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Abstract. In this paper we analyze the existence of bounded solutions for a nonlinear
second-order neutral difference equation, which is more general than other equations
of this type studied recently. Moreover, our analysis is based under more general condi-
tions than the required in other works, as we only assume the continuity of the involved
functions. The main tool here are the so called measures of noncompactness, and more
specifically, the celebrated Darbo fixed point theorem. Also we will state, in the speci-
fied sense, the stability of the solutions.
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1 Introduction

In what follows, as usual, we denote by N and R the sets of the positive integers and real
numbers, respectively. Also, N0 := {0} ∪N and Nk := {n ∈N : n ≥ k} with k ∈N.

As it is well known, difference equations serve as mathematical models in diverse areas
of applied science and engineering, for concrete references see, for instance, the monographs
[1, 2]. We consider the following nonlinear second-order neutral difference equation

∆
(
rn
(
∆(xn + pnxn−k)

)s)
+ ang(xn) + bn f (xn+1) = 0 for all n ∈Nk, (1.1)

where k ∈ N, a, b, p : N0 −→ R, r : N0 −→ R \ {0}, f , g : R −→ R, s ≤ 1 ratio of
odd positive integers, are given and satisfy some conditions that we will expose later. For a
general background on difference equations theory, we refer to [1, 2, 10, 12].

The above equation generalizes some well known and studied nonlinear second order
difference equations, as the Sturm–Liouville difference equation ∆(rn∆xn) = anxn+1 or the
Emden–Fowler difference equation (see, for instance, [11, 13]) of the form

∆2(xn + pxn−k) + anxs
n = 0 for all n ∈Nk,
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where p > 0, p 6= 1 and s is the ratio of two odd integers. Also, equation (1.1) has been
analyzed in [9] for g(x) := xα, α ≥ 1 ratio of positive integers with odd denominator, and in
[13], for the particular case s := 1 and f ≡ 0.

Although there are many methods to analyze, under suitable conditions, the existence of
solutions for difference equations (see [1, 2, 15]), we focus here in those based on the so called
measures of noncompactness (see, for instance, [9,13,14]). A key result in the cited works to prove
the existence of solutions is the celebrated Darbo fixed point theorem (see Theorem 2.3), based
in such measures.

On the other hand, in this paper we will show in Theorem 3.3 the existence of solutions
for the equation (1.1) which, as we have pointed out above, is more general than the equations
posed in others works. Moreover, the conditions on the functions f and g also will be more
general, namely, only the continuity will be required.

We conclude the paper with a brief analysis of a special type of stability (see Definition 4.1)
of the solutions of equation (1.1). We will prove in Proposition 4.2 that such stability is at-
tained under only the continuity assumption on the functions f and g instead the Lipschitzian
condition required in [9, 13].

2 Measure of noncompactness and Darbo fixed point theorem

In whats follows, (X, ‖ · ‖) will be an infinite-dimensional Banach space, and BX the class
of non-empty and bounded subsets of X, while CX will be the class of its relatively compact
sets. For a given B ⊂ X, we denote by B̄ and Conv(B) the closure and the convex hull of B,
respectively.

We will use the definition of measure of noncompactness given in [5].

Definition 2.1. A mapping µ : BX −→ [0,+∞) is said to be a measure of noncompactness,
MNC, if satisfies the following properties:

(i) ker(µ) := {B ∈ BX : µ(B) = 0} 6= ∅ and ker(µ) ⊂ CX;

(ii) µ(B) = µ(Conv(B)) = µ(B̄), for all B ∈ BX;

(iii) µ(B1) ≤ µ(B2), for all B1, B2 ∈ BX with B1 ⊂ B2;

(iv) µ(λB1 + (1− λ)B2) ≤ λµ(B1) + (1− λ)µ(B2) for all 0 ≤ λ ≤ 1 and B1, B2 ∈ BX;

(v) if (Bn)n≥0 is a decreasing sequence of closed sets in BX with limn µ(Bn) = 0, then
∩n≥0Bn 6= ∅.

For a detailed exposition of the MNCs and their applications, we refer to [3–5] and refer-
ences therein.

Example 2.2. Let (`∞, ‖ · ‖∞) be the Banach space of all real bounded sequences x : N0 −→ R

equipped with the standard supremum norm ‖x‖∞ := sup{|xn| : n ∈ N0}, for all x :=
(xn)n≥0 ∈ `∞ .

