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Abstract. We prove the existence of weak solutions to the Dirichlet boundary value
problem for equations involving the p(x)-Laplacian-like operator in the principal part,
with reaction term satisfying a sub-critical growth condition. We establish the existence
of at least one nontrivial weak solution and three weak solutions, by using variational
methods and critical point theory.
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1 Introduction

In this article we consider the following Dirichlet boundary value problem:−∆l
p(x)u(x) + |u(x)|p(x)−2u(x) = λ g(x, u(x)) in Ω,

u = 0 on ∂Ω,
(Pλ)

where

∆l
p(x)u := div

1 +
|∇u|p(x)√

1 + |∇u|2p(x)

 |∇u|p(x)−2∇u


is the p(x)-Laplacian-like, Ω ⊂ Rn is an open bounded domain with smooth boundary, p ∈
C(Ω) is a function with some regularity satisfying

1 < p− := inf
x∈Ω

p(x) ≤ p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞.

The function g : Ω×R→ R is Carathéodory (that is, for all z ∈ R, x → g(x, z) is measurable
and for a.a. x ∈ Ω, z→ g(x, z) is continuous) and λ is a real positive parameter. In the sequel
of this article, we assume that the reaction term g(x, z) satisfies the hypothesis:
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(g1) there exist a1, a2 ∈ [0,+∞[ and α ∈ C(Ω) with 1 < α(x) < p∗(x) for all x ∈ Ω, such that

|g(x, z)| ≤ a1 + a2|z|α(x)−1 for all (x, z) ∈ Ω×R,

where p∗(x) =
np(x)

n− p(x)
if p(x) < n and p∗(x) = +∞ if p(x) ≥ n.

Now, let W1,p(x)
0 (Ω) be the closure of C∞

0 (Ω) in the generalized Lebesgue–Sobolev space
W1,p(x)(Ω) given in Section 2. For a weak solution of problem (Pλ), we mean a function
u ∈W1,p(x)

0 (Ω) such that

∫
Ω
|∇u(x)|p(x)−2∇u(x)∇v(x)dx +

∫
Ω

|∇u(x)|2p(x)−2∇u(x)√
1 + |∇u(x)|2p(x)

∇v(x)dx

+
∫

Ω
|u(x)|p(x)−2u(x)v(x)dx = λ

∫
Ω

g(x, u(x))v(x) dx,

for all v ∈W1,p(x)
0 (Ω).

Existence and multiplicity results for problems involving the p(x)-Laplacian-like were ob-
tained by Rodrigues [13] (Dirichlet boundary condition), Afrouzi–Kirane–Shokooh [1] (Neu-
mann boundary condition). For other problems driven by the p(x)-Laplacian operator, there
are the works of Fan–Zhang [9], Bonanno–Chinnì [3] (Dirichlet boundary condition), and
Deng–Wang [7], Pan–Afrouzi–Li [12] (Neumann boundary condition). Also, we mention
the comprehensive book on nonlinear boundary value problems by Motreanu–Motreanu–
Papageorgiou [11].

Here, we prove the existence of weak solutions to the Dirichlet boundary value problem
(Pλ), by using variational methods and critical point theory. Precisely, we apply a result
of Bonanno [2] for functionals satisfying the Palais–Smale condition cut off upper at r (the
(PS)[r]-condition for short), to obtain the existence of at least one nontrivial weak solution.
Then, we use a result of Bonanno–Marano [4] to obtain the existence of three weak solutions.
The motivation of this study comes from the use of such problems to model the behaviour of
electrorheological fluids in physics (as discussed in Diening–Harjulehto–Hästö–Růžička [8])
and, in particular, the phenomenon of capillarity which depends on solid and liquid interfacial
properties such as surface tension, contact angle, and solid surface geometry.

2 Mathematical background

Let X be a real Banach space and X∗ its topological dual. In developing our study, we consider
both the variable exponent Lebesgue space Lp(x)(Ω) and the generalized Lebesgue–Sobolev
space W1,p(x)(Ω). Indeed, these spaces, in respect to the norms defined below, are separable,
reflexive and uniformly convex Banach spaces (see Fan–Zhang [9]). So, we have the variable
exponent Lebesgue space Lp(x)(Ω) given as

Lp(x)(Ω) =

{
u : Ω→ R : u is measurable and

∫
Ω
|u(x)|p(x)dx < +∞

}
,

where we consider the following norm

‖u‖Lp(x)(Ω) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)
λ

∣∣∣∣p(x)

dx ≤ 1

}
(i.e., Luxemburg norm).
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On the other hand, the generalized Lebesgue–Sobolev space W1,p(x)(Ω) is defined by

W1,p(x)(Ω) :=
{

u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)
}

.

