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Abstract. The paper points out a relation between the distributional differential equa-
tion of the second order and the periodic problem for differential equations with state-
dependent impulses. The relation between these two problems is investigated and
consequently the lower and upper functions method is extended to distributional dif-
ferential equations. This enabled to get new existence results both for distributional
equations and for non-autonomous periodic problems with state-dependent impulses.
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1 Introduction

Let m ∈ N and τi, Ji, i = 1, . . . , m, be functionals defined on the set of 2π-periodic functions
of bounded variation. We consider the distributional differential equation

D2z− f (·, z) =
m

∑
i=1
Ji(z)δτi(z), (1.1)

where D2z denotes the second distributional derivative of a 2π-periodic function z of bounded
variation and δτi(z), i = 1, . . . , m, are the Dirac 2π-periodic distributions which involve im-
pulses at the state-dependent moments τi(z), i = 1, . . . , m. For more details see e.g. [12]. One
of our aims is to find exact connections between a solution z of the distributional equation (1.1)
and a solution (x, y) of the periodic boundary value problem with state-dependent impulses
at the points τi(x) ∈ (0, 2π)

x′(t) = y(t), y′(t) = f (t, x(t)) for a.e. t ∈ [0, 2π], (1.2)

∆y(τi(x)) = 2πJi(x), i = 1, . . . , m, (1.3)

x(0) = x(2π), y(0) = y(2π), (1.4)
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where x′ and y′ denote the classical derivatives of the functions x and y, respectively, ∆y(t) =
y(t+)− y(t−). These connections make possible to transfer results reached for the classical
impulsive periodic problem (1.2)–(1.4) to the distributional differential equation (1.1) and vice
versa. In addition, methods and approaches developed for classical problems can be combined
with those for distributional equations. We show it here and extend the lower and upper
functions method to distributional equations. Consequently we obtain new existence results
for both problems introduced above.

Earlier results on the existence of periodic solutions to distributional equations of the type
(1.1) can be found in [5–7]. In [6] and [7] the authors reached interesting results for distri-
butional equations which contain also first derivatives and delay. Their approach essentially
depends on the global Lipschitz conditions for data functions in order to get a contractive
operator corresponding to the problem. In [5] the distributional van der Pol equation with
the term µ(x− x3/3)′ which does not satisfy the global Lipschitz condition is studied. For a
sufficiently small value of the parameter µ and m = 1, the authors find a ball and a contractive
operator on this ball, which yields a unique periodic solution.

In the literature there are also periodic problems where impulse conditions are given out
of a differential equation as it is done in problem (1.2)–(1.4), see for example [18]. In particu-
lar, we can find a lot of papers studying impulsive periodic problems which are population or
epidemic models. Differential equations in these models have mostly the form of autonomous
planar differential systems [8,15–17,23–25,37,38,43]. On the other hand, non-autonomous pop-
ulation or epidemic models are investigated as well but only with fixed-time impulses which
is a very special case of state-dependent ones [9, 10, 19–21, 35, 36, 41, 42, 44]. There are a few
existence results for non-autonomous problems with state-dependent impulses. In particular,
in [3], a scalar first order differential equation is studied provided lower and upper solutions
exist, and a generalization to a system is done in [13] under the assumption of the exis-
tence of a solution tube. In [11] a linear system with delay and state-dependent impulses is
transformed to a system with fixed-time impulses and then the existence of positive periodic
solutions is reached. The monographs [1] and [34] investigate among other problems also
periodic solutions of quasilinear systems with state-dependent impulses. In [40], a second
order differential equation with state-dependent impulses is studied using lower and upper
solutions method. For the case where the periodic conditions in state-dependent impulsive
problems are replaced by other linear boundary conditions we can refer to the book [33] or to
the papers [2, 4, 14, 26–32, 39].

In our present paper we get the existence of solutions to the distributional equation (1.1)
as well as to problem (1.2)–(1.4). Let us emphasize that our differential equations are non-
autonomous with state-dependent impulses and we need no global or local Lipschitz condi-
tions, see Theorems 6.1 and 6.2. The novelty of our results is documented by Example 6.3,
where no previously published theorem can be applied.

2 Preliminaries

In the paper we use the notion of 2π-periodic distributions, in short distributions. By P2π we
denote the complex vector space of all complex-valued 2π-periodic functions of one real vari-
able having continuous derivatives of all orders on R. Elements of P2π are called test functions,
and P2π is equipped with locally convex topological space structure (see [12]). Its topological
dual will be denoted by (P2π)′. Elements of (P2π)′ are called 2π-periodic distributions or just
distributions. For a distribution u ∈ (P2π)′ and a test function ϕ ∈ P2π, the symbol 〈u, ϕ〉
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stands for a value of the distribution u at ϕ. The distributional derivative Du of u ∈ (P2π)′ is
a distribution which is defined by

〈Du, ϕ〉 = −
〈
u, ϕ′

〉
for each ϕ ∈ P2π.

Let us take n ∈ Z and introduce a complex-valued function en ∈ P2π by

en(t) := eint, t ∈ [0, 2π].

Then each distribution u ∈ (P2π)′ can be uniquely expressed by the Fourier series

u = ∑
n∈Z

û(n)en, (2.1)

where û(n) ∈ C are Fourier coefficients of u,

û(n) := 〈u, e−n〉 , n ∈ Z.

For a distribution u ∈ (P2π)′ we define the mean value u as

u := û(0),

and, for simplicity of notation, we write

ũ := u− u.

In general, the Fourier series in (2.1) need not be pointwise convergent and the equality in
(2.1) is understood in the sense of distributions written as

lim
N→∞

〈sN , ϕ〉 = 〈u, ϕ〉 ∈ C for each ϕ ∈ P2π, where sN = ∑
|n|≤N

û(n)en.

