PERIODIC SOLUTIONS OF NEUTRAL DUFFING EQUATIONS
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Abstract. We consider the following neutral delay Duffing equation
az” (t) + bz’ (t) + cx(t) + g(x(t — 1), 2'(t — m2), ' (t — 73)) = p(t) = p(t + 27),

where a, b and c are constants, 7;, ¢ = 1,2,3, are nonnegative constants, g : R X
R X R — R is continuous, and p(t) is a continuous 27-periodic function. In this
paper, combining the Brouwer degree theory with a continuation theorem based on
Mawhin’s coincidence degree, we obtain a sufficient condition for the existence of

27-periodic solution of above equation.
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1. Introduction

On the existence problem of periodic solutions for the Duffing equations
2" (t) + g(z) = p(t) = p(t + 2m), (1.1)

so far there has been a wide literature since the interest in studying Eq.(1.1) comes
from different sources. Under the conditions which exclude the resonance cases,
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[1,2,3,4]

many results have been obtained At resonance, many authors have paid

much attention to the problem in recent years. [5] and [6] resolved the existence
problem of 2w-periodic solutions of Eq.(1.1) under some different conditions, re-

spectively.

On the other hand, a few papers have appeared!”:8:9:10:1112] which dealt with

the existence problem of periodic solutions to the delay Duffing equations such as

2" (t) + glx(t — 7)) = p(t) = p(t + 2m). (1.2)

Under some conditions which exclude the resonance cases, some results have been

obtained[13:14,15]

Next, [17] discussed the Duffing equations of the form
@ (t) + m*x(t) + g(x(t — 7)) = p(t) = p(t + 27), (1.3)

where m is a positive integer, and proved the existence of 2m-periodic solutions of

Eq.(1.3) under some conditions.

Jack Hale [21] and [22] put forward the Euler’s equations which are of the form
2'(t) = ft,z(t),x(t —r),2'(t), 2" (t —r), 2" (t — 1)),

where r is a positive constant.

Motivated by above papers, in the present paper, we consider the neutral Duffing

equations of the form
ax” () + bz’ (t) +cx(t) +g(x(t—11), 2’ (t—T12), 2" (t—73)) = p(t) = p(t+27), (1.4)

where a, b, c are constants, 7y, 7o, 73 are nonnegative constants, g : RXR X R — R

is continuous, and p(t) is a continuous 27-periodic function.
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To the best of our knowledge, in this direction, few papers can be found in the

literature. In this paper, combining the Brouwer degree theory with a continuation

16]

theorem based on Mawhin’s coincidence degreel!'®!, we obtain a sufficient condition

for the existence of 2m-periodic solution of Eq.(1.4).

2. Existence of a Periodic Solution

In order to obtain the existence of a periodic solution of Eq. (1.4), we first make

the following preparations.

Let X and Z be two Banach spaces. Consider an operator equation
Lx = ANz,

where L: Dom LN X — Z is a linear operator and A € [0,1] a parameter. Let P

and @ denote two projectors such that

P:DomLNX —KerlL and Q:Z — Z/ImL.

In the sequel, we will use the following result of Mawhin!16.

LEMMA 2.1. Let X and Z be two Banach spaces and L a Fredholm mapping
of index 0. Assume that N : Q — Z is L-compact on Q with € open bounded in X .

Furthermore suppose

(a). For each A € (0,1), = € 992N DomL
Lx # ANz.
(b). For each x € 0QN KerL,

QNx #0
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and

deg{QN, QN KerL, 0} # 0.
Then Lx = Nx has at least one solution in €.
Recall that a linear mapping L: Dom L C X — Z with Ker L = L=1(0) and

Im L = L(DomL), will be called a Fredholm mapping if the following two conditions
hold:

(i). Ker L has a finite dimension;
(ii). Im L is closed and has a finite codimension.

Recalled also that the codimension of Im L is the dimension of Z/Im L, i.e., the

dimension of the cokernel coker L of L.
When L is a Fredholm mapping, its (Fredholm) index is the integer

Ind L = dim Ker L — codimIm L.