Also, we take the norm

‖u‖W1,p(x)(Ω) = ‖u‖Lp(x)(Ω) + ‖ |∇u| ‖Lp(x)(Ω),

which is equivalent to the norm

‖u‖ := inf

{
λ > 0 :

∫
Ω

(∣∣∣∣u(x)
λ

∣∣∣∣p(x)

+

∣∣∣∣∇u(x)
λ

∣∣∣∣p(x)
)

dx ≤ 1

}
,

(see D’Aguì–Sciammetta [6]). In the following, we will use the norm ‖u‖ instead of ‖u‖W1,p(x)(Ω)

on W1,p(x)
0 (Ω). In the proofs of our theorems, we use a Sobolev embedding result; precisely

we refer to the following proposition due to Fan–Zhao [10].

Proposition 2.1. Let p ∈ C(Ω) with p(x) > 1 for each x ∈ Ω. Then, there exists a continuous and
compact embedding W1,p(x)

0 (Ω) ↪→ Lα(x)(Ω), provided that α ∈ C(Ω) and 1 < α(x) < p∗(x) for all
x ∈ Ω.

Another useful theorem, which links ‖u‖Lp(x)(Ω) to
∫

Ω |u(x)|p(x)dx (respectively, ‖u‖ to∫
Ω

(
|u(x)|p(x) + |∇u(x)|p(x) )dx), can be stated as follows (Fan–Zhao [10, Theorem 1.3] and

Cammaroto–Chinnì–Di Bella [5, Proposition 2.1]).

Theorem 2.2. Let u ∈ Lp(x)(Ω) (resp., u ∈W1,p(x)
0 (Ω)) and put ‖u‖∗ = ‖u‖Lp(x)(Ω) (resp., ‖u‖∗ =

‖u‖) and ρ∗(u) =
∫

Ω |u(x)|p(x)dx (resp., ρ∗(u) =
∫

Ω

(
|u(x)|p(x) + |∇u(x)|p(x) )dx). Then, we

have:

(i) ‖u‖∗ < 1 (= 1, > 1)⇔ ρ∗(u) < 1 (= 1, > 1);

(ii) if ‖u‖∗ > 1, then ‖u‖p−
∗ ≤ ρ∗(u) ≤ ‖u‖p+

∗ ;

(iii) if ‖u‖∗ < 1, then ‖u‖p+
∗ ≤ ρ∗(u) ≤ ‖u‖p−

∗ .

Next, let G : Ω×R→ R be the function defined by

G(x, t) =
∫ t

0
g(x, z)dz for all t ∈ R, x ∈ Ω,

and consider the functional Ψ : W1,p(x)
0 (Ω)→ R defined by

Ψ(u) =
∫

Ω
G(x, u(x)) dx, for all u ∈W1,p(x)

0 (Ω).

By using (g1), we get Ψ ∈ C1(W1,p(x)
0 (Ω), R). Also, by Proposition 2.1 we deduce that Ψ has a

compact derivative given as

Ψ′(u)(v) =
∫

Ω
g(x, u(x))v(x) dx, for all u, v ∈W1,p(x)

0 (Ω).
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Moreover, let Φ : W1,p
0 (Ω)→ R be the functional defined by

Φ(u) =
∫

Ω

1
p(x)
|∇u(x)|p(x)dx +

∫
Ω

1
p(x)

[√
1 + |∇u(x)|2p(x) − 1

]
dx +

∫
Ω

1
p(x)
|u(x)|p(x)dx

for all u ∈ W1,p(x)
0 (Ω), so that Φ is in C1(W1,p(x)

0 (Ω), R). We recall that Φ is Gâteaux dif-
ferentiable and sequentially weakly lower semicontinuous and its Gâteaux derivative Φ′ :
W1,p(x)

0 (Ω)→ (W1,p(x)
0 (Ω))∗ is

Φ′(u)(v) =
∫

Ω
|∇u(x)|p(x)−2∇u(x)∇v(x)dx +

∫
Ω

|∇u(x)|2p(x)−2∇u(x)√
1 + |∇u(x)|2p(x)

∇v(x)dx

+
∫

Ω
|u(x)|p(x)−2u(x)v(x)dx

for all u, v ∈W1,p(x)
0 (Ω). From Rodrigues [13], we recall the following proposition.