In particular, the Dirac 2π-periodic distribution δ is defined by

〈δ, ϕ〉 = ϕ(0) for each ϕ ∈ P2π,

and it has the Fourier series
δ = ∑

n∈Z

en. (2.2)

The convolution u ∗ v of two distributions u, v ∈ (P2π)′ has the Fourier series

u ∗ v = ∑
n∈Z

û(n)v̂(n)en, (2.3)

and the Fourier series for distributional derivatives Du and D2u write as

Du = ∑
n∈Z,n 6=0

in û(n)en and D2u = ∑
n∈Z,n 6=0

(in)2û(n)en, (2.4)

which immediately implies that

Du = D2u = 0, Dũ = Du, D2ũ = D2u. (2.5)

Let us introduce distributions E1 and E2 by

E1 := ∑
n∈Z,n 6=0

1
in

en, E2 := E1 ∗ E1 = ∑
n∈Z,n 6=0

1
(in)2 en, (2.6)
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and define linear operators I, I2 : (P2π)′ → (P2π)′ by

Iu := E1 ∗ u = ∑
n∈Z,n 6=0

1
in

û(n)en,

I2u := I(Iu) = E1 ∗ (E1 ∗ u) = E2 ∗ u = ∑
n∈Z,n 6=0

1
(in)2 û(n)en.

(2.7)

Using (2.3) and (2.4), we immediately get for every distribution u ∈ (P2π)′

D(Iu) = I(Du) = ũ, D2(I2u) = I2(D2u) = ũ,

I2(Du) = Iu = Iũ, D2(Iu) = Du = Dũ.
(2.8)

Due to these identities we see that I is an inverse to D on the set of all distributions having
zero mean value and therefore we call I an antiderivative operator.

For τ ∈ R let us remind the definition of the translation operator Tτ on test functions and
distributions. For a function ϕ ∈ P2π we define Tτ ϕ ∈ P2π by

(Tτ ϕ)(t) := ϕ(t− τ), t ∈ R,

and for a distribution u ∈ (P2π)′ we define a distribution Tτu ∈ (P2π)′ by

〈Tτu, ϕ〉 := 〈u, T−τ ϕ〉 , ϕ ∈ P2π.

Although, in the general theory, distributions are complex-valued functionals on the space
P2π of complex-valued test functions, we work with real-valued distributions and with real-
valued test functions in next sections. To this aim functional spaces defined below consist of
real-valued 2π-periodic functions. Clearly it suffices to prescribe their values on some semiclosed
interval with the length equal to 2π.

• L1 is the Banach space of Lebesgue integrable functions equipped with the norm ‖x‖L1 :=
1

2π

∫ 2π
0 |x(t)|dt,

• BV is the space of functions of bounded variation; the total variation of x ∈ BV is
denoted by var(x); for x ∈ BV we also define ‖x‖∞ := sup{|x(t)| : t ∈ [0, 2π]},

• NBV is the space of functions from BV normalized in the sense that x(t) = 1
2 (x(t+) +

x(t−)),

• ÑBV represents the Banach space of functions from NBV having zero mean value (x :=
1

2π

∫ 2π
0 x(t)dt = 0), which is equipped with the norm equal to the total variation var(x),

• for an interval J ⊂ [0, 2π] we denote by AC(J) the set of absolutely continuous functions
on J, and if J = [0, 2π] we simply write AC,

• C∞ ⊂ P2π is the classical real Fréchet space of (real-valued) functions having derivative
of an arbitrary order,

• for finite Σ ⊂ [0, 2π) we denote by PACΣ the set of all functions x ∈ NBV such that
x ∈ AC(J) for each interval J ⊂ [0, 2π] for which Σ ∩ J = ∅. For τ ∈ [0, 2π), we write
PACτ := PAC{τ},

• ÃC = AC∩ ÑBV; for finite Σ ⊂ [0, 2π) we denote P̃ACΣ = PACΣ ∩ ÑBV.
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Further, Car designates the set of real functions f (t, x) which are 2π-periodic in t and satisfy
the Carathéodory conditions on [0, 2π]×R. For x ∈ BV and t ∈ R we write

∆x(t) = x(t+)− x(t−).

We say that u ∈ (P2π)′ is a real-valued distribution if

〈u, ϕ〉 ∈ R for each ϕ ∈ C∞.

A real-valued distribution u is characterized by the fact that its Fourier coefficients û(n) and
û(−n) are complex conjugate for each n ∈ Z. If u is a real-valued distribution and τ ∈ R,
then Du, D2u, Iu, I2u and Tτu are also real-valued distributions. Similarly δ is a real-valued
distribution, and for τ ∈ R we work with a 2π-periodic real-valued Dirac distribution at the
point τ which is defined as

δτ = Tτδ.

Since

(̂Tτu)(n) = 〈Tτu, e−n〉 = 〈u, T−τe−n〉 = e−inτ 〈u, e−n〉 = e−inτ û(n), n ∈ Z,

it follows from (2.2) and (2.3) that

δτ = ∑
n∈Z

e−inτen and δτ = 1. (2.9)

Moreover
u ∗ δτ = Tτu = ∑

n∈Z

e−inτ û(n)en

and
Iδτ = E1 ∗ δτ = TτE1, I2δτ = E2 ∗ δτ = TτE2. (2.10)

We say that u ∈ (P2π)′ is a regular distribution if u is a real-valued distribution and there
exists y ∈ L1 such that

〈u, ϕ〉 = 1
2π

∫ 2π

0
y(s)ϕ(s)ds for each ϕ ∈ C∞. (2.11)

Then we say that u = y in the sense of distributions and write u in place of y in (2.11). Hence
all functions from L1 can be understood as regular distributions. For u ∈ BV, we write u′ as a
classical derivative, which is defined a.e. on R and which is an element of L1 and consequently
a regular distribution. If u ∈ AC, then u′ = Du in the sense of distributions.

Since the first series in (2.6) pointwise converges to the 2π-periodic function{
π − t for t ∈ (0, 2π),

0 for t = 0,

we see that E1 is a regular distribution and it can be considered as a function from P̃AC0. The
second series in (2.6) uniformly converges to the 2π-periodic function

t(2π − t)
2

− π2

3
for t ∈ [0, 2π],
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and so E2 is a regular distribution which can be considered as a function from ÃC and

var(E1) = 4π, ‖E1‖∞ = π, var(E2) = π2, ‖E2‖∞ = π2/3. (2.12)

Similarly for τ ∈ R,

TτE1 ∈ P̃ACτ, TτE2 ∈ ÃC, (2.13)

(TτE2)
′ = TτE1, (TτE1)

′ = −1 a.e. on [0, 2π]. (2.14)

Since

(u ∗ v)(t) :=
1

2π

∫ 2π

0
u(t− s)v(s)ds for u, v ∈ L1,

we have for h ∈ L1

(E1 ∗ h)(t) =
∫ 2π

0

(1− t)s
2π

h(s)ds +
1
2

(∫ t

0
h(s)ds−

∫ 2π

t
h(s)ds

)
, t ∈ [0, 2π].