We shall say that a mapping N is L-compact on () if the mapping QN
Q) — Z is continuous, QN () is bounded, and Kp(I — Q)N : Q — X is com-
pact, i.e., it is continuous and Kp(I — Q)N(Q) is relatively compact, where Kp:
Im L —-Dom LNKer P is a inverse of the restriction Lp of L to Dom LNKer P, so

that LKp =1 and KpL =1 — P.

THEOREM 2.1. Assume that there exist a positive constant M and three non-
negative constants 31, (2, B3 such that
|9(@1, T2, 3)| < M + By|z1| + Beo|we| + Bslas| for V(z1,22,23) € R (2.1)

and

|abe| — [be|Bs — |ac| Bz — (2]abl + 2mlac])B1 > B3/ (|ac] — Bsle| — Bilal)le|(e] — Br).
(2.2)
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Then Eq.(1.4) has at least one 2mw-periodic solution.

Proof.  In order to use Lemma 2.1 for Eq.(1.4), we take X = {z(t) € C*(R, R) :
z(t+2m) = 2(t)} and Z = {2(t) € C(R,R) : 2(t +27) = z(t)}, and denote
|z|o = maxic(o 2+ |2(t)| and |z]2 = max{|z|o,|z'|o,[2"]o}. Then X and Z are

Banach spaces when they are endowed with norms | - |2 and | - |o, respectively.

Set

Lz =ax"(t), Nx=—bx'(t) —cx(t) —g(z(t —71), 2 (t —72), 2" (t — 713)) + p(1t),

1 27

Px

1 2m
z(t)dt, ze€ X, Qz= —/ z(t)dt, z€ Z.
27 0

Since Ker L = R and ImL = {z € Z : fo% z(t)dt = 0}, Im L is closed and

dim KerL= dim Z/Im L = 1. Therefore, L is a Fredholm mapping of index 0.

Corresponding to the operator equation
Lx = ANz, A€ (0,1),
we have
az” (t) + Xoz'(t) + Aex(t) + Ag(x(t — 11), 2" (t — 72), 2" (t — 13)) = Ap(t). (2.3)

Let z(t) € X is a solution of Eq.(2.3) for a certain A € (0,1). Integrating (2.3)

from 0 to 27, we have
27 27
/ cx(t)dt = p(t) — g(x(t — 1), 2 (t — 1), 2" (t — 73))]dt,
0 0
from which, it implies that there exists a t* € (0, 27) such that

2mex(t) = /0 ﬂ[p(t) —g(x(t — ), 2’ (t — m2), 2" (t — 73))]dt.

EJQTDE, 2000 No. 5, p.5



Let m = max;co 2] [P(t)|. Then
2m
2r|ex(t™)| < 27T(m+M)+ﬁ1/ |x(t — 71)|dt
0
2m 2m
+ ﬁg/ |2’ (t — 72)|dt + B3 / 2" (t — 73)|dt
0 0

27
— 2n(m + M) + B, / @ (t)|dt + B /
0 0

Since for Vt € [0, 2],

27

2T
\x’(t)\dtJrﬁg/O |z" (t)|dt.

(1) = 2(t") +/t* 2/(s)ds,
lz(t)| < [x(t7)] +/0 ﬂ|ﬂ?'(8)|d8

< \/%Id V2r(m+ M)+ 6 (/O% |x(t)\2dt) %

Nf=

+ 2nlel+ ) (| 7 o)

+ B3 (/O% |x”(t)\2dt) %] :

(] y e(0at) < VBRIl max [o(0)

tel0,2m

Thus

=

<V2r(m+ M)+ 6 (/O% |x(t)\2dt) :

27 %
s ( / |x"<t>|2dt)

+(erld+ ) ([ y /()P ) 5

-

from which, it follows that

(lc| — B1) (/027r \x(t)|2dt)% <V2r(m+ M) + (27| + (2) </027T |x'(t)|2dt)

+03 (/OQW |x"(t)\2dt)% : (2.4)
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Multipling (2.3) by z”(t) and integrating from 0 to 27, we get

