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Abstract. The SIS model is a fundamental model that helps to understand the spread of
an infectious disease, in which infected individuals recover without immunity. Because
of the random nature of infectious diseases, we can estimate the spread of a disease
in population by stochastic models. In this article, we present a class of stochastic
SIS model with births and deaths, obtained by superimposing Wiener processes (white
noises) on contact and recovery rates and allowing variable diffusion rates. We prove
existence of the unique, positive and bounded solution of this nonlinear system of
stochastic differential equations (SDEs) and examine stochastic asymptotic stability of
equilibria. In addition, we simulate the model by considering a numerical approxima-
tion based on a balanced implicit method (BIM) on an appropriately bounded domain
D ⊂ R2.

Keywords: stochastic SIS model, variable diffusion rates, stochastic differential equa-
tions, positivity and boundedness, balanced implicit methods, stochastic asymptotic
stability, Lyapunov functions, mathematical epidemiology.

2010 Mathematics Subject Classification: 92D30, 60H10, 60H30, 93D20, 93E15.

1 Introduction

Each year infectious diseases kill almost 9 million people, many of them children under five,
and they also cause enormous burdens through life-long disability [37]. Because of ethical
concerns and the nature of diseases, it is difficult to do experiments searching an effective
strategy for the management of diseases. Mathematical models may be needed. Mathematical
epidemiology studies the spread of diseases in populations by using tools from mathematics,
statistics, and computer science. SIS and SIR (Susceptible, Infected, Removed) are building
blocks of modern mathematical epidemiology. If the infectives recover from the disease with-
out immunity, then they immediately become susceptible. Such a model is called an SIS
model. SIS models are appropriate for most diseases transmitted by bacterial or helminth
agents [7].
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Since we repeatedly use some terms from epidemiology, we briefly define them here.
An outbreak of a disease that spreads rapidly and widely is called epidemic, and a disease
that exists permanently in a particular location is called endemic. One of the most important
quantities in epidemiology is a basic reproduction number, the expected number of secondary
infections produced when one infected individual entered a fully susceptible population [14].
It determines whether there is an epidemic or not.

Generally, epidemic models admit two types of equilibria; disease-free and endemic. If
the disease-free equilibrium is globally asymptotically stable then the disease dies out. If
the endemic equilibrium is globally asymptotically stable then the disease persists in the
population at the equilibrium level.

Lyapunov’s direct method [26] is a useful tool to establish the global stability of equilibria
of an epidemic model and has been used in [5, 10, 13, 15, 19–25, 35, 36]. A historic function
V(x1, . . . , xd) = ∑d

i=1 ci(xi − x∗i − x∗i ln xi
x∗i
) is considered as a good candidate for the Lyapunov

function for epidemic models [10].

We consider a SIS model with births and deaths of the form

S′(t) = − βS(t)I(t) + µ
(
K− S(t)

)
+ αI(t)

I′(t) = βS(t)I(t)− (α + γ + µ)I(t).
(1.1)

Figure 1.1: Flow chart for SIS model with disease deaths.

In this model, the non-negative constant µ represents the per capita birth rate. So µK is the
number of births (immigrants) where K is a carrying capacity (i.e. maximum total population
size). Here we consider all the newborns are susceptible. The model (1.1) assumes that the
birth rate µ is equal to the natural death rate. The contact rate β is the average number of
contacts per infective. βSI represents the number of new infections in unit time. 1/α, the
reciprocal of the recovery rate α, is the mean infected period. Infected individuals spread the
disease to susceptibles, and remain in the infected class in that time, before recovered from
the disease without immunity. That is, individuals become susceptible immediately once they
have recovered. Non-negative constant γ is the disease related death rate such that 1/γ is a
mean of the disease related death period.