Therefore Ih is a regular distribution which is equal to the function E1 ∗ h ∈ AC, and we
conclude by (2.7),

h ∈ L1 =⇒ Ih, I2h ∈ ÃC, (Ih)′(t) = h(t)− h = h̃ for a.e. t ∈ [0, 2π] . (2.15)

Further, for u ∈ BV we have that Tτu(t) = u(t− τ) for t ∈ R which implies that

var (Tτu) = var u and ‖Tτu‖∞ = ‖u‖∞ for u ∈ BV. (2.16)

Let us remind that the following inequalities hold

var(x ∗ y) ≤ var(x)‖y‖∞, x, y ∈ NBV, (2.17)

var(x ∗ f ) ≤ var(x)‖ f ‖L1 , x ∈ NBV, f ∈ L1, (2.18)

‖x‖L1 ≤ ‖x‖∞ ≤ var(x), x ∈ ÑBV. (2.19)

Therefore, since

(TτE1)(t) =

{
π − (t− τ) for t ∈ (τ, τ + 2π),

0 for t = τ,

we see that for τ ∈ R

∆(TτE1)(τ) = (TτE1)(τ+)− (TτE1)(τ−) = π − (−π) = 2π, (2.20)

and if we choose τ1, τ2 ∈ R, we get by (2.7), (2.10), (2.18), (2.12) the inequality

var(I2δτ1 − I2δτ2) = var(I(Iδτ1 − Iδτ2)) = var(E1 ∗ (Tτ1 E1 − Tτ2 E1))

≤ var E1‖Tτ1 E1 − Tτ2 E1‖L1 ≤ 8π|τ1 − τ2|.
(2.21)

Finally, if Σ is a finite set, the symbol # Σ stands for the number of elements of Σ.
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3 Equivalence of problems

In this section we assume that for i ∈ {1, . . . , m}

τi : NBV→ [a, b] ⊂ (0, 2π) are continuous,

Ji : NBV→ R are continuous and bounded, f ∈ Car
(3.1)

and for z ∈ NBV let us define a finite set

Σz = {τ1(z), τ2(z), . . . , τm(z)}. (3.2)

Remark 3.1. Let us emphasize that Σz is a finite subset of (0, 2π) and it has at most m elements.
Moreover, if m > 1 and τi(z) = τj(z) for some i, j, i 6= j, then # Σz < m.

Definition 3.2. A function z ∈ NBV is a solution of Eq. (1.1), if (1.1) is satisfied in the sense of
distributions, i.e.

〈
D2z− f (·, z), ϕ

〉
=

m

∑
i=1
Ji(z)ϕ(τi(z)) for each ϕ ∈ C∞.

First of all, we consider Eq. (1.1) in the case where f , time instants τi and impulse functions
Ji do not depend on z, which can be simply written as Eq. (3.3).

Lemma 3.3. Let z ∈ NBV, h ∈ L1, Σ ⊂ [0, 2π) be a finite set and a : Σ→ R. Then z is a solution of
the distributional differential equation

D2z = h + ∑
s∈Σ

a(s)δs (3.3)

if and only if

z̃ = I2

(
h + ∑

s∈Σ
a(s)δs

)
(3.4)

and
h + ∑

s∈Σ
a(s) = 0. (3.5)

Proof. Let z be a solution of (3.3). Since D2z = 0 and δs = 1 we get (3.5). Applying I2 to (3.3)
and using (2.8) we obtain (3.4). Conversely, let (3.4) and (3.5) be satisfied. Differentiating (3.4)
and using (2.8) we get

D2z = D2z̃ = D2 I2

(
h + ∑

s∈Σ
a(s)δs

)
= h̃ + ∑

s∈Σ
a(s)δ̃s

= h + ∑
s∈Σ

a(s)δs −
(

h + ∑
s∈Σ

a(s)

)
= h + ∑

s∈Σ
a(s)δs.

The last equality follows from (3.5).

The relation between the distributional equation (3.3) and a suitable impulsive problem
with fixed-time impulses is pointed out in the next lemma.
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Lemma 3.4. Let h ∈ L1, Σ ⊂ [0, 2π) be a finite set and a : Σ → R. If z ∈ NBV is a solution of
the distributional differential equation (3.3) then there exists unique (x, y) ∈ AC× P̃ACΣ such that
x = z, y = Dz a.e. on [0, 2π] and

x′(t) = y(t), y′(t) = h(t) for a.e. t ∈ [0, 2π],

∆y(s) = 2πa(s), s ∈ Σ.
(3.6)

Conversely, if a couple (x, y) ∈ AC× P̃ACΣ is a solution of (3.6), then z = x is a solution of (3.3).

Proof. Let z ∈ NBV be a solution of (3.3). Then we get by (2.8) and (2.10)

Dz = I(D2z) = I

(
h + ∑

s∈Σ
a(s)δs

)
= Ih + ∑

s∈Σ
a(s)TsE1. (3.7)

Using (2.15), we can put

y(t) = (Ih)(t) + ∑
s∈Σ

a(s)(TsE1)(t), t ∈ [0, 2π),

and get by (2.13) that y ∈ P̃ACΣ and Dz = y a.e. on [0, 2π). According to (2.20) we see that

∆y(s) = 2πa(s), s ∈ Σ.

Lemma 3.3 yields (3.5), and consequently by (2.14) and (2.15),

y′(t) = (Ih)′(t) + ∑
s∈Σ

a(s)(TsE1)
′(t) = h(t)− h− ∑

s∈Σ
a(s) = h(t) for a.e. t ∈ [0, 2π).