2m 2m
a/ |2 (t)|dt — )\c/ |2’ (t)|?dt
0 0

+AAﬂfﬁﬁﬁﬁ—ﬁ%f@—mwﬂﬁ—ﬁﬁ—MmﬁZQ

from which, it implies that

27
IM/ 2 (1) 2dt
0

27 27
SMA uﬁwﬁ+A 2" (1)

+ Brlz(t — 71)| + Bala’(t — 12)| + Balz” (t — 73)|] dt

m+ M

<|c| /OZW |2’ (t)|?dt + (/OQW \x”(t)|2dt)% [\/ﬁ(erM)

+ 51 (/O% \x(t)|2dt) : + B2 </027r |x’(t)\2dt) : + B3 (/O% \x”(t)\th) %] :

Therefore,

1

W%ﬁﬁA%W%WﬁsMéﬁwﬁwﬁ+<A%WﬁWﬁy[ﬁﬂm+M)

+51 </027T |x(t)|2dt)% + 3 (/O% |x'(t)|2dt) %]. (2.5)

From (2.4) and (2.5), we have
27
(M—ﬂMMFﬁﬁA 2 (1) [2dt
27
_ Cl?l 2d
<lelld =) [ ' (oPar

+ (/O% |x”(t)|2dt)% [\/ﬁc\(m + M)

+m@(é%m%mwﬁé+@erMM(A%Mﬁwﬂ,
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from which, it follows that

27
_ _ 1 2d
(lac| — Bsle| — Bi]al) / 12 (1) 2dt
27
_ / 2d
< Jel(le zm/o o/ () 2dt

+(/ K ()P [@M(m 00+ el + 60 ([ K /(0P ] -

Thus

27 %
2(|ac| — Bsle| — Bilal) </0 \x”(t)|2dt)

< V2rle|(m+ M) + || (2781 + B2) (/0% |w’(t)l2dt>%

i

+ 4(Jac| — Bsle| — Bulal)lel((e] - A1) / ' |m'<t>|2dt} .

142 (26)

V2ne|(m + M) + [el (2751 + B2) (/OQW \x’(t)Ith) ]

=

=

Using inequality (a + b)% <az + b%, for a > 0 and b > 0,we have

{

142

V2r|e|(m + M) + |¢[ (2751 + 52) </02” |x/<t)|2dt) ]

N=

- 4Jac|  fale — Sl el (el — ) " |m’(t)|2dt} o

< V2re|(m + M) + |c| (2761 + f2) (/027r Iw'(t)\th)%

+2v/(Jac — Bald — Brlal)ld (el — B1) (/O " |x'(t)\2dt) .
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By (2.6) and (2.7), we have

(lac| = Bslc| = Bulal) (/0% |«9€”(t)|2dt) 2

=

< V2rx|e|(m + M) +

lc|(27 81 + [B2) (2.8)

+ /(e = Bl = Brlael(lel - m] ( / y |x'<t>\2dt)% |

Multipling (2.3) by z’(t) and integrating from 0 to 27, we obtain

b / " ()P + / " Olg(alt — m1),a (= ), 2t — 3)) — p(D]dt = 0,

from which, it implies that

’ /0% )t < </02 |fv’<t>|2dt) | [@@n M)+ By </02 2(t ﬁ>|2dt) |

1

o </°2 e TQ)M)% 1 (/02 (¢ Tg)l%zt) 1
: </°27r ul(t)Pdt) | [\/ﬂ(m + M) + 5 </027r |x(t)\2dt) |

27 % 27 %
/ 2d 1 2d> )
+Bz</0 /(1) t) +ﬁ3(/0 2 (1) Pt ]
Thus

-0 ( [ y |x'<t>\2dt)% < Var(m+ 30)+ 1 ([ N elo)ar)

1
2

i ) (2.9)
"t th> 7
e ([l
from which, together with (2.4), it implies that
27 %
(el = )l = o) ([ W0t
0
27 %
<V2r|c|(m+ M) + Bs]c] (/ |x”(t)|2dt) (2.10)
0

2m %
+ (27 B1|c| + B152) (/O |x’(t)\2dt> .
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In view of (2.8) and (2.10), we can obtain