Since N(t), the affected population size at time t, is N(t) = S(t) + I(t), we obtain

N′(t) = µ(K− N(t))− γI(t)

by adding the above equations (1.1). Therefore the affected population size is not constant
and may vary in time. In what follows, we shall introduce a stochastic version of model (1.1)
preserving the same equation for affected population size N(t), but now under the presence
of martingale-type noises.
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2 Stochastic model with martingale-type noise

In this paper we present a family of stochastic SIS model with births and deaths, obtained by
superimposing white noises on contact and recovery rates. This is only one of several ways of
introducing random noise into model [2,4,16,33]. We consider that contact and recovery rates
are subject to random disturbances. We perturb the deterministic system (1.1) by white noises
dW1(t)

dt and dW2(t)
dt ; and obtain a stochastic model by replacing β and α by β+ F1

(
S(t), I(t)

) dW1(t)
dt

and α+ F2
(
S(t), I(t)

) dW2(t)
dt respectively, where the perturbation functions F1 and F2 are locally

Lipschitz-continuous (almost surely w.r.t. 2D Lebesgue measure λ2, i.e. except for a λ2-null
subset of D) on

D = {(S, I) ∈ R2 | S ≥ 0, I ≥ 0, S + I ≤ K}.
W1 and W2 are i.i.d. Wiener processes defined on a complete filtered probability space
(Ω,F , {Ft}t≥0, P) for all t ≥ 0.

Therefore we obtain a stochastic model (interpreted in Itô sense)

dS(t) =
(
− βS(t)I(t) + µ(K− S(t)) + αI(t)

)
dt

− S(t)I(t) F1(S(t), I(t)) dW1(t) + I(t) F2(S(t), I(t)) dW2(t)

dI(t) =
(

βS(t)I(t)− (α + γ + µ)I(t)
)

dt

+ S(t)I(t) F1(S(t), I(t)) dW1(t)− I(t) F2(S(t), I(t)) dW2(t)

(2.1)

where the parameters α, β, γ and µ are non-negative constants.
We ignore t in the above SDE and express the stochastic SIS model with disease deaths in

the form

dS =
(
− βSI + µ(K− S) + αI

)
dt− SI F1(S, I) dW1 + I F2(S, I) dW2

dI =
(

βSI − (α + γ + µ)I
)

dt + SI F1(S, I) dW1 − I F2(S, I) dW2.
(2.2)

Similar stochastic models with specific diffusion terms are discussed in [12, 16]. Since the
perturbation functions F1 and F2 are arbitrary, our model represents a rather non-parametric
approach to the class of stochastic SIS models with respect to the diffusion terms, in contrast
to the models in literature.

Gray et al. [12] investigated the properties of a stochastic SIS model for constant popula-
tions in the form

dS =
(
− βSI + µ(K− S) + γI

)
dt− σSIdW

dI =
(

βSI − (µ + γ)I
)
dt + σSIdW.

(2.3)

Obviously, this represents a subclass of models (2.2) with constant diffusion rates F2 = 0
and F1 = σ. In [12] they showed the positivity of solutions and established conditions for
extinction and persistence of infective population.

Imhof and Walcher [16] studied stochastic single-substrate chemostat model

dX0 =
(
r− X0 − a(X0, X1)

)
dt + σ0X0dW0

dX1 =
(
a(X0, X1)− s(X1)

)
dt + σ1X1dW1

(2.4)

by considering biomass concentrations of two microbe species. They showed that, under
certain conditions, the stochastic model leads to extinction even though the deterministic
counterpart predicts persistence.
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In this paper, we first prove the existence of unique strong solution of the stochastic SIS
model (2.2) on D. Then we discuss stochastic asymptotic stability of disease free and endemic
equilibria. We show that the disease free equilibrium (S1, I1) = (K, 0) is globally stochasti-
cally asymptotically stable under the condition of βK ≤ α. Furthermore, we prove that the
endemic equilibrium (S2, I2) =

( K
R0

, µK
γ+µ

(
1 − 1

R0

))
is stochastically asymptotically stable if

R0 = βK
α+γ+µ > 1 for some Fi such that Fi(S2, I2) = 0 and satisfies

−µ(S− S2)
2 − (γ + µ)(I − I2)

2 +
(2µ + γ)I2

2β

(
S2F2

1 (S, I) + F2
2 (S, I)

)
< 0.

Generally speaking, if Fi(S2, I2) 6= 0 for the diffusion rates Fi then the related stochastic system
will not have a positive steady state solution (endemic equilibrium). In here, we consider
random fluctuations around endemic equilibrium by the assumption Fi(S2, I2) = 0, i.e. no
perturbation at the equilibrium point. Stochastic perturbations which are proportional to the
deviation of the system state from the endemic equilibrium have been first considered by
Beretta et al. [6], Carletti [9] and Lahrouz et al. [25].