Further put
x(t) = z + (I2h)(t) + ∑

s∈Σ
a(s)(TsE2)(t), t ∈ [0, 2π).

Then by (2.13) and (2.15) we see that x ∈ ÃC, Lemma 3.3 yields (3.4) and so and x = z a.e. on
[0, 2π). The uniqueness of the couple (x, y) follows from the inclusions x ∈ AC and y ∈ P̃ACΣ.

Let (x, y) ∈ AC× P̃ACΣ be such that (3.6) is valid. Let us put z = x. Since x ∈ AC, then
Dz = Dx = x′ = y a.e. on [0, 2π). Let us denote Σ = {s1, . . . , sp}, p ∈N, where

0 = s0 < s1 < · · · < sp < sp+1 = 2π.

Then for ϕ ∈ C∞ we have

〈
D2z, ϕ

〉
= −

〈
Dz, ϕ′

〉
= −

〈
y, ϕ′

〉
= − 1

2π

∫ 2π

0
y(t)ϕ′(t)dt = − 1

2π

p+1

∑
i=1

∫ si

si−1

y(t)ϕ′(t)dt

= − 1
2π

p+1

∑
i=1

(
[y(t)ϕ(t)]si

si−1
−
∫ si

si−1

y′(t)ϕ(t)dt
)

=
1

2π

p+1

∑
i=1

(y(si−1+)ϕ(si−1)− y(si−)ϕ(si)) +
1

2π

∫ 2π

0
y′(t)ϕ(t)dt

=
p

∑
i=1

1
2π

∆y(si)ϕ(si) +
〈
y′, ϕ

〉
=

〈
∑
s∈Σ

a(s)δs + h, ϕ

〉
.

Hence z is a solution of (3.3).
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Remark 3.5. Lemma 3.4 asserts that each solution z ∈ NBV of the distributional differential
equation (3.3) is almost everywhere equal to absolutely continuous function and its distribu-
tional derivative is almost everywhere equal to a uniquely determined piecewise absolutely
continuous function (which is almost everywhere equal to the classical derivative of z). There-
fore, each solution z of (3.3) can be thought as absolutely continuous with a piecewise abso-
lutely continuous derivative z′.

Now, let us turn our attention to the state-dependent case. We immediately obtain the
next corollary from Lemma 3.3.

Corollary 3.6. A function z ∈ NBV is a solution of the distributional differential equation (1.1) if and
only if

z̃ = I2

(
f (·, z) +

m

∑
i=1
Ji(z)δτi(z)

)
and f (·, z) +

m

∑
i=1
Ji(z) = 0. (3.8)

Let us define a solution to the periodic state-dependent impulsive problem (1.2)–(1.4). As
we can see, the condition (1.3) is not well-posed if m > 1 and there exist i, j ∈ {1, . . . , m},
x ∈ NBV such that Ji(x) 6= Jj(x) and τi(x) = τj(x). This case can be treated by assuming
additional conditions on τi. Let us assume that

τi(z) 6= τj(z) for z ∈ NBV, i, j = 1, . . . , m, i 6= j, (3.9)

which is equivalent to the condition

# Σz = m for z ∈ NBV. (3.10)

Definition 3.7. Let us assume (3.9). A vector function (x, y) ∈ AC× P̃ACΣx is a solution of
problem (1.2)–(1.4), if x and y fulfil (1.2) for a.e. t ∈ [0, 2π] and the state-dependent impulse
condition (1.3) is satisfied.

Remark 3.8.

1. The vector function (x, y) from Definition 3.7 satisfies the periodic boundary condition
(1.4) because it belongs to the space of 2π-periodic functions.

2. Without any loss of generality, we can consider the component y as an element of P̃ACΣx

due to the following considerations: By (1.2), if x ∈ AC, then y can be chosen as abso-
lutely continuous on each interval in [0, 2π] \ Σx and we can define y on Σx such that it
is normalized. So y ∈ PACΣx . Finally, by (1.2), y has its mean value equal to zero, which
follows from integrating x′ = y over [0, 2π] and

y =
1

2π

∫ 2π

0
y(t)dt =

1
2π

∫ 2π

0
x′(t)dt =

1
2π

(x(2π)− x(0)) = 0.

Therefore y ∈ P̃ACΣx .

Let us note that if (3.9) is not valid, we can say nothing about the relationship between
Eq. (1.1) and problem (1.2)–(1.4), because the condition (1.3) is not well-posed. As we see in
Theorem 3.11, if we do not assume (3.9), then Eq. (1.1) is equivalent to a periodic problem
with a modified state-dependent impulse condition – let us define its solution.
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Definition 3.9. A vector function (x, y) ∈ AC× P̃ACΣx is a solution of problem (1.2), (1.4),
(3.11), if x and y fulfil (1.2) for a.e. t ∈ [0, 2π] and satisfy the state-dependent impulse condition

∆y(τ) = ∑
1≤j≤m :
τj(x)=τ

2πJj(x), for τ ∈ Σx. (3.11)

Remark 3.10. Let (x, y) ∈ AC× P̃ACΣx , where Σx is defined by (3.2). If # Σx = m, i.e. y has
m distinct impulse moments, then (1.3) is satisfied if and only if (3.11) is satisfied. It follows
from the fact that if # Σx = m, then

∑
1≤j≤m:

τj(x)=τi(x)

Jj(x) = Ji(x), i = 1, . . . , m.

If, for example, m = 3 and τ1(x) 6= τ2(x) = τ3(x), then (3.11) yields

∆y(τ1(x)) = 2πJ1(x), ∆y(τ2(x)) = 2π(J2(x) + J3(x)).

Theorem 3.11 (Equivalence I.). If z ∈ NBV is a solution of the distributional equation (1.1), then
there exists a unique (x, y) ∈ AC× P̃ACΣx such that x = z, y = Dz a.e. on [0, 2π], (x, y) is a
solution of the periodic problem with state-dependent impulses (1.2), (1.4), (3.11).

Conversely, if (x, y) ∈ AC× P̃ACΣx is a solution of (1.2), (1.4), (3.11), then z = x is a solution
of (1.1).