(M—&Xw—ﬁﬁWd—&M—ﬂmm(Aﬂw%ﬁﬁ)Z
< VZrlcl(m + M)(lac| - Bslel — Blal) + V2 B2 (m + M)

+ {(27r|c|51 + B1Ba)(lac] — Bs|c| — Bilal) + Bsc] [ICI(%& + f2)

+¢Wd—&w—mmmmw—54}(Aﬂvawf,

from which, together with (2.2), it implies that there exists a positive constant R

such that

27
/'mﬁwmgm. (2.11)
0

By (2.6) and (2.11), there exists a positive constant Ry such that
27
/ |2 (t)|?dt < Ry. (2.12)
0
From (2.4), (2.11) and (2.12), there exists a positive constant R3 such that
2m
/ lz(t)|?dt < Rs. (2.13)
0
Therefore, there exist three positive constants R}, R5 and Rj such that V¢ € [0, 27],
O < Ry 2/ (1) < B3, [2"(t)] < R

Let A = max{Rj, RS, R5,(m + M)/(|c| — $1)} and take Q = {z(t) € X : |z|2 <

A}. We now will show that N is L-compact on Q. For any x € ,
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where My = |b|R5 + |¢|R} +m + M + B1 R} + B2 R5 + B3Rj5. Hence, QN () is a
bounded set in R. Obviously, QNz : Q — Z is continuous. For Vz € Im LN Z,

2m
(Kp2)(t /ds/ du——/ dt/ds/
is continuous with respect to z, and

8
|Kpz|op < 37r2 terr[hagiﬂ] |2(t)],
8 8
|[Kp(I —Q)Nz|o < —7T2|NCU|0 + §W2|QN$|0

16
—7a?|N
3 *INzlo

IN

—7T2M1
3

IN

For Vz € 2, we have

d

—(Ep(I - Q)Nux)

/| (I — Q)N (t)]odt
g 27| [(I — Q)Nz](t)]o

<Ar |Nz|y < 4nM;.

Thus, the set {Kp(I — Q)Nz|x € Q} is equicontinuous and uniformly bounded.

Consequently, N is L-compact. This satisfies condition (a) in Lemma 2.1.

When z € 00N KerL = 02N R, x is a constant with |z| = A. Then

Qe = o [ TE00) = exlt) — o - ).~ )"0 - ) + pl0)

Y

1 27
= —cx — 0,0) + — t)dt.
e —g(a.0.0)+ 3 [ o0

Thus
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Therefore, QNz # 0,z € 92N R.

Set for 0 < pu <1

¢, 1) = p(t) + (1= p) |z(t) + g(x(t — 1), 2'(t = 72), 2" (t — 73))

1 27

p(t)dt] .

_%O

When z € 0QNKer L and p € [0,1], x is a constant with |z| = A. Without
loss of generality, we suppose * = A. Now we consider two possible cases: (1)
x=A,c>0;(2) x=A,¢c<0.

(1). When z = A and ¢ > 0,

™

2cp—¥¥(MAwm+%A%mw@]

M A
ZC(A—m+ + 61 )>O;
C

¢mm=M+WwWme—§Aﬁmﬂ

(2). When z = A and ¢ <0,

¢(x,ﬂ)§c<A—m+M+ﬂlA) < 0.

]

Thus when = = A, ¢(x, ) # 0. Therefore,

deg(QN, QN KerL,0) = deg{—cx(t) —glx(t — 1), 2 (t — 72), 2" (t — 73))

27

1
+ — p(t)dt, Q2N Ker L, O}
2w Jo

= deg(—cz, 2N Ker L,0) # 0.

By now we know that {2 verifies all the requirements in Lemma 2.1. This completes

the proof of Theorem 2.1.

EJQTDE, 2000 No. 5, p.12



Example The second order neutral delay differential equation

1+ 3z(t— 1) + 32/(t — 2) + 552" (t — 3)
1+22(t—1)

102" (t) 4+ 1002’ (t) + 5z () +

= sint, (2.14)

satisfies all conditions in Theorem 2.1. Therefore, Eq.(2.14) has at least one 27-

periodic solution.
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