Finally, we demonstrate the applicability of the mathematical approach with simulations
and show parametric dependence of asymptotic stability of related equilibria in view of ex-
pectations and variances. An appendix explains the mean square convergence of the class
of balanced implicit numerical methods which we use to generate the results of positive and
D-invariant simulations for our examples.

3 Existence of a unique global solution

3.1 Preliminary

Consider a d-dimensional Itô stochastic differential equation of the form

dX(t) = f
(
X(t), t

)
dt + g

(
X(t), t

)
dW(t) (3.1)

with an initial value X(t0) = X0, t0 ≤ t ≤ T < ∞ where f : Rd × [t0, T] → Rd and g :
Rd × [t0, T] → Rd×m are Borel measurable, W = (W(t))t≥t0 is an Rm-valued Wiener process,
σ(W) = σ(W(t)−W(t0) : t ≥ t0) as the minimally generated σ-algebra generated by W and
X0 is an Rd-valued random variable.

The infinitesimal generator L associated with Itô SDE (3.1) is given by

L =
∂

∂t
+

d

∑
i=1

fi(x, t)
∂

∂xi
+

1
2

m

∑
i,j=1

(
g(x, t)gT(x, t)

)
ij

∂2

∂xi∂xj
. (3.2)

Theorem 3.1 (Khas’minskiı̆ [18]). Let Dn be open sets in Rd with

Dn ⊆ Dn+1, D̄n ⊆ D, where D :=
⋃
n

Dn

and suppose f and g satisfy the existence and uniqueness conditions for solutions of (3.1) on each set
{(t, x) : t0 ≤ t ≤ T, x ∈ Dn} for all n ∈ N. Suppose further there is a non-negative continuous
function V : D× [t0, T]→ R+ with continuous partial derivatives ∂V/∂t, ∂V/∂xi, and ∂2V/∂xi∂xj
and satisfying LV ≤ c V for some (positive) constant c and all t0 ≤ t ≤ T, x ∈ D. If also,

inf
t:t0≤t≤T,x∈∂Dn

V(x, t)→ ∞ as n→ ∞
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then, for any X0 which is independent of σ-algebra σ(W) such that the initial condition P(X0 ∈D) = 1
is met, there is a unique Markovian, global, continuous time solution X of (3.1) with X(t0) = X0, and
X(t) ∈ D for all t ∈ [t0, T] (a.s.).

3.2 Existence of a unique global solution of stochastic SIS model

In the statements below and its proof, consider the function

V(S, I) := ln(K3)− ln(SI(K− S− I)) (3.3)(
= 3 ln(K)− ln(S)− ln(I)− ln(K− S− I)

)
,

defined on the open domain

D =
{
(S, I) ∈ R2 : S > 0, I > 0, S + I < K

}
. (3.4)

Note, by elementary analysis, that V(S, I) > 0 on D.

Theorem 3.2. Let
(
S(t0), I(t0))

)
=
(
S0, I0

)
∈ D and

E[V(S0, I0)] < +∞

where 0 < S0 + I0 < K. Assume that F1 and F2 are (2D Lebesgue-almost surely) locally Lipschitz-
continuous Carathéodory functions on interior of D whenever 0 < S + I < K, that

lim sup
S→0+

|IF2(S, I)| = 0

for all I ∈ (0, K),
(
S0, I0

)
is independent of σ(W) and that we have a finite supremum

ess sup
(S,I)∈D

[
I2

S2 F2
2 (S, I)− α

I
S
− µ

K
S

]
+

< +∞, (3.5)

where we refer to the essential supremum here (according to Lebesgue’s measure theory) and [·]+ denotes
the positive part of inscribed expression.

Then, the stochastic SIS model (2.1) has a unique, continuous time, Markovian global solution
process

(
S(t), I(t)

)
t≥t0

on t ≥ t0 and this solution is almost surely invariant with respect to D, i.e.
for all initial data (S0, I0) ∈ D independent of σ(W)

P(∀t ≥ t0 : (S(t), I(t)) ∈ D) = 1.