Proposition 2.3. The functional Φ′ : W1,p(x)
0 (Ω) →

(
W1,p(x)

0 (Ω)
)∗ is a strictly monotone and

bounded homeomorphism.

Finally, consider the functional Iλ : W1,p(x)
0 (Ω) → R defined by Iλ(u) = Φ(u)− λΨ(u) for

all u ∈W1,p(x)
0 (Ω). We have

inf
u∈W1,p(x)

0 (Ω)

Φ(u) = Φ(0) = Ψ(0) = 0.

We conclude this section with the following notion.

Definition 2.4. Let X be a real Banach space and X∗ its topological dual. Then, Iλ : X → R

satisfies the Palais–Smale condition cut off upper at r, with fixed r ∈ ] − ∞,+∞], if any
sequence {un} such that

(i) {Iλ(un)} is bounded;

(ii) limn→+∞ ‖I′λ(un)‖X∗ = 0;

(iii) Φ(un) < r,

has a convergent subsequence.

3 Existence of one weak solution

In this section we establish an existence theorem producing at least one nontrivial weak so-
lution of (Pλ). To this aim, we apply a theorem proved by Bonanno [2, Theorem 2.3], which
reads as follows.

Theorem 3.1. Let X be a real Banach space and let Φ, Ψ : X → R be two continuously Gâteaux
differentiable functionals such that infu∈X Φ(u) = Φ(0) = Ψ(0) = 0. Assume that there exist r > 0
and ū ∈ X, with 0 < Φ(ū) < r, such that

(i) σ = 1
r supφ(u)≤r Ψ(u) < Ψ(ū)

Φ(ū) = ρ;
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(ii) for each λ ∈
] 1

ρ , 1
σ

[
the functional Iλ := Φ− λΨ satisfies the (P.S.)[r]-condition.

Then, for each λ ∈ Λr :=
] 1

ρ , 1
σ

[
, there is u0,λ ∈ Φ−1(]0, r[) such that I′λ(u0,λ) ≡ ϑX∗ and Iλ(u0,λ) ≤

Iλ(u) for all u ∈ Φ−1(]0, r[).

Here, we need the function δ : Ω → R given as δ(x) = d(x, ∂Ω), with d to denote the
Euclidean distance. Let x0 ∈ Ω be a point of maximum for δ and let D = δ(x0), then
B(x0, D) = {x ∈ Rn : d(x0, x) < D} ⊂ Ω. Now, we fix s ∈ ]1,+∞[ and put sD = 1

s and
κD = s

(s−1)D . Clearly (1− sD)DκD = 1. Then, for β > 0 and h ∈ C(Ω) with 1 < h−, we put

[β]h := max
{

βh− , βh+
}

.

The hypothesis on the function G : Ω×R→ R is as follows:

(g2) infx∈Ω G(x, t) ≥ 0 for all t ∈ [0, 1] and lim supt→0+
infx∈Ω G(x,t)

tp− = +∞.

Let λ∗ :=
(

a1k1(p+)1/p− + a2
α− [kα]α(p+)α+/p−

)−1
, where k1 and kα are the best constants for

the compact embeddings W1,p(x)
0 (Ω) ↪→ L1(Ω) and W1,p(x)

0 (Ω) ↪→ Lα(x)(Ω), respectively. We
establish the following result.

Theorem 3.2. If hypotheses (g1), (g2) hold, then problem (Pλ) admits at least one nontrivial weak
solution, for each λ ∈ ]0, λ∗[.