Given B ∈ B`∞ , for each n ≥ 0, let Bn := {xn : x ∈ B} (i.e., the n-th terms of any sequence
belonging to B). Then, the mapping µ : BX −→ [0,+∞) defined as

µ(B) = lim sup
n

Diam(Bn),

is a MNC (see [5]), where Diam(Bn) := sup{|xn − yn| : x, y ∈ B} is the diameter of the set Bn.
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Next, we recall the Darbo fixed point theorem [7] which will be key in our main result.

Theorem 2.3. Let T : C −→ C be continuous, with C ∈ BX closed and convex, and µ a MNC.
Assume that there is 0 ≤ η < 1 such that µ(T(B)) ≤ ηµ(B) for each non-empty B ⊂ C. Then, T has
a fixed point.

3 Main result

The next result, which is true in a more general context, is due to Vanderbei [16] and general-
izes the concept of Lipschitzian function.

Lemma 3.1. Let f : [a, b] −→ R be continuous. Then, for each ε > 0 there is L > 0 such that
| f (x)− f (y)| ≤ L|x− y|+ ε, for all x, y ∈ [a, b].

Remark 3.2. Clearly, any locally Lipschitzian function f : R −→ R satisfies the above lemma
in an interval [a, b]. However, the reciprocal of this fact does not hold in general. For instance,
the function f (x) :=

√
|x| defined in [−1, 1] is continuous but not Lipschitzian in this interval.

Let the following conditions hold.

(C1) The functions f , g : R −→ R are continuous.

(C2) The sequence p : N0 −→ R satisfies

− 1 < lim inf
n

pn ≤ lim sup
n

pn < 1. (3.1)

(C3) The sequences a, b : N0 −→ R, r : N0 −→ R \ {0} satisfy

∑
n≥0

∣∣∣∣ 1
rn

∣∣∣∣ 1
s

∑
i≥n
|ai| < +∞, ∑

n≥0

∣∣∣∣ 1
rn

∣∣∣∣ 1
s

∑
i≥n
|bi| < +∞. (3.2)

Some comments are necessary before continuing. Conditions (C2) and (C3) are often
required to prove the existence of solutions for equation (1.1); see [9, 13]. However, condition
(C1) on the functions f and g is more general than the required in the cited works. Specifically:

(I) In [9], g(x) := xα where α is a ratio of positive integers with odd denominator and f
is assumed to be locally Lipschitzian. Clearly, these conditions are particular cases (but
not equivalent) of condition (C1).

(II) In addition to the continuity of g, the linear growth condition

|g(x)| ≤ L|x|+ M for all x ∈ R, (3.3)

for some L, M > 0 is assumed in [13], and f ≡ 0. It is not very difficult to check that if
g : R −→ R is uniformly continuous, then (3.3) holds. However, a continuous function
defined in R does not need to satisfy (3.3): we can take any g : R −→ R continuous
with |g(x)|/|x| → +∞ as x → +∞.

Now, we can state and prove our main result.



4 G. García

Theorem 3.3. Assume conditions (C1)–(C3). Then, equation (1.1) has some bounded solution x :
Nk −→ R.

Proof. Let (`∞, ‖ · ‖∞) and µ be as in Example 2.2, and fix d > 0. As, by condition (C1), f and
g are continuous on the compact [−d, d] we have

| f (x)| ≤ M f := max
{
| f (x)| : x ∈ [−d, d]

}
,

|g(x)| ≤ Mg := max
{
|g(x)| : x ∈ [−d, d]

}
,

(3.4)

for each x ∈ [−d, d]. Condition (C2) implies that there is n1 ∈N0 and P ∈ [0, 1) such that

|pn| ≤ P, for all n ∈Nn1 . (3.5)

From condition (C3) the series defined by the sequences (an)n≥0 and (bn)n≥0 are conver-
gent. Therefore, there is n2 ∈N0 such that

∑
i≥n2

|ai| < 1 and ∑
i≥n2

|bi| < 1.

and, again noticing condition (C3), as 1/s ≥ 1 we have

∑
n≥n2

(∣∣∣∣ 1
rn

∣∣∣∣∑
i≥n
|ci|
) 1

s

≤ ∑
n≥n2

∣∣∣∣ 1
rn

∣∣∣∣ 1
s

∑
i≥n
|ci| < +∞,

for ci := ai, bi. So, taking

M :=
d− Pd

2
1
s−1M1/s

g + 2
1
s−1M1/s

f

,

there is n3 ∈N0 such that

∑
n≥n3

(∣∣∣∣ 1
rn

∣∣∣∣∑
i≥n
|ai|
) 1

s

≤ M, ∑
n≥n3

(∣∣∣∣ 1
rn

∣∣∣∣∑
i≥n
|bi|
) 1

s

≤ M. (3.6)