Proof. We use stochastic invariance theorem stated by Khas’minskiı̆ [18] and follow the ideas
in [29]. For arbitrary terminal time T > t0, consider the stochastic process X defined by

X(t) = (S(t), I(t)), t0 ≤ t ≤ T.

Since the coefficients of the system (2.1) are a.s. locally Lipschitz-continuous and satisfy linear
growth condition on D, for any initial value (S0, I0) ∈ D, there is a unique continuous time,
Markovian local solution on t ∈

[
t0, τT(D)

)
, where τT(D) is the random time of first exit of

stochastic process
(
S(t), I(t)

)
t0≤t≤t≤T from the interior of domain D before or at T, started

in
(
S(t0), I(t0))

)
∈ D at the initial time t0 ∈ R. We define τT(D) = ∞ if X does not hit
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the boundary of D before T or at T. To make this solution X global, we shall prove that
P
(
τT(D) = ∞

)
= 1 (a.s.) for all finite terminal times T.

For fixed initial values (S0, I0) inside D, we consider the fully extended system (which is
equivalent to original SIS model (2.2))

dS =
(
− βSI + µ(K− S) + αI

)
dt− SI F1(S, I) dW1 + I F2(S, I) dW2

dI =
(

βSI − (α + γ + µ)I
)

dt + SI F1(S, I) dW1 − I F2(S, I) dW2. (3.6)

Let

Dn :=
{
(S, I) ∈ R2

+ : Ke−n < S, I < K(1− 2e−n), S + I < K(1− e−n)
}

for n ∈ N. Obviously, for any initial value (S0, I0) inside Dn, the system (2.1) has a unique
solution up to stopping time τT(Dn). Define

V(S, I) := ln(K3)− ln(SI(K− S− I))

where 0 < S + I < K on D and suppose that EV(S0, I0) < ∞. Note that 0 < V(S, I) < +∞ for
(S, I) ∈ D. Furthermore, let the essential supremum be

c = βK + α + γ + 3µ +
1
2

ess sup
(S,I)∈D

[
(S2 + I2)F2

1 (S, I)+F2
2 (S, I)

]
+

1
2

ess sup
(S,I)∈D

[
I2

S2 F2
2 (S, I)− α

I
S
− µ

K
S

]
+

(3.7)

where [·]+ is the positive part of inscribed expression. Obviously, under hypothesis (3.5) with
almost surely continuous Fi, the constant c is positive and finite.

Then, the infinitesimal generator of process X = (S(t), I(t))t0≤t≤T is of the form

LV(S, I) =
(
− βSI + µ(K− S) + αI

)∂V
∂S

+
(

βSI − (α + γ + µ)I
)∂V

∂I

+
1
2
(
S2 I2F2

1 (S, I) + I2F2
2 (S, I)

) (∂2V
∂S2 − 2

∂2V
∂S∂I

+
∂2V
∂I2

) (3.8)

for all (S, I) ∈ D. Recall that all parameters α, β, γ, and µ are non-negative. Evaluating the
aforementioned expression for LV yields that ∀ (S, I) ∈ D

LV(S, I) =
(
− βSI + µ(K− S) + αI

) (
− 1

S
+

1
K− S− I

)
+
(

βSI − (α + γ + µ)I
) (
−1

I
+

1
K− S− I

)
+

1
2
(
S2 I2F2

1 (S, I) + I2F2
2 (S, I)

) ( 1
S2 +

1
I2

)
= βI − µ

K− S
S
− α

I
S
− βS + α + γ + 2µ− γ

I
K− S− I

+
1
2

(
S2F2

1 (S, I) + F2
2 (S, I) + I2F2

1 (S, I) +
I2

S2 F2
2 (S, I)

)
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= β(I − S)− γ
I

K− S− I
+ α + γ + 3µ− α

I
S
− µ

K
S

+
1
2

(
S2F2

1 (S, I) + F2
2 (S, I) + I2F2

1 (S, I) +
I2

S2 F2
2 (S, I)

)
≤ βK + α + γ + 3µ +

1
2

ess sup
(S,I)∈D

[
(S2 + I2)F2

1 (S, I)+F2
2 (S, I)

]
+

1
2

ess sup
(S,I)∈D

[
I2

S2 F2
2 (S, I)− α

I
S
− µ

K
S

]
+

= c,

where the finite c ≥ 0 is defined as in (3.7) and [·]+ is the positive part of inscribed expression.
Therefore LV(S, I) ≤ c on D.