Proof. Let z be a solution of (1.1). Let us put

Σ := Σz, h := f (·, z), a : Σ→ R, a(s) := ∑
1≤j≤m:
τj(z)=s

Jj(z), s ∈ Σ. (3.12)

Since f ∈ Car, it follows that h ∈ L1 and therefore according to Lemma 3.4 there exists a
unique couple (x, y) ∈ AC× P̃ACΣ such that z = x and (3.6) is valid. This means that (1.2)
holds for a.e. t ∈ [0, 2π) and (3.11) is satisfied, as well. Conversely, let (x, y) ∈ AC× P̃ACΣ be
a solution of (1.2), (1.4), (3.11) and z = x. If we use (3.12) and Lemma 3.4, we see that z is a
solution of (1.1).

From Remark 3.10 and Theorem 3.11 we infer the following assertion.

Corollary 3.12 (Equivalence II.). Let (3.9) hold. If z ∈ NBV is a solution of the distributional
equation (1.1), then there exists a unique (x, y) ∈ AC × P̃ACΣx such that x = z, y = Dz a.e.
on [0, 2π] and (x, y) is a solution of the periodic problem with state-dependent impulses (1.2)–(1.4).
Conversely, if (x, y) ∈ AC× P̃ACΣx is a solution of (1.2)–(1.4), then z = x is a solution of (1.1).

4 Fixed point problem

We will construct a fixed point problem corresponding to the distributional differential equa-
tion (1.1). To this aim we choose z ∈ NBV and denote

r := z, u := z̃.
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By Corollary 3.6, z is a solution of (1.1) if and only if it satisfies (3.8), i.e.

u = I2

(
f (·, u + r) +

m

∑
i=1
Ji(u + r)δτi(u+r)

)
(4.1)

and

f (·, u + r) +
m

∑
i=1
Ji(u + r) = 0. (4.2)

This fact motivates us to define operators F1 and F2 by

F1(u, r) = I2

(
f (·, u + r) +

m

∑
i=1
Ji(u + r)δτi(u+r)

)
, (u, r) ∈ ÑBV×R, (4.3)

F2(u, r) = r +
m

∑
i=1
Ji(u + r) + f (·, u + r), (u, r) ∈ ÑBV×R. (4.4)

Having in mind (2.10), (2.13) and (2.15), we see that F1(u, r) ∈ ÃC ⊂ ÑBV for u ∈ ÑBV and
r ∈ R. Consequently,

F1 : ÑBV×R→ ÑBV, F2 : ÑBV×R→ R.

In what follows we will work with the Banach space X := ÑBV×R equipped by the norm

‖(u, r)‖X = var(u) + |r|, (u, r) ∈ X,

and with an operator F : X→ X defined by

F (u, r) = (F1(u, r),F2(u, r)), (4.5)

where F1 and F2 are introduced in (4.3) and (4.4), respectively. Simple relationship between
the operator F and the distributional differential equation (1.1) follows immediately from the
motivation and construction of F . This is stated in Lemma 4.1.

Lemma 4.1. Let (3.1) hold. If (u, r) ∈ X is a fixed point of the operator F given in (4.5), then the
function

z(t) = u(t) + r, t ∈ [0, 2π], (4.6)

is a solution of the distributional differential equation (1.1). Conversely, if z ∈ NBV is a solution of
(1.1), then the couple (z̃, z) is a fixed point of F .

Proof. If (u, r) is a fixed point of F then it satisfies equations (4.1) and (4.2). Let us consider
z from (4.6). Since u ∈ ÑBV, then z̃ = ũ = u. Hence (3.8) is satisfied. By Corollary 3.6 the
function z is a solution of (1.1).

If z is a solution of the distributional differential equation (1.1), then by Corollary 3.6, z
satisfies (3.8). Therefore (4.1) and (4.2) are fulfilled for u = z̃ and r = z. This means that the
couple (z̃, z) is a fixed point of F .

According to Lemma 4.1, to obtain the existence of a solution of (1.1) it suffices to prove
that F has a fixed point, which will be done by means of the Schauder fixed point theorem.
To this goal we investigate properties of F .
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Lemma 4.2. Let (3.1) hold. Then the operator F1 given in (4.3) is completely continuous on X.

Proof. Step 1. We prove that F1 is continuous on X. In order to do it we consider a sequence
{(un, rn)}∞

n=1 from X converging in X to (u, r) ∈ X. Then {(un, rn)}∞
n=1 is bounded in X and

by (2.19)
lim
n→∞
‖un − u‖∞ = 0, lim

n→∞
|rn − r| = 0.

Denote
vn := F1(un, rn), v := F1(u, r).

Then

vn − v = I2(( f (·, un + rn)− f (·, u + r))
)
+

m

∑
i=1
Ji(un + rn)I2δτi(un+rn)

−
m

∑
i=1
Ji(u + r)I2δτi(u+r).

(4.7)

Since f ∈ Car, we have

lim
n→∞
| f (t, un(t) + rn)− f (t, u(t) + r)| = 0 for a.e. t ∈ [0, 2π],

and there exists h ∈ L1 such that

| f (t, un(t) + rn)| ≤ h(t) for a.e. t ∈ [0, 2π], n ∈N.

Therefore, by the Lebesgue convergence theorem, f (·, u + r) ∈ L1 and

lim
n→∞
‖ f (·, un + rn)− f (·, u + r)‖L1 = 0. (4.8)

Using (2.18) we get from (2.7), (4.8) and from the fact that E2 ∈ ÃC ⊂ ÑBV,

lim
n→∞

var
(

I2 ( f (·, un + rn)− f (·, u + r))
)

= lim
n→∞

var (E2 ∗ ( f (·, un + rn)− f (·, u + r))) = 0.
(4.9)

By (3.1) there exist ci ∈ (0, ∞), i = 1, . . . , m, such that |Ji(un + rn)| ≤ ci for i ∈ {1, . . . , m},
n ∈N. Therefore by (2.21),

var
(
Ji(un + rn)(I2δτi(un+rn) − I2δτi(u+r))

)
≤ |Ji(un + rn)|var(I2δτi(un+rn) − I2δτi(u+r))

≤ 8πci|τi(un + rn)− τi(u + r)|, i = 1, . . . , m, n ∈N,

and consequently the continuity of τi yields

lim
n→∞

var
(
Ji(un + rn)(I2δτi(un+rn) − I2δτi(u+r))

)
= 0, i = 1, . . . , m. (4.10)

Further, by (2.10), (2.12), (2.16),

var
(
(Ji(un + rn)−Ji(u + r))I2δτi(u+r)

)
≤ π2|Ji(un + rn)−Ji(u + r)|, i = 1, . . . , m, n ∈N,

and since Ji are continuous functionals, it holds

lim
n→∞

var
(
(Ji(un + rn)−Ji(u + r))I2δτi(u+r)

)
= 0, i = 1, . . . , m. (4.11)
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To summarize (4.7), (4.9), (4.10) and (4.11) we see that

lim
n→∞

var(vn − v) = 0.