Also, the function r 7→ r1/s is locally Lipschitzian, therefore there is Ld > 0 such that

|x1/s − y1/s| ≤ Ld|x− y|, (3.7)

for each x, y ∈ [−d, d]. Given any ε f , εg > 0, let L f and Lg be the positive constants provided
by Lemma 3.1, that is,

| f (x)− f (y)| ≤ L f |x− y|+ ε f , |g(x)− g(y)| ≤ Lg|x− y|+ εg for all x, y ∈ [−d, d]. (3.8)

Next, define the bounded, closed and convex set

C := {x := (xn)n≥0 ∈ `∞ : |xn| ≤ d′, 0 ≤ n < n4 and |xn| ≤ d, ∀n ∈Nn4},

where d′ > 0 is an arbitrary number, n4 := k + max{n1, n2, n3}, and let T : C −→ `∞ be the
mapping

T(x)n :=

xn, 0 ≤ n < n4.

−pnxn−k −∑j≥n

(
1
rj

∑i≥j (aig(xi) + bi f (xi+1))
)1/s

, n ≥ n4.
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By the above considerations T is well defined, that is to say, T(x) ∈ `∞ for each x ∈ `∞. In
fact, as we will show below, T(C) ⊂ C.

To prove the theorem, firstly, we will show that T satisfies the conditions of Darbo fixed
point theorem and therefore has a fixed point. For clarity, we divide the proof of this claim in
two steps.

Step 1: T is continuous and T(C) ⊂ C.
The continuity of T, under our assumptions, is a routine checkup (see, for instance, [9,13]).

So, we skip the details of the proof of this fact and will show that T(C) ⊂ C.
Let any x ∈ C and n ≥ n4. As

|T(x)n| ≤ |pn||xn−k|+ ∑
j≥n

(∣∣∣∣ 1
rj

∣∣∣∣∑
i≥j

(|ai||g(xi)|+ |bi|| f (xi+1)|)
)1/s

,

noticing the classical inequality (a + b)r ≤ 2r−1(ar + br), with r ≥ 1, a, b > 0, we have

|T(x)n| ≤ |pn||xn−k|+ 2
1
s−1 ∑

j≥n

(∣∣∣∣ 1
rj

∣∣∣∣∑
i≥j
|ai||g(xi)|

)1/s

+

(∣∣∣∣ 1
rj

∣∣∣∣∑
i≥j
|bi|| f (xi+1)|

)1/s
 .

Next, from (3.4), (3.5) and (3.6), as |xi| ≤ d we infer

|T(x)n| ≤ Pd + 2
1
s−1M1/s

g ∑
j≥n

(∣∣∣∣ 1
rj

∣∣∣∣∑
i≥j
|ai|
)1/s

+ 2
1
s−1M1/s

f ∑
j≥n

(∣∣∣∣ 1
rj

∣∣∣∣∑
i≥j
|bi|
)1/s

≤ Pd + M(2
1
s−1M1/s

g + 2
1
s−1M1/s

f )

= Pd + d− Pd = d.

So, T(x) ∈ C and therefore, by the arbitrariness of x ∈ C, T(C) ⊂ C as claimed.
Step 2: Comparison of the measure of noncompactness.
Let B ⊂ C be non-empty. Then, given x, y ∈ B from (3.7) and (3.8), for each n ≥ n4 we

have:

|T(x)n − T(y)n|
≤ P|xn−k − yn−k|

+ ∑
j≥n

∣∣∣∣ 1
rj

∣∣∣∣ 1
s

∣∣∣∣∣∣
(

∑
i≥j

aig(xi) + bi f (xi+1)

) 1
s

−
(

∑
i≥j

aig(yi) + bi f (yi+1)

) 1
s
∣∣∣∣∣∣

≤ P|xn−k − yn−k|

+ Ld ∑
j≥n

∣∣∣∣ 1
rj

∣∣∣∣ 1
s
(

∑
i≥j
|ai(g(xi)− g(yi))|+ ∑

i≥j
|bi( f (xi+1)− f (yi+1))|

)

