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Abstract. In this article we extend the Sobolev spaces with variable exponents to in-
clude the fractional case, and we prove a compact embedding theorem of these spaces
into variable exponent Lebesgue spaces. As an application we prove the existence and
uniqueness of a solution for a nonlocal problem involving the fractional p(x)-Laplacian.
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1 Introduction

Our main goal in this paper is to extend Sobolev spaces with variable exponents to cover the
fractional case.

For a bounded domain with Lipschitz boundary Ω ⊂ Rn we consider two variable expo-
nents, that is, we let q : Ω → (1, ∞) and p : Ω ×Ω → (1, ∞) be two continuous functions.
We assume that p is symmetric, p(x, y) = p(y, x), and that both p and q are bounded away
from 1 and ∞, that is, there exist 1 < q− < q+ < +∞ and 1 < p− < p+ < +∞ such that
q− ≤ q(x) ≤ q+ for every x ∈ Ω and p− ≤ p(x, y) ≤ p+ for every (x, y) ∈ Ω×Ω.

We define the Banach space Lq(x)(Ω) as usual,

Lq(x)(Ω) :=

{
f : Ω→ R : ∃ λ > 0 :

∫
Ω

∣∣∣∣ f (x)
λ

∣∣∣∣q(x)

dx < ∞

}
,

with its natural norm

‖ f ‖Lq(x)(Ω) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣ f (x)
λ

∣∣∣∣q(x)

dx < 1

}
.
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Now for 0 < s < 1 we introduce the variable exponent Sobolev fractional space as follows:

W = Ws,q(x),p(x,y)(Ω) :=
{

f : Ω→ R : f ∈ Lq(x)(Ω) :∫
Ω

∫
Ω

| f (x)− f (y)|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
< ∞, for some λ > 0

}
,

and we set

[ f ]s,p(x,y)(Ω) := inf
{

λ > 0 :
∫

Ω

∫
Ω

| f (x)− f (y)|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
< 1

}
as the variable exponent seminorm. It is easy to see that W is a Banach space with the norm

‖ f ‖W := ‖ f ‖Lq(x)(Ω) + [ f ]s,p(x,y)(Ω);

in fact, one just has to follow the arguments in [20] for the constant exponent case. For general
theory of classical Sobolev spaces we refer the reader to [1, 5] and for the variable exponent
case to [8].

Our main result is the following compact embedding theorem into variable exponent
Lebesgue spaces. For an analogous theorem for the Sobolev trace embedding we refer to
the companion paper [3].

Theorem 1.1. Let Ω ⊂ Rn be a Lipschitz bounded domain and s ∈ (0, 1). Let q(x), p(x, y) be
continuous variable exponents with sp(x, y) < n for (x, y) ∈ Ω×Ω and q(x) > p(x, x) for x ∈ Ω.
Assume that r : Ω→ (1, ∞) is a continuous function such that

p∗(x) :=
np(x, x)

n− sp(x, x)
> r(x) ≥ r− > 1,

for x ∈ Ω. Then, there exists a constant C = C(n, s, p, q, r, Ω) such that for every f ∈ W, it holds
that

‖ f ‖Lr(x)(Ω) ≤ C‖ f ‖W .

That is, the space Ws,q(x),p(x,y)(Ω) is continuously embedded in Lr(x)(Ω) for any r ∈ (1, p∗). More-
over, this embedding is compact.

In addition, when one considers functions f ∈ W that are compactly supported inside Ω, it holds
that

‖ f ‖Lr(x)(Ω) ≤ C[ f ]s,p(x,y)(Ω).

Remark 1.2. Observe that if p is a continuous variable exponent in Ω and we extend p to
Ω × Ω as p(x, y) := p(x)+p(y)

2 , then p∗(x) is the classical Sobolev exponent associated with
p(x), see [8].

Remark 1.3. When q(x) ≥ r(x) for every x ∈ Ω the main inequality in the previous theorem,
‖ f ‖Lr(x)(Ω) ≤ C‖ f ‖W , trivially holds. Hence our results are meaningful when q(x) < r(x) for
some points x inside Ω.

