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Abstract. In this article we extend the Sobolev spaces with variable exponents to in-
clude the fractional case, and we prove a compact embedding theorem of these spaces
into variable exponent Lebesgue spaces. As an application we prove the existence and
uniqueness of a solution for a nonlocal problem involving the fractional p(x)-Laplacian.
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1 Introduction

Our main goal in this paper is to extend Sobolev spaces with variable exponents to cover the
fractional case.

For a bounded domain with Lipschitz boundary () C R"” we consider two variable expo-
nents, that is, we let g : QO — (1,00) and p : QO x Q — (1,00) be two continuous functions.
We assume that p is symmetric, p(x,y) = p(y, x), and that both p and q are bounded away
from 1 and oo, that is, there exist 1 < g_ < g4 < +o0and 1 < p_ < py < +oco such that
g— < q(x) < g4 forevery x € Qand p_ < p(x,y) < p4 for every (x,y) € Q x Q.

We define the Banach space L1%)(Q) as usual,

q(x)
dx < oo} ,

L19)(Q) = {f:Q—HR: 3;\>0:/Q f(Ax)

with its natural norm

fx)
A

q(x)
Il = inf{/\ S0 [ 0x < 1}.
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Now for 0 < s < 1 we introduce the variable exponent Sobolev fractional space as follows:

W = WPy () = {f Q- R:fe LW)(Q) :

y)IPey
//Q)pry !x—y]'“rsp (xy) <°°;fOI'SOme/\>0 ,

and we set

s,p(x.y) ‘p >
[f] Q) := 1nf{/\>0 / /()/\pxy‘x_y‘n+spxj) <1}

as the variable exponent seminorm. It is easy to see that W is a Banach space with the norm

1Fllw == 11l oo ) + LI (€);

in fact, one just has to follow the arguments in [20] for the constant exponent case. For general
theory of classical Sobolev spaces we refer the reader to [1,5] and for the variable exponent
case to [8].

Our main result is the following compact embedding theorem into variable exponent
Lebesgue spaces. For an analogous theorem for the Sobolev trace embedding we refer to
the companion paper [3].

Theorem 1.1. Let O C R" be a Lipschitz bounded domain and s € (0,1). Let q(x), p(x,y) be
continuous variable exponents with sp(x,y) < n for (x,y) € Q x Qand q(x) > p(x,x) for x € Q.
Assume that v : QO — (1,00) is a continuous function such that

pr(x) = 7% >r(x)>ro >1,

for x € Q. Then, there exists a constant C = C(n,s, p,q,r, Q) such that for every f € W, it holds
that

1Al ) < ClIfllw-

That is, the space W15 P(5¥)(Q)) is continuously embedded in L") (Q) for any r € (1, p*). More-
over, this embedding is compact.

In addition, when one considers functions f € W that are compactly supported inside O3, it holds
that

£l @y < CLAFPE(Q).

Remark 1.2. Observe that if p is a continuous variable exponent in () and we extend p to

Qx Qas p(x,y) = M, then p*(x) is the classical Sobolev exponent associated with
p(x), see [8].

Remark 1.3. When g(x) > r(x) for every x € () the main inequality in the previous theorem,
[/l () < Cllfllw, trivially holds. Hence our results are meaningful when g(x) < r(x) for
some pomts x inside Q).

With the above theorem at hand one can readily deduce existence of solutions to some
nonlocal problems. Let us consider the operator £ given by

|1(x) — u(y)[P5Y 2 (u(x) — u(y))
_pv/ ’x_y‘mpxy) dy. (1.1)
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This operator appears naturally associated with the space W. In the constant exponent case
it is known as the fractional p-Laplacian, see [2,4,6,7,9-11, 13, 14, 17-19] and references
therein. On the other hand, we remark that (1.1) is a fractional version of the well-known
p(x)-Laplacian, given by div(|Vu|P(*)=2Vu), that is associated with the variable exponent
Sobolev space wir) (Q). We refer for instance to [8,12,15,16].