Note that, by elementary calculus, we find that

inf
(S,I)∈∂Dn

V(S, I) > n + 2 ln(2)

since ∂Dn consists of the boundary of triangle bounded by the lines I = Ke−n, S = Ke−n, and
S + I = K(1− e−n).

Now, define τn := min{t, T, τT(Dn)} and apply Dynkin’s formula to get to

E V(S(τn), I(τn)) = E V(S(t0), I(t0)) + E

∫ τn

t0

LV(S(u), I(u)) du

≤ E V(S(t0), I(t0)) + cT

= EV(S0, I0) + cT.

Therefore, since Dn ⊂ D for all n ∈N, we have

0 ≤ P
(
τT(D) < t

)
≤ P

(
τT(Dn) < t

)
= P

(
τn < t

)
= E

(
1{τn<t}

)
where 1 is the indicator function

≤ E

V
(

S
(
τT(Dn)

)
, I
(
τT(Dn)

))
inf(S,I)∈∂Dn V(S, I)

1{τn<t}


≤ EV(S0, I0) + cT

inf(S,I)∈∂Dn V(S, I)

≤ EV(S0, I0) + cT
n + 2ln(2)

→ 0 as n→ ∞

(3.9)

for all (S0, I0) ∈ Dn (for large n), and for all fixed t ∈ [t0, T).
Recall T > t0 is arbitrary. Thus P

(
τT(D) < t

)
= P

(
τT(Dn) < t

)
= 0 for (S0, I0) ∈ D̃,

n ∈N and for any T ≥ t ≥ t0. That means that ∀T > t0

P
(
τT(D) = ∞

)
= 1. (3.10)

This proves the invariance property and the existence of the strong solution
(
S(t), I(t)

)
t≥t0

on
D, provided that (S0, I0) ∈ D.

Remark 3.3. It remains to discuss the boundary cases for initial data. Recall that I = 0 and
S = 0 are not inside of the domain D . We study these cases separately.
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(i) If I(t0) = 0 at some t0, then the system (2.1) reduces to the ODE dS(t) = µ
(
K− S(t)

)
dt

with initial condition S(t0) ∈ D1 = [0, K]. Since the right hand side of the ODE is
continuous on D1 then the solution S(t) globally exists on D1 for all t ≥ t0. Note that
[SIF1(S, I)]I=0 = 0 and [IF2(S, I)]I=0 = 0 for all values of S ≥ 0.

(ii) If S(t0) = 0 at some t0, then the remaining equation dS(t) = µKdt obviously in-
stantaneously reflects S back into the interior of D with positive S(t)-values (since
[SIF1(S, I)]S=0 = 0 and [IF2(S, I)]S=0 = 0 for all values I ≥ 0) and

dI(t) =
(

µK− (α + γ + µ)I(t)
)

dt− I(t)F2(0, I(t))dW2(t)

is left with positive values of I(t) ≤ K. Note that, under (3.5) and due to continuity
of F2(0, ·), we find that the term IF2(0, I) = 0 = limS→+0 IF2(S, I) must vanish for all
0 ≤ I ≤ K.

Moreover, if the initial condition is given by I(t0) ∈ D2 = (0, K] then the above SDE has a
unique global solution on D2. One can prove the global existence of strictly positive solutions
I(t) by using a function V(I) = I − ln(I) defined on R+ or a.s. D2-invariance of process I by
use of V(I) = I− ln(I) +K− I− ln(K− I) defined on (0, K) and do similar calculations. Note
that the assumption of finiteness of expression (3.5) also implies that, for almost sure locally
Lipschitz-continuous functions F2(0, ·) on compact sets [0, K], we have limS→+0 IF2(S, I) =

IF2(0, I) = 0 for all 0 ≤ I ≤ K which guarantees here the positivity and D2-invariance of both
processes I and S.