With the above theorem at hand one can readily deduce existence of solutions to some
nonlocal problems. Let us consider the operator L given by

Lu(x) := p.v.
∫

Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))
|x− y|n+sp(x,y)

dy. (1.1)
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This operator appears naturally associated with the space W. In the constant exponent case
it is known as the fractional p-Laplacian, see [2, 4, 6, 7, 9–11, 13, 14, 17–19] and references
therein. On the other hand, we remark that (1.1) is a fractional version of the well-known
p(x)-Laplacian, given by div(|∇u|p(x)−2∇u), that is associated with the variable exponent
Sobolev space W1,p(x)(Ω). We refer for instance to [8, 12, 15, 16].

Let f ∈ La(x)(Ω), a(x) > 1. We look for solutions to the problemLu(x) + |u (x) |q(x)−2u(x) = f (x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(1.2)

Associated with this problem we have the following functional

F (u) :=
∫

Ω

∫
Ω

|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)p(x, y)
dxdy +

∫
Ω

|u(x)|q(x)

q(x)
dx−

∫
Ω

f (x)u(x) dx. (1.3)

To take into account the boundary condition in (1.2) we consider the space W0 that is the
closure in W of compactly supported functions in Ω. In order to have a well defined trace
on ∂Ω, for simplicity, we just restrict ourselves to sp− > 1, since then it is easy to see that
W ⊂ W s̃,p−(Ω) ⊂ W s̃−1/p−,p−(∂Ω), with s̃p− > 1, see [1, 20]. Concerning problem (1.2), we
shall prove the following existence and uniqueness result.

Theorem 1.4. Let s ∈ (1/2, 1), and let q(x) and p(x, y) be continuous variable exponents as in
Theorem 1.1 with sp− > 1. Let f ∈ La(x)(Ω), with 1 < a− ≤ a(x) ≤ a+ < +∞ for every x ∈ Ω,
such that

np(x, x)
n− sp(x, x)

>
a(x)

a(x)− 1
> 1.

Then, there exists a unique minimizer of (1.3) in W0 that is the unique weak solution to (1.2).

The rest of the paper is organized as follows: In Section 2 we collect previous results
on fractional Sobolev embeddings; in Section 3 we prove our main result, Theorem 1.1, and
finally in Section 4 we deal with the elliptic problem (1.2).

2 Preliminary results.

In this section we collect some results that will be used along this paper.

Theorem 2.1 (Hölder’s inequality). Let p, q, r : Ω → (1, ∞) with 1
p = 1

q +
1
r . If f ∈ Lr(x) and

g ∈ Lq(x), then f g ∈ Lp(x) and

‖ f g‖Lp(x) ≤ c‖ f ‖Lr(x)‖ f ‖Lq(x) .

For the constant exponent case we have a fractional Sobolev embedding theorem.

Theorem 2.2 (Sobolev embedding, [20]). Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp < n. Then,
there exists a positive constant C = C(n, p, s) such that, for any measurable and compactly supported
function f : Rn → R, we have

‖ f ‖Lp∗ (Rn) ≤ C
(∫

Rn

∫
Rn

| f (x)− f (y)|p
|x− y|n+sp

)1/p

,
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where
p∗ = p∗(n, s) =

np
(n− sp)

is the so-called “fractional critical exponent”.
Consequently, the space Ws,p(Rn) is continuously embedded in Lq(Rn) for any q ∈ [p, p∗].

Using the previous result together with an extension property, we also have an embedding
theorem in a domain.

Theorem 2.3 ([20]). Let s ∈ (0, 1) and p ∈ [1,+∞) such that sp < n. Let Ω ⊂ Rn be an
extension domain for Ws,p. Then there exists a positive constant C = C(n, p, s, Ω) such that, for any
f ∈Ws,p(Ω), we have

‖ f ‖Lq(Ω) ≤ C‖ f ‖Ws,p(Ω)

for any q ∈ [p, p∗]; i.e., the space Ws,p(Ω) is continuously embedded in Lq(Ω) for any q ∈ [p, p∗].
If, in addition, Ω is bounded, then the space Ws,p(Ω) is continuously embedded in Lq(Ω) for any

q ∈ [1, p∗]. Moreover, this embedding is compact for q ∈ [1, p∗).