Proof. We consider the functionals Φ and Ψ given in Section 2 on the Banach space W1,p(x)
0 (Ω),

and prove that all the hypotheses of Theorem 3.1 hold true with r = 1. Since Φ, Ψ ∈
C1(W1,p(x)

0 (Ω), R) and Ψ′ is compact, the functional Iλ satisfies the (P.S.)[r]-condition for all
r > 0 (see, Afrouzi–Kirane–Shokooh [1, Theorem 3.1]). We deduce that Theorem 3.1 (ii) holds
true. Then, fixed λ ∈ ]0, λ∗[, by (g2) we get

0 < δλ < min

{
1,
(

p−

mDn(2[κD]p(1− sn
D) + 1)

)1/p−
}

so that
p−sn

D infx∈Ω G(x, δλ)

(2[κD]p(1− sn
D) + 1)(δλ)p− >

1
λ

.

Now, we consider the function uλ : Ω→ R given as

uλ(x) =


0, x ∈ Ω \ B(x0, D),

δλ, x ∈ B(x0, sDD),

δλκD(D− |x− x0|), x ∈ B(x0, D) \ B(x0, sDD),

where | · | is the Euclidean norm on Rn. We obtain

p−Φ(uλ) ≤
∫

Ω
|∇uλ(x)|p(x)dx +

∫
Ω

[√
1 + |∇uλ(x)|2p(x) − 1

]
dx +

∫
B(x0,D)

|uλ(x)|p(x)dx

≤
∫

Ω
2|∇uλ(x)|p(x)dx +

∫
B(x0,D)

(δλ)
p(x)dx

≤ mDn (2[κD]
p(1− sn

D) + 1) (δλ)
p−

⇒ Φ(uλ) < 1,
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where m := 2πn/2

nΓ(n/2) denotes the measure of unit ball of Rn and Γ is the Gamma function. We
get

Ψ(uλ) ≥
∫

B(x0,sD D)
G(x, uλ)dx ≥ inf

x∈Ω
G(x, δλ)msn

DDn (by left part of (g2))

⇒ Ψ(uλ)

Φ(uλ)
≥ p−msn

DDn infx∈Ω G(x, δλ)

mDn (2[κD]p(1− sn
D) + 1) (δλ)p− =

p−sn
D infx∈Ω G(x, δλ)

(2[κD]p(1− sn
D) + 1) (δλ)p− >

1
λ

.

Let r = 1. For each u ∈ Φ−1(]−∞, 1]), we can use Theorem 2.2 and conclude that

‖u‖ ≤
[∫

Ω

(
|∇u(x)|p(x) + |u(x)|p(x)

)
dx
]1/p

≤
[
p+Φ(u)

]1/p ≤ (p+)1/p− ,

⇒ ‖u‖ ≤ (p+)1/p− . (3.1)

Next, Proposition 2.1 and Theorem 2.2 imply that∫
Ω
|u(x)|α(x)dx = ρα(u) ≤

[
‖u‖Lα(x)(Ω)

]α
≤ [kα‖u‖]α (3.2)

for all u ∈W1,p(x)
0 (Ω), where kα is the best constant for the compact embedding W1,p(x)

0 (Ω) ↪→
Lα(x)(Ω). Moreover, the compact embedding W1,p(x)

0 (Ω) ↪→ L1(Ω) (with best constant k1),
(g1), (3.1) and (3.2) imply that, for each u ∈ Φ−1(]−∞, 1]), we have

Ψ(u) ≤ a1

∫
Ω
|u(x)|dx +

a2

α−

∫
Ω
|u(x)|α(x)dx ≤ a1k1‖u‖+

a2

α−
[kα]

α[‖u‖]α

≤ a1k1(p+)1/p− +
a2

α−
[kα]

α(p+)α+/p−

⇒ sup
Φ(u)≤1

Ψ(u) ≤ a1k1(p+)1/p− +
a2

α−
[kα]

α(p+)α+/p− =
1

λ∗
<

1
λ

⇒ sup
Φ(u)≤1

Ψ(u) <
1
λ
<

Ψ(uλ)

Φ(uλ)
.

It follows that Theorem 3.1 (i) holds true. Since λ ∈
]Φ(uλ)

Ψ(uλ)
, 1

supΦ(u)≤r Ψ(u)

[
, by an application of

Theorem 3.1 with u = uλ and r = 1, we obtain the existence of a local minimum point vλ of
the functional Iλ such that 0 < Φ(vλ) < 1. This means that vλ is a nontrivial weak solution of
problem (Pλ).

4 Existence of three weak solutions

In this section we prove a theorem producing at least three weak solutions of (Pλ). To this
aim, we apply a theorem proved by Bonanno–Marano [4, Theorem 3.6], which run as follows.