Step 2. We choose a bounded set B ⊂ X and prove that the set F1(B) is relatively compact
in ÑBV. To this aim we take an arbitrary sequence {vn}∞

n=1 ⊂ F1(B). Then there exists a
sequence {(un, rn)}∞

n=1 ⊂ B such that

vn = F1(un, rn), n ∈N.

Since B is bounded, there exists κ > 0 such that

var(un) ≤ κ, |rn| ≤ κ, n ∈N. (4.12)

By (3.1), τi maps B to [a, b] ⊂ (0, 2π) and Ji maps B to a bounded set in R for i = 1, . . . , m.
Hence there exists cB ∈ (0, ∞) such that

|Ji(un + rn)| ≤ cB, i = 1, . . . , m, n ∈N,

and we can choose a subsequence {(unk , rnk)}∞
k=1 such that

lim
k→∞

rnk = r, lim
k→∞

τi(unk + rnk) = τ0,i, lim
k→∞
Ji(unk + rnk) = J0,i, (4.13)

where r ∈ [−κ, κ], τ0,i ∈ (0, 2π), J0,i ∈ [−cB, cB], i = 1, . . . , m. By (4.12) and the Helly’s
selection theorem (see e.g. [22, p. 222]) there exists a subsequence {un`

}∞
`=1 ⊂ {unk}∞

k=1 which
is pointwise converging to a function u ∈ ÑBV. Using the same arguments as in Step 1, we
get by the Lebesgue convergence theorem, that f (·, u + r) ∈ L1 and

lim
`→∞
‖ f (·, un`

+ rn`
)− f (·, u + r)‖L1 = 0. (4.14)

Denote

v := I2

(
f (·, u + r) +

m

∑
i=1

J0,iδτ0,i

)
.

Then, similarly as in Step 1,

var(vn`
− v) ≤ var

(
I2( f (·, un`

+ rn`
)− f (·, u + r))

)
+

m

∑
i=1

(
var
(
Ji(un`

+ rn`
)(I2δτi(un`+rn` )

− I2δτ0,i)
)
+ var

(
(Ji(un`

+ rn`
)−Ji(u + r))I2δτ0,i

))
,

and
lim
`→∞

var(vn`
− v) = 0.

Consequently we get that the sequence {vn`
}∞
`=1 is convergent to v in ÑBV. This yields that

F1(B) is relatively compact in ÑBV.

Lemma 4.3. Let (3.1) hold. Then the operator F given in (4.5) is completely continuous on X.

Proof. Due to Lemma 4.2, the operator F1 : X → ÑBV is completely continuous. Using (3.1)
we get that the operator F2 : X → R is completely continuous, as well. This proves the
assertion.
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5 Lower and upper functions method

In this section we extend the lower and upper functions method to the distributional differen-
tial equation

D2z− f (·, z) =
m

∑
i=1

Ji
(
z(τi(z))

)
δτi(z), (5.1)

where functions Ji are considered instead of functionals Ji, and the basic assumptions (3.1)
for i ∈ {1, . . . , m} are specified as

τi : NBV→ [a, b] ⊂ (0, 2π) are continuous,

Ji : R→ R are continuous and bounded, f ∈ Car.
(5.2)

Definition 5.1. A function σ1 ∈ AC is a lower function of Eq. (5.1), if there exist a finite (possibly
empty) set Σ1 ⊂ [0, 2π), a nonnegative function b1 ∈ L1 and a function a1 : Σ1 → (0, ∞) such
that

D2σ1 − f (·, σ1) = ∑
t∈Σ1

a1(t)δt + b1. (5.3)

Similarly, we define a dual notion – the upper function of Eq. (5.1).

Definition 5.2. A function σ2 ∈ AC is an upper function of Eq. (5.1), if there exist a finite
(possibly empty) set Σ2 ⊂ [0, 2π), a nonpositive function b2 ∈ L1 and a function a2 : Σ2 →
(−∞, 0) such that

D2σ2 − f (·, σ2) = ∑
t∈Σ2

a2(t)δt + b2. (5.4)

Simplest examples of lower and upper functions to Eq. (5.1) are constant functions

σ1(t) = c, σ2(t) = d, t ∈ [0, 2π], (5.5)

where c, d ∈ R, provided the inequalities

f (t, c) ≤ 0 ≤ f (t, d) for a.e. t ∈ [0, 2π]

are fulfilled. It follows from the properties of constant functions

Dσi = D2σi = 0, Σi = ∅, i = 1, 2.

Essential properties of lower and upper functions of Eq. (5.1) are contained in the next
lemma.

Lemma 5.3. A function σ1 ∈ AC is a lower function of the distributional differential equation (5.1) if
and only if there exist a finite set Σ1 ⊂ [0, 2π) such that σ′1 ∈ PACΣ1 ,

σ′′1 (t) ≥ f (t, σ1(t)) for a.e. t ∈ [0, 2π], (5.6)

∆σ′1(t) > 0, t ∈ Σ1. (5.7)

A function σ2 ∈ AC is an upper function of the distributional differential equation (5.1) if and only if
there exists a finite set Σ2 ⊂ [0, 2π) such that σ′2 ∈ PACΣ2 ,

σ′′2 (t) ≤ f (t, σ2(t)) for a.e. t ∈ [0, 2π], (5.8)

∆σ′2(t) < 0, t ∈ Σ2. (5.9)
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Proof. Let σ1 ∈ AC be a lower function of Eq. (5.1). By (5.3) and Corollary 3.12 this is equiva-
lent to the fact that (σ1, σ′1) ∈ AC× P̃ACΣ1 satisfies

σ′1(t) = (Dσ1)(t), σ′′1 (t) = f (t, σ1(t)) + b1(t) for a.e. t ∈ [0, 2π],

∆σ′1(t) = 2πa1(t), t ∈ Σ1.