≤ P|xn−k − yn−k|+ LdLg ∑
j≥n

∣∣∣∣ 1
rj

∣∣∣∣ 1
s

∑
i≥j
|ai||xi − yi|

+ LdL f ∑
j≥n

∣∣∣∣ 1
rj

∣∣∣∣ 1
s

∑
i≥j
|bi||xi+1 − yi+1|+ Ld

[
εg ∑

j≥n

∣∣∣∣ 1
rj

∣∣∣∣ 1
s

∑
i≥j
|ai|+ ε f ∑

j≥n

∣∣∣∣ 1
rj

∣∣∣∣ 1
s

∑
i≥j
|bi|
]

≤ P Diam(Xn−k) + εn,

(3.9)
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where

εn := 2dLd

[
Lg ∑

j≥n

∣∣∣∣ 1
rj

∣∣∣∣ 1
s

∑
i≥j
|ai|+ L f ∑

j≥n

∣∣∣∣ 1
rj

∣∣∣∣ 1
s

∑
i≥j
|bi|
]

+ Ld

[
εg ∑

j≥n

∣∣∣∣ 1
rj

∣∣∣∣ 1
s

∑
i≥j
|ai|+ ε f ∑

j≥n

∣∣∣∣ 1
rj

∣∣∣∣ 1
s

∑
i≥j
|bi|
]

.

So, from (3.9) and the properties of the upper limit, as limn εn = 0 we infer

lim sup
n

Diam(T(B)n) ≤ P lim sup
n

Diam(Bn−k) = P lim sup
n

Diam(Bn),

and therefore, µ(T(B)) ≤ Pµ(B). Then, by Theorem 2.3, T has a fixed point.
Finally, once the existence of fixed points of the mapping T has been proved, we will show

the relationship between the fixed points of T and the solutions of the equation (1.1). Let
ξ := (ξn)n≥0 ∈ C be a fixed point of T, that is, ξn = T(ξ)n for each n ≥ 0. Then, according to
definition of T

ξn + pnξn−k = −∑
j≥n

(
1
rj

∑
i≥j

(aig(ξi) + bi f (ξi+1))

)1/s

for all n ∈Nn4 , (3.10)

which leads us to the following equation

∆(ξn + pnξn−k)
s = − 1

rn
∑
i≥n

(
aig(ξi) + bi f (ξi+1)

)
for all n ∈Nn4 .

Using again the operator ∆ for both sides of the above equation:

∆
(
rn
(
∆(ξn + pnξn−k)

)s)
= −ang(ξn)− bn f (ξn+1) for all n ∈Nn4 ,

and so, the terms ξn4 , ξn4+1, . . . of the sequence ξ fulfills the equation (1.1). If n4 = k the
proof is ended, otherwise we need to find the n4 − k + 1 previous terms of the solution of the
equation (1.1) (recall that such equation is defined for each n ≥ k, and k ≤ n4). We can use
the following formula, which is obtained directly from (3.10):

ξn−k+l =
1

pn+l

−ξn+l + ∑
j≥n+l

(
1
rj

∑
i≥j

(aig(ξi) + bi f (ξi+1))

) 1
s
 for all n ∈Nn4 ,

for each l = 0, 1, . . . , k− 1. So, the equation (1.1) has a bounded solution and the proof is now
complete.

Remark 3.4. As is noted in [9, Remark 3.3], unlike most of the problems solved by fixed
point techniques, the whole sequence solution of the equation (1.1) is not obtained through a
fixed point method, but through backward iteration. Such procedure must be applied, as the
iteration which defines (1.1) is an iteration with memory, that is, we have to know also earlier
terms in order to start the iteration.

As we have point out above, in [13] the linear growth condition (3.3) is required on the
function f . But, note that in the proof of the above theorem, we consider f : [−d, d] −→ R

which satisfies condition (3.3) as f is uniformly continuous on the compact [−d, d]. Then,
[13, Theorem 2] can be stated under more general conditions, namely as follows.
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Corollary 3.5. Let the nonlinear second order neutral difference equation

∆
(
rn∆(xn + pnxn−k)

)
+ ang(xn) = 0 for all n ∈Nk,

where k ∈ N, a, p : N0 −→ R, r : N0 −→ R \ {0} and g : R −→ R continuous are given. Assume
the following conditions:

(D1) the sequence p : N0 −→ R satisfies:

−1 < lim inf
n

pn ≤ lim sup
n

pn < 1;

(D2) the sequence a : N0 −→ R and r : N0 −→ R \ {0} satisfy:

∑
n≥0

∣∣∣∣ 1
rn

∣∣∣∣∑
i≥n
|ai| < +∞.