3 Fractional Sobolev spaces with variable exponents.

Proof of Theorem 1.1. Being p, q and r continuous, and Ω bounded, there exist two positive
constants k1 and k2 such that

q(x)− p(x, x) ≥ k1 > 0 (3.1)

and

np(x, x)
n− sp(x, x)

− r(x) ≥ k2 > 0, (3.2)

for every x ∈ Ω.
Let t ∈ (0, s). Since p, q and r are continuous, using (3.1) and (3.2) we can find a constant

ε = ε(p, r, q, k2, k1, t) and a finite family of disjoint Lipschitz sets Bi such that

Ω = ∪N
i=1Bi and diam(Bi) < ε,

that verify that

np(z, y)
n− tp(z, y)

− r(x) ≥ k2

2
,

q(x) ≥ p(z, y) +
k1

2
,

(3.3)

for every x ∈ Bi and (z, y) ∈ Bi × Bi.
Let

pi := inf
(z,y)∈Bi×Bi

(p(z, y)− δ).

From (3.3) and the continuity of the involved exponents we can choose δ = δ(k2), with
p− − 1 > δ > 0, such that

npi

n− tpi
≥ k2

3
+ r(x) (3.4)

for each x ∈ Bi.
It holds that
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(1) if we let p∗i = npi
n−tpi

, then p∗i ≥
k2
3 + r(x) for every x ∈ Bi,

(2) q(x) ≥ pi +
k1
2 for every x ∈ Bi.

Hence we can apply Theorem 2.3 for constant exponents to obtain the existence of a con-
stant C = C(n, pi, t, ε, Bi) such that

‖ f ‖
Lp∗i (Bi)

≤ C
(
‖ f ‖Lpi (Bi) + [ f ]t,pi(Bi)

)
. (3.5)

Now we want to show that the following three statements hold.

(A) There exists a constant c1 such that

N

∑
i=0
‖ f ‖

Lp∗i (Bi)
≥ c1‖ f ‖Lr(x)(Ω).

(B) There exists a constant c2 such that

c2‖ f ‖Lq(x)(Ω) ≥
N

∑
i=0
‖ f ‖Lpi (Bi).

(C) There exists a constant c3 such that

c3[ f ]s,p(x,y)(Ω) ≥
N

∑
i=0

[ f ]t,pi(Bi).

These three inequalities and (3.5) imply that

‖ f ‖Lr(x)(Ω) ≤ C
N

∑
i=0
‖ f ‖

Lp∗i (Bi)

≤ C
N

∑
i=0

(
‖ f ‖Lpi (Bi) + [ f ]t,pi(Bi)

)
≤ C

(
‖ f ‖Lq(x)(Ω) + [ f ]s,p(x,y)(Ω)

)
= C‖ f ‖W ,

as we wanted to show.
Let us start with (A). We have

| f (x)| =
N

∑
i=0
| f (x)|χBi .

Hence

‖ f ‖Lr(x)(Ω) ≤
N

∑
i=0
‖ f ‖Lr(x)(Bi)

, (3.6)

and by item (1), for each i, p∗i > r(x) if x ∈ Bi. Then we take ai(x) such that

1
r(x)

=
1

pi∗
+

1
a(x)

.
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Using Theorem 2.1 we obtain

‖ f ‖Lr(x)(Bi)
≤ c‖ f ‖

Lp∗i (x)(Bi)
‖1‖Lai(x)(Bi)

= C‖ f ‖
Lp∗i (x)(Bi)

.