Let f € L°®)(Q), a(x) > 1. We look for solutions to the problem

Lu(x) + |u(x)|702u(x) = f(x), x€Q,
u(x) =0, x € 00

(1.2)

Associated with this problem we have the following functional

//Q|x- |ntsp(xy ))|;((zy)y)dxdy+/ |”(qx( /f X. (1.3)

To take into account the boundary condition in (1.2) we consider the space Wy that is the
closure in W of compactly supported functions in (). In order to have a well defined trace
on d(), for simplicity, we just restrict ourselves to sp_ > 1, since then it is easy to see that
W C W¥-(Q) C WS 1/r-7-(0Q), with §p_ > 1, see [1,20]. Concerning problem (1.2), we
shall prove the following existence and uniqueness result.

Theorem 1.4. Let s € (1/2,1), and let q(x) and p(x,y) be continuous variable exponents as in
Theorem 1.1 with sp_ > 1. Let f € L“(x)(Q), with1 < a_ < a(x) < ay < +oo for every x € Q,
such that

np(x,x) a(x)
>
n—sp(x,x)  a(x)—1
Then, there exists a unique minimizer of (1.3) in Wy that is the unique weak solution to (1.2).

> 1.

The rest of the paper is organized as follows: In Section 2 we collect previous results
on fractional Sobolev embeddings; in Section 3 we prove our main result, Theorem 1.1, and
finally in Section 4 we deal with the elliptic problem (1.2).

2 Preliminary results.

In this section we collect some results that will be used along this paper.
Theorem 2.1 (Holder’s inequality). Let p,q,7 : Q — (1,00) with % = % + % If feL'™ and
g € L1, then fg € LP™Y) and

I8l o < cll fllprw L fll Lo

For the constant exponent case we have a fractional Sobolev embedding theorem.

Theorem 2.2 (Sobolev embedding, [20]). Let s € (0,1) and p € [1,+o0) such that sp < n. Then,
there exists a positive constant C = C(n, p, s) such that, for any measurable and compactly supported
function f : R" — R, we have

1l ey < € < [ W>/p
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where

np
(n —sp)

*

p*=p-(ns) =

is the so-called “fractional critical exponent”.
Consequently, the space W (R") is continuously embedded in L1(R") for any q € [p, p*].

Using the previous result together with an extension property, we also have an embedding
theorem in a domain.

Theorem 2.3 ([20]). Let s € (0,1) and p € [1,+00) such that sp < n. Let O C R" be an
extension domain for W*¥. Then there exists a positive constant C = C(n, p,s, Q) such that, for any
f e WP (Q), we have

1 fllza) < Clifllwsr(

forany q € [p, p*]; i.e., the space W*F (Q) is continuously embedded in L1(QY) for any q € [p, p*].
If, in addition, Q) is bounded, then the space WP (Q)) is continuously embedded in L1(Q)) for any
g € [1, p*]. Moreover, this embedding is compact for g € [1, p*).

3 Fractional Sobolev spaces with variable exponents.

Proof of Theorem 1.1. Being p, g and r continuous, and () bounded, there exist two positive
constants k; and k> such that

q(x) — p(x,x) > k1 >0 3.1)
and
,% —r(x) 2 k2 >0, (3.2)

for every x € Q.
Let t € (0,s). Since p, g and r are continuous, using (3.1) and (3.2) we can find a constant
€ =¢€(p,1,q,ka, k1, t) and a finite family of disjoint Lipschitz sets B; such that

Q=UN,B; and diam(B;) <e,
that verify that

np(zy) ky

ey (3.3)
k

9(x) 2 pz,y) + 3,

for every x € B; and (z,y) € B; x B;.

Let
= inf ,Y) —0).
pii= of  (Pzy)=0)
From (3.3) and the continuity of the involved exponents we can choose § = J(kz), with
p— —1> 4 >0, such that
npi ka
— +r(x) (34)

for each x € B;.
It holds that
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(1) if we let p; = ;75 then p} > %2 1 7(x) for every x € B;,
) q(x) > p;i + % for every x € B;.

