|p + C4T, v(s) = |λ(s)|p and k(s) = s,

then it follows from Lemma 2.6 that

1 + E max
0≤s≤t

|x(s)|p ≤ G−1[G(1 + CE|x(0)|p + C4T) + C5

∫ t

0
|λ(s)|pds],

where G(t) =
∫ t

t0

1
s ds = ln( t

t0
), t0 > 0. Obviously, G−1(t) = t0et, t > 0. Hence,

1 + E max
0≤s≤t

|x(s)|p ≤ t0eln( 1+CE|x(0)|p+C4T
t0

)+C5
∫ t

0 |λ(s)|
pds

≤ t0eln( 1+CE|x(0)|p+C4T
t0

)eC5
∫ t

0 |λ(s)|
pds

≤ (1 + CE|x(0)|p + C4T)eC5
∫ t

0 |λ(s)|
pds,

and the proof is complete.

Remark 4.4. Let M = sup0≤t≤∞ |λ(t)|p < ∞. From Theorem 4.3, we know that the pth
moment will grow at most exponentially with exponent C5M. This can also be expressed as

lim sup
t→∞

1
t

log(E|x(t)|p) ≤ C5M. (4.12)

The inequality (4.12) shows that the pth moment Lyapunov exponent should not be greater
than C5M.

As an application of Theorem 4.3, we give the continuity of the pth moment of the solution.

Theorem 4.5. Let the assumptions of Theorem 4.3 hold. For any 0 ≤ s < t ≤ T and p ≥ 2, there
exists a positive constant C such that

E|x(t)− x(s)|p ≤ C(t− s)
p
2 .

Proof. Similar to [16, Theorem 4.1] and by Theorem 4.3, we easily obtain the proof.
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5 An example

Let us return to equation (1.3),

dx(t) = ax(t)dt + σ(x(t))b(t, x(t))dBt + β max
0≤s≤t

x(s), t ∈ [0, T]. (5.1)

Assume that σ(x) and b(t, x) be continuous in x for each x ∈ R. That is, there exists a positive
constant C such that

sup
x∈R
|σ(x)| ∨ sup

t∈[0,T], x∈R
|b(t, x)| ≤ C.

Let
γN(u) = C(ρ(u) + kNu),

then for any x, y ∈ R and |x| ∨ |y| ≤ N, we obtain that

|σ(x)b(t, x)− σ(y)b(t, y)| ≤ sup
|x|≤N

|σ(x)||b(t, x)− b(t, y)|+ sup
t∈[0,T], |x|≤N

|b(t, x)||σ(x)− σ(y)|

≤ C(ρ(|x− y|) + kN |x− y|)
≤ γN(|x− y|).

Since ρ(u) is a concave function, it follows that γN(u) = C(ρ(u) + kNu) is a concave non-
decreasing function with γN(0) = 0 and ρ(u) ≥ ρ(1)u for 0 ≤ u < 1. Hence, we have∫

0+

u
γ2

N(u)
du =

∫
0+

u
(kNu + ρ(u))2 du =

∫
0+

(
ρ(u)

kNu + ρ(u)

)2 u
ρ2(u)

du

≥
(

ρ(1)
kN + ρ(1)

)2 ∫
0+

u
ρ2(u)

du

=

(
ρ(1)

kN + ρ(1)

)2 ∫
0+

1
u(log u−1)2r du

=

(
ρ(1)

kN + ρ(1)

)2 1
2r− 1

(log u−1)1−2r|0+ = ∞.

Clearly, the coefficients ax, σ(x)b(t, x), β satisfy Assumptions 2.2–2.4, then by Theorem 3.6, we
have that equation (5.1) has a unique solution x(t) on [0,T].

Appendix

Proof of Proposition 3.1. Let Φ be the function defined on R by

Φ(x)(t) := x(0) +
∫ t

0
f (s)ds +

∫ t

0
g(s)dw(s)

+
∫ t

0

∫
Z

h(s−, v)N(ds, dv) + α max
0≤s≤t

x(s) + β min
0≤s≤t

x(s).