Then, the above equation has some bounded solution x : Nk −→ R.

We conclude this section with an example.

Example 3.6. Let the equation

∆

(
(−1)n∆

(
xn +

1
2

xn−3

)1/3
)
+

1
2n (g(x) + f (xn+1)) = 0. (3.11)

Then, for g(x) := x5 and f (x) := x5/3 the existence of bounded solutions of the above
equation has been proved in [9, Example 3.2], as f is locally Lipschitzian. However, by the well
known Rademacher’s theorem (see, for instance, [8, §3.1.6, p. 216]), if f is locally Lipschitzian
in an open U ⊂ R, then it is differentiable at almost every x ∈ U. So, if f : R −→ R is
continuous but nowhere differentiable, f can not be locally Lipschitzian. A classical example
of a continuous but nowhere differentiable function is the so called Weierstrass function,
defined as

f (x) := ∑
n≥0

an cos(bnπx) for all x ∈ R,

where 0 < a < 1, b is a positive odd integer and ab > 1 + 3π/2. Therefore, for this f we
can not apply [9, Theorem 3.1] to equation (3.11), while Theorem 3.3 states the existence of
bounded solutions for such equation.

4 On the stability of the solutions

Following [6] (see also [9]), we give the following definition of asymptotically stable solution:

Definition 4.1. Let C ⊂ `∞ non-empty and bounded. A solution x : Nk −→ R of (1.1) is said
to be asymptotically stable in C if the following conditions are satisfied:

(a) x ∈ C;

(b) if y ∈ C is a solution of (1.1), then for every ε > 0 there is N := N(ε) ∈ Nk such that
|xn − yn| ≤ ε for each n ≥ N.
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The asymptotically stable property (in other sense than the above defined) of the solutions
has been analyzed in [9, 13] where is required that the involved functions be Lipschitzian in
the whole set R.

Next, we give the following result.

Proposition 4.2. For each d > 0 the equation (1.1) has at least one bounded solution x : Nk −→ R

asymptotically stable in Cd := {x ∈ `∞ : |xn| ≤ d′, 0 ≥ n < n4, |xn| ≤ d, ∀n ≥ n4}, with d′ > 0 an
arbitrary number, for a suitable n4 ∈N.

Proof. Fixed d > 0, let T : Cd −→ Cd and n4 ≥ k be as in the proof of Theorem 3.3. We know
that T has a fixed point in Cd. Denote by Sd the set of fixed points of T.

Then, by Theorem 3.3, there is x ∈ Sd such that T(x)n = xn for each n ≥ 0. Let us note
that if y ∈ Cd is a solution of the equation (1.1) then, in view of (3.9), we have

|xn − yn| = |T(x)n − T(y)n| ≤ P|xn−k − yn−k|+ εn,

for each n ≥ n4, where εn has been defined in the proof of Theorem 3.3. So, as λ :=
lim supn |xn − yn| = lim supn |xn−k − yn−k| we infer from the above inequality that

λ ≤ Pλ + lim sup
n

εn,

and as lim supn εn = 0 and 0 < P < 1, must be λ = 0. Therefore, given any ε > 0 there is an
integer N := N(ε) ≥ n4 such that

|xn − yn| ≤ ε for all n ≥ N,

and the result follows.

We close the paper with an example.

Example 4.3. Let the equation

∆

(
(−1)n∆

(
xn +

1
2

xn−3

)1/3
)
+

1
2n f (xn+1) = 0,

posed in [9, Example 4.2]) with f (x) := −x + sin(πx/2) for each x ∈ R, which is Lipschitzian
in the whole set R.

Fixed any d > 0, let Cd be as in Proposition 4.2. Then, by virtue of [9, Theorem 4.1], the
above equation has at least one asymptotically stable solution in Cd. However, if f is not
Lipschitzian (for instance, the Weierstrass function of Example 3.6) [9, Theorem 4.1] can not
be applied.

On the other hand, for every continuous f : R −→ R, we can check easily that the condi-
tions of Theorem 3.3 are satisfied and therefore the existence of solutions holds. Consequently,
by Proposition 4.2, the above equation has at least one solution asymptotically stable in Cd.
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