Thus, recalling (3.6) we get (A).
To show (B) we argue in a similar way using that q(x) > pi for x ∈ Bi.
In order to prove (C) let us set

F(x, y) :=
| f (x)− f (y)|
|x− y|s ,

and observe that

[ f ]t,pi(Bi) =

(∫
Bi

∫
Bi

| f (x)− f (y)|pi

|x− y|n+tpi+spi−spi
dxdy

) 1
pi

=

(∫
Bi

∫
Bi

(
| f (x)− f (y)|
|x− y|s

)pi dxdy
|x− y|n+(t−s)pi

) 1
pi

= ‖F‖Lpi (µ,Bi×Bi
) (3.7)

≤ C‖F‖Lp(x,y)(µ,Bi×Bi)
‖1‖Lbi(x,y)(µ,Bi×Bi)

= C‖F‖Lp(x,y)(µ,Bi×Bi)
,

where we have used Theorem 2.1 with
1
pi

=
1

p(x, y)
+

1
bi(x, y)

,

but considering the measure in Bi × Bi given by

dµ(x, y) =
dxdy

|x− y|n+(t−s)pi
.

Now our aim is to show that

‖F‖Lp(x,y)(µ,Bi×Bi)
≤ C[ f ]s,p(x,y)(Bi) (3.8)

for every i. If this is true, then we immediately derive (C) from (3.7).
Let λ > 0 be such that ∫

Bi

∫
Bi

| f (x)− f (y)|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dxdy < 1.

Choose

k := sup

{
1, sup

(x,y)∈Ω×Ω
|x− y|s−t

}
and λ̃ := λk.

Then ∫
Bi

∫
Bi

(
| f (x)− f (y)|
(λ̃|x− y|s)

)p(x,y) dxdy
|x− y|n+(t−s)pi

=
∫

Bi

∫
Bi

|x− y|(s−t)pi

kp(x,y)

| f (x)− f (y)|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dxdy

≤
∫

Bi

∫
Bi

| f (x)− f (y)|p(x,y)

λp(x,y)|x− y|n+sp(x,y)
dxdy < 1.
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Therefore
‖F‖Lp(x,y)(µ,Bi×Bi)

≤ λk,

which implies the inequality (3.8).
On the other hand, when we consider functions that are compactly supported inside Ω we

can get rid of the term ‖ f ‖Lq(x)(Ω) and it holds that

‖ f ‖Lq(x)(Ω) ≤ C[ f ]s,p(x,y)(Ω).

Finally, we recall that the previous embedding is compact since in the constant exponent
case we have that for subcritical exponents the embedding is compact. Hence, for a bounded
sequence in W, fi, we can mimic the previous proof obtaining that for each Bi we can extract
a convergent subsequence in Lr(x)(Bi).

Remark 3.1. Our result is sharp in the following sense: if

p∗(x0) :=
np(x0, x0)

n− sp(x0, x0)
< r(x0)

for some x0 ∈ Ω, then the embedding of W in Lr(x)(Ω) cannot hold for every q(x). In fact,
from our continuity conditions on p and r there is a small ball Bδ(x0) such that

max
Bδ(x0)×Bδ(x0)

np(x, y)
n− sp(x, y)

< min
Bδ(x0)

r(x).

Now, fix q < minBδ(x0)
r(x) (note that for q(x) ≥ r(x) we trivially have that W is embedded in

Lr(x)(Ω)). In this situation, with the same arguments that hold for the constant exponent case,
one can find a sequence fk supported inside Bδ(x0) such that ‖ fk‖W ≤ C and ‖ fk‖Lr(x)Bδ(x0)

→
+∞. In fact, just consider a smooth, compactly supported function g and take fk(x) = kag(kx)
with a such that ap(x, y)− n + sp(x, y) ≤ 0 and ar(x)− n > 0 for x, y ∈ Bδ(x0).

Finally, we mention that the critical case

p∗(x) :=
np(x, x)

n− sp(x, x)
≥ r(x)

with equality for some x0 ∈ Ω is left open.

4 Equations with the fractional p(x)-Laplacian.

In this section we apply our previous results to solve the following problem. Let us consider
the operator L given by

Lu(x) := p.v.
∫

Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))
|x− y|n+sp(x,y)

dy.

Let Ω be a bounded smooth domain in Rn and f ∈ La(x)(Ω) with a+ > a(x) > a− > 1 for
each x ∈ Ω. We look for solutions to the problem{

Lu(x) + |u (x) |q(x)−2u(x) = f (x), x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.
(4.1)
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To this end we consider the following functional

F (u) :=
∫

Ω

∫
Ω

|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)p(x, y)
dxdy +

∫
Ω

|u(x)|q(x)

q(x)
dx−

∫
Ω

f (x)u(x) dx. (4.2)

Let us first state the definition of a weak solution to our problem (4.1). Note that here we
are using that p is symmetric, that is, we have p(x, y) = p(y, x).