Hence we can apply Theorem 2.3 for constant exponents to obtain the existence of a con-
stant C = C(n, p;, t, €, B;) such that

1At gy < (1 sy + A7 (B) ) (35)
Now we want to show that the following three statements hold.

(A) There exists a constant ¢; such that
N
Yo MAN ) = CLllf e )
i=0
(B) There exists a constant ¢, such that
N
C2||f||m<x>(g) > Z 1l zri s,y
i=0
(C) There exists a constant c3 such that

N
a[fIP7(Q) = Y[ (By).

i=0

These three inequalities and (3.5) imply that
N
11l ) < C;) A1l ot g,

N
< C;) (Hf”Lvi(Bf) + [f]t,pi(Bi)>

< C (Il + [F17) () )
= Cliflw,

as we wanted to show.
Let us start with (A). We have

[f()] = ; |f(x)|xB;-

Hence N
1Ay < 22 1T, (3.6)
i=0
and by item (1), for each i, p; > r(x) if x € B;. Then we take a;(x) such that

11,1
M) pr ax)
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Using Theorem 2.1 we obtain
oy < ell Ao 1o sy
= C”fHLP?(x)(B)

Thus, recalling (3.6) we get (A).
To show (B) we argue in a similar way using that g(x) > p; for x € B;.
In order to prove (C) let us set

f(x) = fy)l

o) = Ty

7

and observe that

1
tPl )|pl dxd ki
‘x_ |n+tpz+sp, spi xay
(// <|f )!)”1 dxdy )
=y )y

= HFHL”i(y,B,-xBi) (3.7)

< CHFHLn(Ly)(V,BixBi) || 1 HLbi("/y)(H’BiXBi)

|-

= C||F||Ll’<xry)(y,B,»><Bi)’

where we have used Theorem 2.1 with
1 1 1

I + ,
pi pluy)  bilxy)
but considering the measure in B; X B; given by

dxdy
d“l/l(X, y) = W

Now our aim is to show that
1l oo ) < CLASPCH) (By) (3.8)

for every i. If this is true, then we immediately derive (C) from (3.7).
Let A > 0 be such that

|P xy)
/ / Apxy y|n+spxy) dxdy < 1.

Choose

= sup{l, sup |x—y|5_t} and A := Ak
(xy)eQax Q)

//(V@—ﬂwgww dxdy
B; Alx = yl) |x —y|r=op
(s=t)pi _ p(xy)
_//Wx ) = IS
kr(xy) Ap(x, y)| — y|n+sp(x,y)

|pxy dxd 1
//Apxy|x_ |n+spxy) xy< '

Then
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Therefore
||F||Lp(x/y)(%3ixgi) < Ak,

which implies the inequality (3.8).
On the other hand, when we consider functions that are compactly supported inside (2 we
can get rid of the term || f|| 4 () and it holds that

£l oy < CLTPEP(Q).

Finally, we recall that the previous embedding is compact since in the constant exponent
case we have that for subcritical exponents the embedding is compact. Hence, for a bounded
sequence in W, f;, we can mimic the previous proof obtaining that for each B; we can extract
a convergent subsequence in L") (B;). O

Remark 3.1. Our result is sharp in the following sense: if

b (x0) = np(xo, Xo)

n —sp(xo, xo) <r(x0)

for some xy € Q, then the embedding of W in L"*)(Q) cannot hold for every g(x). In fact,
from our continuity conditions on p and r there is a small ball Bs(x() such that

np(x,y)

~ max ———>— < min r(x).

Bs(x0)xBs(xo) 1 — SP(X,Y)  By(x)
Now, fix g < ming (., 7(x) (note that for q(x) = r(x) we trivially have that W is embedded in
L™ (Q)). In this situation, with the same arguments that hold for the constant exponent case,
one can find a sequence fi supported inside Bs(xo) such that || fy[|[w < C and | fi[[ 1w, (xy) —
+o0. In fact, just consider a smooth, compactly supported function g and take fi(x) = k“g(kx)
with a such that ap(x,y) — n+sp(x,y) < 0and ar(x) —n > 0 for x,y € Bs(xo).