Similarly, we can conclude that N(t) = S(t) + I(t) = K at finite time t cannot happen
under any adapted initial conditions 0 < N0 = S0 + I0 < K since dN = µ(K − N)dt ensures
that N ∈ [0, K] provided that N0 ∈ [0, K] (actually, the action of function V(S, I) along the
dynamics of process (S, I) and the assumption EV(S0, I0) < +∞ control this case, and this
fact follows from our proof that τT(D) = ∞ (a.s.) for all T, see (3.10) and above (3.9)).

Summarizing, N = S + I ∈ [0, K], S ≥ 0, I ≥ 0 imply that

∀T > 0 : (S, I)([0, T]) ⊆ D.

Consequently, the unique continuous time Markovian solution
(
S(t), I(t)

)
of original stochas-

tic SIS model (2.2) exists globally and is invariant with respect to the biologically relevant
domain

D =
{
(S, I) : S ≥ 0, I ≥ 0, 0 < S + I < K

}
for all adapted initial data (S0, I0) ∈ D and all t ≥ t0 by Theorem 3.2.

Remark 3.4. The condition (3.5) can be satisfied by such examples as vanishing diffusion rate
F2 = 0 on D or any a.s. locally Lispschitz-continuous diffusion rates satisfying |F2(S, I)| ≤√

µS/K or |F2(S, I)| ≤
√

αS/K or F2(S, I) = S
√

I − I0 or even F2(S, I) =
√

I − I0 I{S>I} where
I{S>I} denotes the indicator function of subscribed set {S > I}. Basically, for validity of (3.5),
it would also suffice to take any a.s. continuous functions F2 on D which satisfy the limit
condition

lim sup
S→0+

F2
2 (S, I)

S2 < +∞.

A further remarkable fact is that, for existence of unique, global, continuous time Marko-
vian solutions (S, I), it basicly suffices to impose no significant assumption on the choice of
diffusion rate F1 other than almost sure Lipschitz-continuity of Carathéodory function F1 on
compact set D (i.e. in 2D Lebesgue’s almost sure sense). However, the choice of diffusion rates
Fk’s plays an important role for asymptotic stability of equilibria as seen below.
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4 Stability of equilibria

4.1 Preliminary

Consider a d-dimensional SDE

dX(t) = f
(
X(t), t

)
dt + g

(
X(t), t

)
dW(t), t ≥ t0, X(t0) = x0. (4.1)

Assume that the functions f and g satisfy, in addition to the existence and uniqueness as-
sumptions, f (x∗, t) = 0 and g(x∗, t) = 0 for equilibrium solution x∗ for t ≥ t0. Let D ⊆ Rd be
nonempty and simple-connected.

Definition 4.1. The equilibrium solution x∗ ∈ D of the SDE (4.1) is stochastically stable (stable
in probability) iff for every ε > 0 and s ≥ t0

lim
x0→x∗

P

(
sup

t0≤s<∞
‖Xs,x0(t)− x∗‖ ≥ ε

)
= 0 (4.2)

where Xs,x0(t) denotes the solution of (4.1) at time t ≥ s, satisfying X(s) = x0 ∈ D at initial
time s.

Definition 4.2. The equilibrium solution x∗ ∈ D of the SDE (4.1) is said to be stochastically
asymptotically stable iff it is stochastically stable and at every s we have

lim
x0→x∗

P

(
lim
t→∞

Xs,x0(t) = x∗
)
= 1, (4.3)

Definition 4.3. The equilibrium solution x∗ ∈ D of the SDE (4.1) is said to be globally stochas-
tically asymptotically stable on D iff it is stochastically stable and for every x0 ∈ D and every s

P

(
lim
t→∞

Xs,x0(t) = x∗
)
= 1. (4.4)

Definition 4.4. The function V ∈ C2,1(D× [t0, ∞)) is positive-definite on open neighborhood
N(x∗) ⊆ D iff V is non-negative on N(x∗)× [t0, ∞) and

∀t ≥ t0∀x ∈ N(x∗)\{x∗} : V(x, t) > 0

together with V(x∗, t) = 0 for all t ≥ t0.