Definition 4.1. We call u a weak solution to (4.1) if u ∈Ws,q(x),p(x,y)
0 (Ω) and

∫
Ω

∫
Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(v(x)− v(y))
|x− y|n+sp(x,y)

dxdy

+
∫

Ω
|u|q(x)−2u(x)v(x) dx =

∫
Ω

f (x)v(x) dx, (4.3)

for every v ∈Ws,q(x),p(x,y)
0 (Ω).

Now our aim is to show that F has a unique minimizer in Ws,q(x),p(x,y)
0 (Ω). This minimizer

shall provide the unique weak solution to the problem (4.1).

Proof of Theorem 1.4. We just observe that we can apply the direct method of Calculus of Vari-
ations. Note that the functional F given in (4.2) is bounded below and strictly convex (this
holds since for any x and y the function t 7→ tp(x,y) is strictly convex).

From our previous results, Ws,q(x),p(x,y)
0 (Ω) is compactly embedded in Lr(x)(Ω) for r(x) <

p∗(x), see Theorem 1.1. In particular, we have that Ws,q(x),p(x,y)
0 (Ω) is compactly embedded in

L
a(x)

a(x)−1 (Ω).
Let us see that F is coercive. We have

F (u) =
∫

Ω

∫
Ω

|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)p(x, y)
dxdy +

∫
Ω

|u(x)|q(x)

q(x)
dx−

∫
Ω

f (x)u(x) dx

≥
∫

Ω

∫
Ω

|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)p(x, y)
dxdy +

∫
Ω

|u(x)|q(x)

q(x)
dx− ‖ f ‖La(x)(Ω)‖u‖

L
a(x)

a(x)−1 (Ω)

≥
∫

Ω

∫
Ω

|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)p(x, y)
dxdy +

∫
Ω

|u(x)|q(x)

q(x)
dx− C‖u‖W .

Now, let us assume that ‖u‖W > 1. Then we have

F (u)
‖u‖W

≥ 1
‖u‖W

(∫
Ω

∫
Ω

|u(x)− u(y)|p(x,y)

|x− y|n+sp(x,y)p(x, y)
dxdy +

∫
Ω

|u(x)|q(x)

q(x)
dx

)
− C

≥ ‖u‖min{p−,q−}−1
W − C.

We next choose a sequence uj such that ‖uj‖W → ∞ as j→ ∞. Then we have

F (uj) ≥ ‖uj‖
min{p−,q−}
W − C‖uj‖W → ∞,

and we conclude that F is coercive. Therefore, there is a unique minimizer of F .
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Finally, let us check that when u is a minimizer to (4.2) then it is a weak solution to (4.1).
Given v ∈Ws,q(x),p(x,y)

0 (Ω) we compute

0 =
d
dt
F (u + tv)

∣∣∣∣
t=0

=
∫

Ω

∫
Ω

d
dt
|u(x)− u(y) + t(v(x)− v(y))|p(x,y)

p(x, y)|x− y|n+sp(x,y)
dxdy

∣∣∣∣∣
t=0

+
∫

Ω

d
dt
|u(x) + tv(x)|q(x)

q(x)
dx

∣∣∣∣∣
t=0

−
∫

Ω

d
dt

f (x)(u(x) + tv(x)) dx
∣∣∣∣
t=0

=
∫

Ω

∫
Ω

|u(x)− u(y)|p(x,y)−2(u(x)− u(y))(v(x)− v(y))
|x− y|n+sp(x,y)

dxdy

+
∫

Ω
|u(x)|q(x)−2u(x)v(x)dx−

∫
Ω

f (x)v(x),

as u is a minimizer of (4.2). Thus, we deduce that u is a weak solution to the problem (4.1).
The proof of the converse (that every weak solution is a minimizer of F ) is standard and

we leave the details to the reader.
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