Clearly, Φ(x) is R-valued measurable {Ft}-adapted process. we will first prove the mean
square continuity of Φ on [0, T]. Let r be sufficiently small, we have

Φ(x)(t + r)−Φ(x)(t) =
∫ t+r

t
f (s)ds +

∫ t+r

t
g(s)dw(s) +

∫ t+r

t

∫
Z

h(s−, v)N(ds, dv)

+ α

[
max

0≤s≤t+r
x(s)− max

0≤s≤t
x(s)

]
+ β

[
min

0≤s≤t+r
x(s)− min

0≤s≤t
x(s)

]
.
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By the basic inequality |a + b + c + d + e|2 ≤ 5|a|2 + 5|b|2 + 5|c|2 + 5|d|2 + 5|e|2, it follows that

E|Φ(x)(t + r)−Φ(x)(t)|2

≤ 5E
∣∣∣∣∫ t+r

t
f (s)ds

∣∣∣∣2 + 5E
∣∣∣∣∫ t+r

t
g(s)dw(s)

∣∣∣∣2 + 5E
∣∣∣∣∫ t+r

t

∫
Z

h(s−, v)N(ds, dv)
∣∣∣∣2

+ 5E
∣∣∣∣α [ max

0≤s≤t+r
x(s)− max

0≤s≤t
x(s)

]∣∣∣∣2 + 5E
∣∣∣∣β [ min

0≤s≤t+r
x(s)− min

0≤s≤t
x(s)

]∣∣∣∣2 . (5.2)

Using the Hölder inequality, we obtain

E
∣∣∣∣∫ t+r

t
f (s)ds

∣∣∣∣2 ≤ rE
∫ t+r

t
| f (s)|2ds.

It is easy to obtain that 5E
∣∣ ∫ t+r

t f (s)ds
∣∣2 → 0, as r → 0. Furthermore, the martingale isometry

implies

5E
∣∣∣∣∫ t+r

t
g(s)dw(s)

∣∣∣∣2 = 5E
∫ t+r

t
|g(s)|2ds→ 0

as r → 0. For the third term of (5.2), by using the basic inequality |a + b|2 ≤ 2(|a|2 + |b|2), we
have

5E
∣∣∣∣∫ t+r

t

∫
Z

h(s−, v)N(ds, dv)
∣∣∣∣2 ≤ 10E

∣∣∣∣∫ t+r

t

∫
Z

h(s−, v)Ñ(ds, dv)
∣∣∣∣2

+ 10E
∣∣∣∣∫ t+r

t

∫
Z

h(s−, v)π(dv)ds
∣∣∣∣2 ,

where N(dt, dv) = Ñ(dt, dv) + π(dv)dt. By Hölder’s inequality and the martingale isometry,
we derive that

E
∣∣∣∣∫ t+r

t

∫
Z

h(s−, v)π(dv)ds
∣∣∣∣2 ≤ E

∫ t+r

t
ds
∫ t+r

t

∣∣∣∣∫Z
h(s−, v)π(dv)

∣∣∣∣2 ds,

≤
∫ t+r

t
ds
∫

Z
π(dv)

∫ t+r

t

∫
Z

E|h(s−, v)|2π(dv)ds,

and

E
∣∣∣∣∫ t+r

t

∫
Z

h(s−, v)Ñ(ds, dv)
∣∣∣∣2 = E

∫ t+r

t

∫
Z
|h(s−, v)|2π(dv)ds.

Therefore,

5E
∣∣∣∣∫ t+r

t

∫
Z

h(s−, v)N(ds, dv)
∣∣∣∣2 ≤ 10[1 + rπ(Z)]E

∫ t+r

t

∫
Z
|h(s−, v)|2π(dv)ds→ 0,

as r → 0. Obviously, we have

5E
∣∣∣∣α [ max

0≤s≤t+r
x(s)− max

0≤s≤t
x(s)

]∣∣∣∣2 + 5E
∣∣∣∣β [ min

0≤s≤t+r
x(s)− min

0≤s≤t
x(s)

]∣∣∣∣2 → 0

as r → 0. Therefore, Φ is mean square continuous on [0, T].
Next, we will claim Φ(R) ⊂ R. That is to say, if E(sup0≤t≤T |x(t)|2) < ∞, then

E

(
sup

0≤t≤T
|Φ(x)(t)|2

)
< ∞.
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Using the basic inequality, it follows that

E

(
sup

0≤t≤T
|Φ(x)(t)|2

)
≤ 6E|x0|2 + 6E sup

0≤t≤T

∣∣∣∣∫ t

0
f (s)ds

∣∣∣∣2 + 6E sup
0≤t≤T

∣∣∣∣∫ t

0
g(s)dw(s)

∣∣∣∣2
+ 6E sup

0≤t≤T

∣∣∣∣∫ t

0

∫
Z

h(s−, v)N(ds, dv)
∣∣∣∣2 + 6E sup

0≤t≤T

∣∣∣∣α max
0≤s≤t

x(s)
∣∣∣∣2

+ 6E sup
0≤t≤T

∣∣∣∣β min
0≤s≤t

x(s)
∣∣∣∣2 .