Remark 4.5. Since the equations of our stochastic SIS model do not have time-dependent
coefficients, the requirement of “for every s” in above definitions can be dropped.

Theorem 4.6. Assume that f and g satisfy the existence and uniqueness assumptions and they have
continuous coefficients with respect to t. Let x0 be constant with probability 1 and P(∀t ≥ t0 :
X(t) ∈ D) = 1.

i) Suppose that there exist a positive definite function V ∈ C2,1(Uh × [t0, ∞)
)
, where Uh = {x ∈

Rd : ‖x− x∗‖ < h} ∩D for h > 0, such that

for all t ≥ t0, x ∈ Uh : LV(x, t) ≤ 0. (4.5)

Then, the equilibrium solution x∗ of (4.1) is stochastically stable.
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ii) If, in addition, V is decrescent (there exists a positive definite function V1 such that V(x, t) ≤
V1(x) for all x ∈ Uh) and LV(x, t) is negative definite, then the equilibrium solution x∗ is
stochastically asymptotically stable.

iii) If assumptions ii) hold for all x ∈ D for a radially unbounded function V ∈ C2,1(Rd× [t0, ∞)
)

defined everywhere then the equilibrium solution x∗ is globally stochastically asymptotically sta-
ble.

Remark 4.7. This Theorem 4.6 is a slight modification of the famous stability theorem on Rd

due to L. Arnold [3], and its proof is very similar to that in [3], hence we may omit its proof
here.

4.2 Global stochastic asymptotic stability of disease free equilibrium

Recall that, for our stochastic SIS model, in previous section we have justified to confine our
related domains D ⊂ R2

+ satisfying

D = {(S, I) ∈ R2| S ≥ 0, I ≥ 0, 0 ≤ S + I ≤ K}

where its entire dynamic takes place (a.s.). For the rest of this paper, we assume that D

satisfies that compact triangular form in R2.

Theorem 4.8. The disease free equilibrium solution (S1, I1) = (K, 0) of (2.1) is globally stochastically
asymptotically stable on D under the condition of βK

α ≤ 1 for any almost sure Lipschitz-continuous
Carathéodory functions F1 and F2 on D (in the sense of 2D-Lebesgue measure), satisfying condition
(3.5).

Proof. Define a Lyapunov function V(S, I) = 1
2 (S− K + I)2 + γ

β (K− S) on D. Then,

LV(S, I) =
(
− βSI + µ(K− S) + αI

)∂V
∂S

+
(

βSI − (α + γ + µ)I
)∂V

∂I

+
1
2
(
S2 I2F2

1 (S, I) + I2F2
2 (S, I)

) (∂2V
∂S2 − 2

∂2V
∂S∂I

+
∂2V
∂I2

) (4.6)

LV(S, I) = (S− K + I)
(
− βSI + µ(K− S) + αI + βSI − (α + γ + µ)I

)
− γ

β

(
− βSI + µ(K− S) + αI

)
= (S− K + I)

(
µ(K− S− I)− γI

)
− γ

β

(
− βSI + µK− µS + αI

)
= − µ(K− S− I)2 − γI2 − γSI + γKI + γSI − γµ

β
K +

γµ

β
S− αγ

β
I

= − µ(K− S− I)2 − γI2 − γ

(
α

β
− K

)
I − γµ

β
(K− S)

(4.7)

Hence, if α
β − K ≥ 0 then LV(S, I) is negative definite on D since LV(S, I) ≤ −µV(S, I).

Finally, an application of Theorem 4.6 completes the proof.
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This theorem also says that an outbreak can be controlled by decreasing the number β of
contacts and infection period 1/α. It is remarkable that the disease related death rate γ, birth
rate µ (= natural death rate) and the perturbation functions F1 and F2 do not play a role in the
sufficient condition for the stochastic stability of the disease free equilibrium.

Remark 4.9. By writing the stability condition, βK ≤ α, in terms of the basic reproduction
number R0 = βK

α+γ+µ of the deterministic model, we obtain

βK ≤ α < α + γ + µ ⇒ βK
α + γ + µ

= R0 < 1. (4.8)

So our sufficient condition for stability of the disease free equilibrium does not contradict with
the well-known R0 < 1 rule.