Since b1 is nonnegative and a1 is positive, we get (5.6) and (5.7). Similarly for σ2.

The lower and upper functions method for Eq. (5.1) is based on the following construction.
We assume that the functions σ1 and σ2 are well ordered

σ1(t) ≤ σ2(t), t ∈ [0, 2π], (5.10)

construct the auxiliary functions

σ(t, x) =


σ1(t), x < σ1(t),

x, σ1(t) ≤ x ≤ σ2(t),

σ2(t), σ2(t) < x,

σ∗(x) =


σ1, x < σ1,

x, σ1 ≤ x ≤ σ2,

σ2, σ2 < x,

(5.11)

t ∈ [0, 2π], x ∈ R,

f ∗(t, x) = f (t, σ(t, x)) +
x− σ(t, x)

|x− σ(t, x)|+ 1
, a.e. t ∈ [0, 2π], x ∈ R, (5.12)

and the auxiliary functionals

J ∗i (x) = Ji
(
σ
(
τi(x), x(τi(x))

))
, x ∈ NBV, i = 1, . . . , m. (5.13)

Now, consider the auxiliary distributional differential equation

D2z− f ∗(·, z)− z + σ∗(z) =
m

∑
i=1
J ∗i (z)δτi(z). (5.14)

Theorem 5.4 (Lower and upper functions method). Let (5.2) hold and let σ1, σ2 be lower and
upper functions of the distributional differential equation (5.1) such that σ1 ≤ σ2 on [0, 2π]. Further,
let

Ji(σ1(t)) ≤ 0, Ji(σ2(t)) ≥ 0, t ∈ [0, 2π], i = 1, . . . , m. (5.15)

Then each solution z of the auxiliary equation (5.14) is also a solution of Eq. (5.1) and in addition

σ1(t) ≤ z(t) ≤ σ2(t), t ∈ [0, 2π]. (5.16)

Proof. Let z be a solution of (5.14) and σk, k = 1, 2 be lower and upper functions of (5.1).
Step 1. Let us prove that

σ1 ≤ z ≤ σ2.

We prove the first inequality by contradiction and assume that σ1 > z. Define an auxiliary
function v by

v := z− σ1. (5.17)

Then v satisfies

D2v = f ∗(·, z)− f (·, σ1)− b1 + z− σ∗(z) +
m

∑
i=1
J ∗i (z)δτi(z) − ∑

t∈Σ1

a1(t)δt. (5.18)
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For Σ1 from Definition 5.1 and Σz from (3.2), define

Σ := Σ1 ∪ Σz.

According to Remark 3.5 we can assume that v ∈ AC, v′ ∈ PACΣ. Due to Lemma 3.4, the
inequality

z− σ∗(z) = z− σ1 ≤ 0

and the nonnegativity of b1, we see that

v′′(t) ≤ f ∗(t, z(t))− f (t, σ1(t)) for a.e. t ∈ R. (5.19)

The continuity of v and the assumption v < 0 yield that the function v has its negative
minimum, i.e. there exists t0 ∈ [0, 2π) such that

v(t0) = min
t∈R

v(t) < 0. (5.20)

Therefore there exists δ > 0 such that v < 0 on the neighborhood (t0 − δ, t0 + δ). According
to the definition of f ∗ we get

v′′(t) ≤ f (t, σ1(t)) +
v(t)

|v(t)|+ 1
− f (t, σ1(t))

=
v(t)

|v(t)|+ 1
< 0 for a.e. t ∈ (t0 − δ, t0 + δ).

(5.21)

On the other hand, v ∈ AC, v′ ∈ AC(t0 − δ, t0) and v′ ∈ AC(t0, t0 + δ). Hence the minimality
of v(t0) and the Lagrange mean value theorem imply that there exist a ∈ (t0 − δ, t0) and
b ∈ (t0, t0 + δ) such that

v′(a) =
v(t0)− v(t0 − δ)

δ
≤ 0 and v′(b) =

v(t0 + δ)− v(t0)

δ
≥ 0. (5.22)

Consequently ∫ b

a
v′′(s)ds = v′(b)− v′(a)− ∆v′(t0) ≥ −∆v′(t0). (5.23)

Let us determine ∆v′(t0). There are several cases.

Case A. If t0 6∈ Σ, then v′ ∈ AC(t0 − δ, t0 + δ) and so ∆v′(t0) = 0.

Case B. If t0 ∈ Σ1 and t0 6= Σz, then according to (5.18) and Lemma 3.4 we have ∆v′(t0) =

−2πa1(t0) < 0.

Case C. If t0 6∈ Σ1 and t0 ∈ Σz, then using (5.18) and Lemma 3.4 we get as in the proof of
Theorem 3.11

∆v′(t0) = ∑
1≤i≤m:
t0=τi(z)

2πJ ∗i (z) = ∑
1≤i≤m:
t0=τi(z)

2π Ji(σ1(t0)) ≤ 0,

where the last inequality follows from (5.15) and (5.20).

Case D. If t0 ∈ Σ1 ∩ Σz, then according to (5.18) and Lemma 3.4 we get similarly as before

∆v′(t0) = −2πa1(t0) + ∑
1≤i≤m:
t0=τi(z)

2π Ji(σ1(t0)) < 0.
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As we can see, in all cases ∆v′(t0) ≤ 0, which implies that the integral in (5.23) is nonnegative.
This is in contradiction with (5.21). We have proved that σ1 ≤ z. Using dual arguments we
can prove that z ≤ σ2. Therefore z is a solution of the distributional differential equation

D2z− f ∗(·, z) =
m

∑
i=1
J ∗i (z)δτi(z).