Theorem 4.1. Let X be a reflexive real Banach space and let Φ : X → R be a coercive, continu-
ously Gâteaux differentiable and sequentially weakly lower semicontinuous functional whose Gâteaux
derivative admits a continuous inverse on X∗, Ψ : X → R be a continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact such that infX Φ(x) = Φ(0) = Ψ(0) = 0. Assume
that there exist r > 0 and ū ∈ X, with 0 < r < Φ(ū), such that

(i) σ = 1
r supφ(u)≤r Ψ(u) < Ψ(ū)

Φ(ū) = ρ;
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(ii) for each λ ∈
] 1

ρ , 1
σ

[
the functional Iλ := Φ− λΨ is coercive.

Then, for each λ ∈ Λr :=
] 1

ρ , 1
σ

[
, the functional Iλ := Φ− λΨ has at least three distinct critical points

in X.

The hypotheses on the function G : Ω×R→ R are as follows:

(g3) there exist c ∈ [0,+∞[ and γ ∈ C(Ω) with 1 < γ− ≤ γ+ < p− such that

G(x, t) ≤ c
(

1 + |t|γ(x)
)

for all (x, t) ∈ Ω×R;

(g4) G(x, t) ≥ 0 for all (x, t) ∈ Ω× [0,+∞[;

(g5) there exist r > 0 and δ > 0 with r < 1
p+ mDn[min

{
κ

p−
D , κ

p+
D
}
(1− sn

D) + 1
]
δp+ such that

ω :=
1
r

(
a1k1(p+)1/p− [r]1/p +

a2

α−
[kα]

α(p+)α+/p− [[r]1/p]α
)

<
p−sn

D infx∈Ω G(x, δ)

(2[κD]p(1− sn
D) + 1) δp− .

So, we establish the following result.

Theorem 4.2. If hypotheses (g1), (g3), (g4), (g5) hold, then problem (Pλ) admits at least three weak

solutions, for each λ ∈ Λr,δ :=
] (2[κD ]

p(1−sn
D)+1)δp−

p−sn
D infx∈Ω G(x,δ) , 1

ω

[
.

Proof. We adapt the proof of Theorem 3.2 to the new situation. So, we consider the same
working space W1,p(x)

0 (Ω) with the norm ‖ · ‖ and the functionals Φ, Ψ : W1,p(x)
0 (Ω) → R.

This means that the regularity assumptions of Theorem 4.1 hold true.
Again, let sD and κD as in Section 3. Let r and δ as in (g5) and consider the function

w : Ω→ R given as

w(x) =


0, x ∈ Ω \ B(x0, D),

δ, x ∈ B(x0, sDD),

δκD(D− |x− x0|), x ∈ B(x0, D) \ B(x0, sDD).

Following the same arguments in the proof of Theorem 3.2 (by taking in mind (g4)), we obtain

Ψ(w)

Φ(w)
≥ p−sn

D infx∈Ω G(x, δ)

(2[κD]p(1− sn
D) + 1)δp− .

On the other hand, it turns out that

Φ(w) ≥ 1
p+

∫
Ω

(
|∇w(x)|p(x) + |w(x)|p(x)

)
dx ≥ 1

p+
mDn

[
min

{
κ

p−
D , κ

p+
D

}
(1− sn

D) + 1
]

δp+ .

From r < 1
p+ mDn[min

{
κ

p−
D , κ

p+
D
}
(1− sn

D)+ 1
]
δp+ , we deduce r < Φ(w). Thus, Proposition 2.1

and Theorem 2.2 imply that∫
Ω
|u(x)|α(x)dx = ρα(u) ≤

[
‖u‖Lα(x)(Ω)

]α
≤ [kα‖u‖]α (4.1)
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for all u ∈W1,p(x)
0 (Ω), where kα is the best constant for the compact embedding W1,p(x)

0 (Ω) ↪→
Lα(x)(Ω). For each u ∈ Φ−1(]−∞, r]), by Theorem 2.2 we have

‖u‖ ≤
[
p+Φ(u)

]1/p ≤ [p+r]1/p = (p+)1/p− [r]1/p,

⇒ ‖u‖ ≤ (p+)1/p− [r]1/p. (4.2)