Finally, we mention that the critical case

() = s > v

with equality for some xy € () is left open.

4 Equations with the fractional p(x)-Laplacian.

In this section we apply our previous results to solve the following problem. Let us consider
the operator £ given by

Lu(x) := p.v./n |1(x) — u(y) [P 2 (u(x) — u(y)) J

‘x _ y|n+sp(x,y) Yy

Let ) be a bounded smooth domain in R” and f € L*®)(Q) with a, > a(x) > a_ > 1 for
each x € Q. We look for solutions to the problem

{[,u(x) +lu(x) |79 2u(x) = f(x), xeQ, (4.1)

u(x) =0, x € 9Q).
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To this end we consider the following functional

// |x— |n+5p ’:(J:)y)dxdy—k/ ’M(qx( i /f dx. (4.2)

Let us first state the definition of a weak solution to our problem (4.1). Note that here we
are using that p is symmetric, that is, we have p(x,y) = p(y, x).

Definition 4.1. We call u a weak solution to (4.1) if u € WS A(x):p(xy) (Q) and

[ ] =P ) — )0 ~0l8) gy,

’x _ y’n-i-sp(x,y)

—f—/ﬂ]u\qm’zu(x)v(x)dx:/Qf(x)v(x)dx, (4.3)
for every v € Wy 93P (xy)(Q).

Now our aim is to show that F has a unique minimizer in Wg’q(x)’p () (Q)). This minimizer
shall provide the unique weak solution to the problem (4.1).

Proof of Theorem 1.4. We just observe that we can apply the direct method of Calculus of Vari-
ations. Note that the functional F given in (4.2) is bounded below and strictly convex (this
holds since for any x and y the function t — tP(*¥) is strictly convex).

From our previous results, Wg’q(x)’p () (Q) is compactly embedded in L") (Q) for r(x) <
p*(x), see Theorem 1.1. In particular, we have that Wg’q(x) P (xy) (Q)) is compactly embedded in

a(x)
La(x)fl (Q)
Let us see that F is coercive. We have

// |p(xy) dxdy + |u f
- wdy+ [ P
Ix y!“’ Ip(x,y)
> [ [ OOy | s N
x - s ~_ x_ alx u alx
orx— w Dpy) Y a q<x> L@ e,
|P( y) / |u(x)|q(X)
dxd —7  _dx-C .
= - wsv Dpey) YT o gt Clllw

Now, let us assume that ||u||y > 1. Then we have

p(x,y) q(x)
F(u > // vl dxdy—i—/‘u(xﬂdx -C
Hun !w olx— I"+SP p(x,y) o qx)

> Huu;’&m{‘”'”* -C.

‘w‘@

=

Red

We next choose a sequence u; such that |[uj||y — oo as j — co. Then we have
F) > g lg™" " = Cllugllw — oo,

and we conclude that F is coercive. Therefore, there is a unique minimizer of F.
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Finally, let us check that when u is a minimizer to (4.2) then it is a weak solution to (4.1).
Given v € qu( x)px y)(Q) we compute

d d Ju( ) +t(o(x) — v(y)) [P
. E}—(u—i_tv) t=0 - / /Q ; p(x ,yy)\x—y\”“’”/) el t=0
" Qi'”“)*q(tj)(x)' i~ [ o) )]
= [ [ ) =) ) () 0) =005
Q | |n+sz7(x,y) Y

+/Q\u(x)|’4(x)*2u(x)v(x)dx_/Qf(x)v(x)

as u is a minimizer of (4.2). Thus, we deduce that u is a weak solution to the problem (4.1).
The proof of the converse (that every weak solution is a minimizer of F) is standard and
we leave the details to the reader. O
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