By the Hölder inequality and Doob’s martingale inequality, we obtain

E

(
sup

0≤t≤T
|Φ(x)(t)|2

)
≤ 6E|x0|2 + 6TE

∫ T

0
| f (s)|2ds + 24E

∫ T

0
|g(s)|2ds

+ 24E
∫ T

0

∫
Z
|h(s−, v)|2π(dv)ds + 6(α2 + β2)E sup

0≤t≤τ1∧T
|x(t)|2.

Since f ∈ L2([0, T]; R), g ∈ L2([0, T]; R) and h ∈ L2([0, T]× Z; R), it follows that

E(sup0≤t≤T |Φ(x)(t)|2) < ∞. (5.3)

Hence, (5.3) implies Φ is a operator from L2([0, T]; R) to itself and we conclude that Φ is well
defined.

Now, we prove that Φ has a unique fixed point. For any x, y ∈ L2([0, T]; R), we have

E sup
0≤t≤T

|Φ(x)(t)−Φ(y)(t)|2 ≤ E sup
0≤t≤T

|α max
0≤s≤t

[x(s)− y(s)] + β min
0≤s≤t

[x(s)− y(s)]|2

≤ (|α|+ |β|)2E sup
0≤t≤T

|x(t)− y(t)|2.

By Assumption 2.3, we have (|α|+ |β|)2 < 1, then the operator Φ is a contraction mapping on
R and therefore has a unique fixed point in L2([0, T]; R) which is a solution of equation (3.1)
on [0, T], i.e., there exists a unique stochastic process x = x(t) satisfying

E sup
0≤t≤T

|Φ(x)(t)− x(t)|2 = 0.

So x(t) is a unique solution of equation (3.1) in [0, T]. The proof is complete.

Acknowledgements

The authors would like to thank the editor and the referees for their valuable comments
and suggestions. The authors would also like to thank the Edinburgh Mathematical Soci-
ety (RKES130172) and the National Natural Science Foundation of China under NSFC grant
(No. 11401261, 11471071) for their financial support.

References

[1] I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness prob-
lem of differential equations, Acta Math. Acad. Sci. Hungar. 7(1956), 71–94. MR0079154;
https://doi.org/10.1007/BF02022967

http://www.ams.org/mathscinet-getitem?mr=0079154
https://doi.org/10.1007/BF02022967


18 W. Mao, L. Hu, S. You and X. Mao

[2] L. Chaumont, R. A. Doney, Pathwise uniqueness for perturbed versions of Brownian
motion and reflected Brownian motion, Probab. Theory Related Fields 113(1999), 519–534.
MR1717529; https://doi.org/10.1007/s004400050216

[3] L. Chaumont, R. A. Doney, Y. Hu, Upper and lower limits of doubly perturbed Brownian
motion, Ann. Inst. H. Poincaré Probab. Statist. 36(2000), 219–249. MR1751659; https://doi.
org/10.1016/S0246-0203(00)00123-0

[4] P. Carmona, F. Petit, M. Yor, Beta variables as times spent in [0, ∞) by certain perturbed
Brownian motions, J. Lond. Math. Soc. 58(1998), 239–256. MR1670130; https://doi.org/
10.1112/S0024610798006401

[5] B. Davis, Weak limits of perturbed random walks and the equation Yt = Bt +

α max0≤s≤t Ys + β min0≤s≤t Ys, Ann. Probab. 24(1997), 2007–2023. MR1415238; https:
//doi.org/10.1214/aop/1041903215

[6] B. Davis, Brownian motion and random walk perturbed at extrema, Probab. Theory Related
Fields 113(1999), 501–518. MR1717528; https://doi.org/10.1007/s004400050215

[7] R. A. Doney, Some calculations for perturbed Brownian motion, in: Séminaire de Probabil-
ités, XXXII, Lecture Notes in Math., Vol. 1686, Academic Press, Springer, 1998, pp. 231–
236. MR1655296; https://doi.org/10.1007/BFb0101760

[8] R. A. Doney, T. Zhang, Perturbed Skorohod equations and perturbed reflected diffusion
processes, Ann. Inst. H. Poincaré Probab. Statist. 41(2005), 107–121. MR2110448; https:
//doi.org/10.1016/j.anihpb.2004.03.005

[9] L. Hu, Y. Ren, Doubly perturbed neutral stochastic functional equations, J. Comput. Appl.
Math. 231(2009), 319–326. MR2532673; https://doi.org/10.1016/j.cam.2009.02.077

[10] J. Luo, Doubly perturbed jump-diffusion processes, J. Math. Anal. Appl. 351(2009), 147–
151. MR2472928; https://doi.org/10.1016/j.jmaa.2008.09.024