Moreover, the compact embedding W1,p(x)
0 (Ω) ↪→ L1(Ω) (with best constant k1), (g1), (4.1)

and (4.2) imply that, for each u ∈ Φ−1(]−∞, r]), we have

Ψ(u) ≤ a1

∫
Ω
|u(x)|dx +

a2

α−

∫
Ω
|u(x)|α(x)dx ≤ a1k1‖u‖+

a2

α−
[kα]

α[‖u‖]α

≤ a1k1(p+)1/p− [r]1/p +
a2

α−
[kα]

α(p+)α+/p− [[r]1/p]α

⇒ 1
r

sup
Φ(u)≤r

Ψ(u) ≤ 1
r

(
a1k1(p+)1/p− [r]1/p +

a2

α−
[kα]

α(p+)α+/p− [[r]1/p]α
)

⇒ 1
r

sup
Φ(u)≤r

Ψ(u) <
Ψ(w)

Φ(w)
.

It follows that Theorem 4.1 (i) holds true. Finally, we prove that Theorem 4.1 (ii) holds true too
(i.e., Iλ := Φ− λΨ is coercive for each λ > 0). In fact, Proposition 2.1 and Theorem 2.2 imply
that ∫

Ω
|u(x)|γ(x)dx = ργ(u) ≤

[
‖u‖Lγ(x)(Ω)

]γ
≤ [kγ‖u‖]γ (4.3)

for all u ∈W1,p(x)
0 (Ω), where kγ is the best constant for the compact embedding W1,p(x)

0 (Ω) ↪→
Lγ(x)(Ω). Consequently, for each u ∈W1,p(x)

0 (Ω) with ‖u‖ ≥ max{1, k−1
γ }, using (g3) and (4.3),

we get

Ψ(u) =
∫

Ω
G(x, u(x))dx ≤

∫
Ω

c
(

1 + |u(x)|γ(x)
)

dx

≤ c (|Ω|+ [kγ‖u‖]γ) = c
(
|Ω|+ [kγ]

γ‖u‖γ+
)

.

It follows that

Iλ(u) ≥
∫

Ω

1
p(x)
|∇u(x)|p(x)dx +

∫
Ω

1
p(x)
|u(x)|p(x)dx− λc

(
|Ω|+ [kγ]

γ‖u‖γ+
)

≥ 1
p+
‖u‖p− − λc

(
|Ω|+ [kγ]

γ‖u‖γ+
)

⇒ Iλ is coercive.

Since Λr,δ ⊂
]Φ(w)

Ψ(w)
, r

supΦ(u)≤r Ψ(u)

[
, by an application of Theorem 4.1 with u = w, we have that,

for each λ ∈ Λr,δ, Iλ admits at least three critical points in W1,p(x)
0 (Ω). Obviously, these critical

points are three weak solutions of (Pλ).

We conclude this article by dealing with a reaction term satisfying the hypotheses (g1),
(g3), (g4). Based on the sub-critical growth condition (g1), we take the function g : Ω×R→ R

given by

g(x, z) =

{
1 + |z|q(x)−1, if (x, z) ∈ Ω×]−∞, r],

1 + zγ(x)−1rq(x)−γ(x), if (x, z) ∈ Ω×]r,+∞[,
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where r is a real positive number greater than 1, and q, γ ∈ C(Ω) with 1 < γ− ≤ γ+ <

min{q−, p−} < p∗(x) for all x ∈ Ω. Trivially, g is a Carathéodory function satisfying (g1).
Next, consider the function G : Ω×R → R given as G(x, t) =

∫ t
0 g(x, z)dz for all t ∈ R and

x ∈ Ω, so (g4) holds true as g(x, z) ≥ 1 for all (x, z) ∈ Ω×R. From

G(x, t) =

t + tq(x)

q(x) , if (x, t) ∈ Ω× [0, r],

t + tγ(x)

γ(x) rq(x)−γ(x) + rq(x)
(

1
q(x) −

1
γ(x)

)
, if (x, t) ∈ Ω×]r,+∞[,

by routine calculations, we get G(x, t) ≤ (r + rq+/γ−)(1 + tγ(x)) for all (x, t) ∈ Ω× [0,+∞[

and so (g3) holds true (indeed, G(x, t) ≤ 0 for all (x, z) ∈ Ω×]−∞, 0]).
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