Step 2. Now to prove that z is a solution of (5.1) it suffices to prove (5.16). It can be done in
a similar way as in Step 1 . We denote v := z− σ1 and assume that there exists t0 such that
(5.20) holds. The function v satisfies (5.18) with z− σ∗(z) = 0. Therefore, (5.19) is satisfied
(even equality). The rest of the proof is the same.

6 Existence results

We are ready to prove our main existence results for the distributional differential equation
(5.1) and for the periodic problem with state dependent impulses

x′(t) = y(t), y′(t) = f (t, x(t)), (6.1)

∆y(τi(x)) = 2π Ji(τi(x)), i = 1, . . . , m, (6.2)

x(0) = x(2π), y(0) = y(2π), (6.3)

where the impulse condition (6.2) is a special case of (1.3).

Theorem 6.1. Let (5.2) hold and let σ1, σ2 be lower and upper functions of the distributional differential
equation (5.1) such that σ1 ≤ σ2 on [0, 2π]. Further, assume that (5.15) is fulfilled, that is

Ji(σ1(t)) ≤ 0, Ji(σ2(t)) ≥ 0, t ∈ [0, 2π], i = 1, . . . , m.

Then there exists a solution z of Eq. (5.1) and in addition

σ1(t) ≤ z(t) ≤ σ2(t), t ∈ [0, 2π].

In addition, if (3.9) holds, then there exists a solution (x, y) of the periodic problem with state dependent
impulses (6.1), (6.2), (6.3) such that x = z.

Proof. Consider the operator F ∗ = (F ∗1 ,F ∗2 ) : X→ X , where

F ∗1 (u, r) = I2

(
f ∗(·, u + r) +

m

∑
i=1
J ∗i (u + r)δτi(u+r)

)
, (u, r) ∈ ÑBV×R, (6.4)

F ∗2 (u, r) = σ∗(r)−
m

∑
i=1
J ∗i (u + r)− f ∗(·, u + r), (u, r) ∈ ÑBV×R. (6.5)

If we compare (4.3) and (4.4) with (6.4) and (6.5) respectively, we see that by Lemma 4.3 the
operator F ∗ is completely continuous on X. Since there exist h∗ ∈ L1 and c∗ ∈ (0, ∞) such that
| f ∗(t, x)| ≤ h∗(t) for a.e. t ∈ [0, 2π] and all x ∈ R and |J ∗i (x)| ≤ c∗ for x ∈ R, i = 1, . . . , m, we
use (2.7), (2.18) and have

var
(

I2 f ∗(·, u + r)
)
= var

(
E2 ∗ f ∗(·, u + r)

)
≤ π2‖h∗‖L1 ,



18 I. Rachůnková and J. Tomeček

and similarly by (2.10), (2.12), (2.16),

var

(
I2

(
m

∑
i=1
J ∗i (u + r)δτi(u+r)

))
= var

(
m

∑
i=1
J ∗i (u + r)Tτi(u+r)E2

)
≤ mc∗π2,

|F ∗2 (u, r)| ≤ max{‖σ1‖L1 , ‖σ2‖L1}+ mc∗ + ‖h∗‖L1 .

Thus we can find a ball Ω ⊂ X such that F ∗(X) ⊂ Ω and, by the Schauder fixed point
theorem, the operator F ∗ has a fixed point (u, r) ∈ Ω. Let us put z = u + r. Since u ∈ ÑBV, it
follows that r = z and u = z̃, and by (6.4), (6.5), it holds

z̃ = I2

(
f ∗(·, z) +

m

∑
i=1
J ∗i (z)δτi(z)

)
(6.6)

and

z = σ∗(z)−
m

∑
i=1
J ∗i (z)− f ∗(·, z). (6.7)

Due to (2.8) we have Iz = Iz̃ and hence Iz = 0. Similarly Iσ∗(z) = 0. Therefore equations
(6.6) and (6.7) are equivalent to

z̃ = I2

(
f ∗(·, z) + z− σ∗(z) +

m

∑
i=1
J ∗i (z)δτi(z)

)
(6.8)

and

f ∗(·, z) + z− σ∗(z) +
m

∑
i=1
J ∗i (z) = 0. (6.9)

By Corollary 3.6 and (6.8), (6.9) it follows that z is a solution of the distributional differential
equation (5.14), which writes as

D2z− f ∗(·, z)− z + σ∗(z) =
m

∑
i=1
J ∗i (z)δτi(z).

By Theorem 5.4, z is also a solution of Eq. (5.1) and (5.16) holds. The last assertion follows
from Corollary 3.12.

As a consequence of Theorem 6.1 we get new existence result with simple effective suf-
ficient conditions for the distributional differential equation (5.1) as well as for the periodic
problem (6.1), (6.2), (6.3) with state-dependent impulses.

Theorem 6.2. Let (5.2) hold and let there exist c, d ∈ R, c < 0 < d such that

f (t, c) ≤ 0 ≤ f (t, d) for a.e. t ∈ [0, 2π] and Ji(c) ≤ 0 ≤ Ji(d), i = 1, . . . , m.

Then there exists a solution z of the distributional differential equation (5.1) satisfying

c ≤ z(t) ≤ d for t ∈ [0, 2π]. (6.10)

In addition, if (3.9) holds, then the vector-function (x, y), where x = z, y = Dz a.e. on [0, 2π] is a
solution of the periodic problem (6.1), (6.2), (6.3) with state-dependent impulses.
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Proof. It is sufficient to put

σ1(t) = c < 0, σ2(t) = d > 0, t ∈ [0, 2π],

and the assertion follows from Theorem 6.1.

Example 6.3. Note that no Lipschitz continuity is required for f and Ji in Theorem 6.2. There-
fore we can consider Eq. (5.1) with m = 1,

f (t, x) = c1tα + c2
n
√

x, t ∈ (0, 2π], x ∈ R and J1(x) = c3
k
√

x, x ∈ R,

where α, cj ∈ R, j = 1, 2, 3, c2, c3 > 0, α > −1 and n, k are positive odd integers. Then, if we
choose c, d ∈ R, c < 0 < d such that

c < −
(
|c1|
c2

(2π)α

)n

and d >

(
|c1|
c2

(2π)α

)n

,

we can easily check that all the assumptions of Theorem 6.2 are satisfied.
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