[11] J. Norris, L. Rogers, D. Williams, Self-avoiding random walk: A Brownian motion
model with local time drift, Probab. Theory Related Fields 74(1987), 271–287. MR0871255;
https://doi.org/10.1007/BF00569993

[12] M. Perman, W. Werner, Perturbed Brownian motions, Probab. Theory Related Fields
108(1997), 357–383. MR1465164; https://doi.org/10.1007/s004400050113

[13] T. Taniguchi, Successive approximations to solutions of stochastic differential equa-
tions, J. Differential Equations 96(1992), 152–169. MR1153313; https://doi.org/10.1016/
0022-0396(92)90148-G

[14] W. Werner, Some remarks on perturbed reflecting Brownian motion, in: Séminaire
de Probabilités, XXIX, Lecture Notes in Math., Vol. 1613, Springer, 1995, pp. 37–43.
MR1459447; https://doi.org/10.1007/FBFb0094198

[15] H. Kunita, Stochastic differential equations based on Lévy processes and stochastic flows
of diffeomorphisms, in: Real and stochastic analysis, Birkhäuser Boston, Boston, MA, 2004,
pp. 305–373. MR2090755; https://doi.org/10.1007/978-1-4612-2054-1

http://www.ams.org/mathscinet-getitem?mr=1717529
https://doi.org/10.1007/s004400050216
http://www.ams.org/mathscinet-getitem?mr=1751659
https://doi.org/10.1016/S0246-0203(00)00123-0
https://doi.org/10.1016/S0246-0203(00)00123-0
http://www.ams.org/mathscinet-getitem?mr=1670130
https://doi.org/10.1112/S0024610798006401
https://doi.org/10.1112/S0024610798006401
http://www.ams.org/mathscinet-getitem?mr=1415238
https://doi.org/10.1214/aop/1041903215
https://doi.org/10.1214/aop/1041903215
http://www.ams.org/mathscinet-getitem?mr=1717528
https://doi.org/10.1007/s004400050215 
http://www.ams.org/mathscinet-getitem?mr=1655296
https://doi.org/10.1007/BFb0101760
http://www.ams.org/mathscinet-getitem?mr=2110448
https://doi.org/10.1016/j.anihpb.2004.03.005 
https://doi.org/10.1016/j.anihpb.2004.03.005 
http://www.ams.org/mathscinet-getitem?mr=2532673
https://doi.org/10.1016/j.cam.2009.02.077
http://www.ams.org/mathscinet-getitem?mr=2472928
https://doi.org/10.1016/j.jmaa.2008.09.024 
http://www.ams.org/mathscinet-getitem?mr=0871255
https://doi.org/10.1007/BF00569993 
http://www.ams.org/mathscinet-getitem?mr=1465164
https://doi.org/ 10.1007/s004400050113
http://www.ams.org/mathscinet-getitem?mr=1153313
https://doi.org/10.1016/0022-0396(92)90148-G
https://doi.org/10.1016/0022-0396(92)90148-G
http://www.ams.org/mathscinet-getitem?mr=1459447
https://doi.org/10.1007/FBFb0094198
http://www.ams.org/mathscinet-getitem?mr=2090755
https://doi.org/10.1007/978-1-4612-2054-1


Doubly perturbed stochastic differential equations with jumps 19

[16] X. Mao, Stochastic differential equations and applications, Horwood Publishing Limited, Sec-
ond edition, 2007. MR2380366; https://doi.org/10.1533/9780857099402

[17] X. Mao, Adapted solutions of backward stochastic differential equations with non-
Lipschitz coefficients, Stochastic Process. Appl. 58(1995), 281–292. MR1348379; https:
//doi.org/10.1016/0304-4149(95)00024-2

[18] T. Yamada, On the successive approximation of solutions of stochastic differential equa-
tions, J. Math. Kyoto Univ. 21(1981), 501–515. MR0629781; https://doi.org/10.1215/
kjm/1250521975

http://www.ams.org/mathscinet-getitem?mr=2380366
https://doi.org/10.1533/9780857099402
http://www.ams.org/mathscinet-getitem?mr=1348379
https://doi.org/10.1016/0304-4149(95)00024-2 
https://doi.org/10.1016/0304-4149(95)00024-2 
http://www.ams.org/mathscinet-getitem?mr=0629781
https://doi.org/10.1215/kjm/1250521975 
https://doi.org/10.1215/kjm/1250521975 

	Introduction
	Preliminaries
	Existence and uniqueness theorem
	p-th moment exponential estimates
	An example