Remark 4.10. Since LV(S, I) ≤ −µV(S, I) for βK ≤ α, the disease free equilibrium is expo-
nentially moment V-stable [30] with rate −µ.

Remark 4.11. If the perturbation functions F1 and F2 are constants σk, respectively; i.e., if the
model is in the form

dS =
(
− βSI + µ(K− S) + αI

)
dt− σ1 SI dW1 + σ2 I I{S>I} dW2

dI =
(

βSI − (α + γ + µ)I
)

dt + σ1SI dW1 − σ2 I I{S>I} dW2

(4.9)

then the disease free equilibrium (K, 0) is globally stochastically asymptotically stable if
βK
α ≤ 1.

Example 4.12. In order to illustrate an application of Theorem 4.8, we simulate the solution
of the stochastic SIS model (2.1) by considering a numerical approximation of process (S, I)
based on Balanced Implicit Methods (BIMs) [27, 31].

We use the following scheme (n ∈N) (as proposed in [34] based on [29])

Sn+1 = Sn +
[
− βSn In + µ(K− Sn) + αIn

]
∆n − Sn InF1(Sn, In)∆W1

n

+ InF2(Sn, In)∆W2
n + An(Sn − Sn+1)

In+1 = In +
[

βSn In − (α + γ + µ)In

]
∆n + Sn InF1(Sn, In)∆W1

n

− InF2(Sn, In)∆W2
n + An(In − In+1)

(4.10)

for a discretization of (2.1) along partitions 0 = t0 < t1 < · · · < tn < tn+1 < · · · with step
sizes ∆n = tn+1 − tn, where (for Sn > 0)

An = (α + γ + µ + βIn) ∆n + K |F1(Sn, In) ∆W1
n |+

K
Sn
|F2(Sn, In) ∆W2

n |

and W j’s are standard Wiener processes defined on a (complete) filtered probability space
(Ω,F , {Ft}t≥0, P) and which are independent of the initial value (S0, I0) ∈ D with finite sec-
ond moments E‖(S0, I0)‖2 < ∞. Here, as in all of our simulations, the independent Gaussian
N (0, ∆n)-distributed increments ∆Wk

n are generated by the Polar Marsaglia method. The al-
gorithm for our simulations is programmed in C++. The weights An are carefully chosen such
that we achieve positivity and invariance of BIMs (4.10) on bounded domain D whenever we
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start at (S0, I0) ∈ D. For simplicity, all our figures below are generated by equidistant step
sizes ∆.

Based on the pioneering works of [27], [29] and [31], a more detailed study on the con-
vergence of this numerical method (4.10) along with positivity and stability of the numerical
solution has been carried out in [34] (cf. remarks in appendix). Thus, in this article, we may
leave out further quantitative analysis of related numerical algorithm because we focus more
on qualitative analysis of our SIS model.

We consider the stochastic SIS model

dS =
(
− βSI + µ(K− S) + αI

)
dt− SIF1(S, I)dW1 + F2(S, I)IdW2

dI =
(

βSI − (α + γ + µ)I
)

dt + SIF1(S, I)dW1 + F2(S, I)IdW2

(4.11)

with the perturbation functions F1(S, I) = S−S2
K2 and F2(S, I) = I−I2

K I{S>I} where (S2, I2) =( K
R0

, µK
γ+µ

(
1− 1

R0

))
and R0 = βK

α+γ+µ and IA is the indicator function of subscribed set A. Here
we use

(i) µ = birth rate = natural death rate = 1/75 = 0.013 corresponding to a human life
expectancy of 75 years,

(ii) β = 0.02 explaining that average infectives makes contact sufficiently to transmit infec-
tion with 0.02K others per year, where K = 200,

(iii) α = 13 corresponding to infectives recover after a mean infective period of 1/13 year
(i.e., about one month period),

(iv) γ = 13 describing a disease from which infectives die because of the disease after a
mean period of 1/13 year.

Notice that the set of discontinuity points of F2 is a null-set w.r.t. the 2D Lebesgue measure,
hence it can be considered as a.s. continuous function and the solution exists according to our
Theorem 3.2.

The left two pictures of Figure 4.1 show the numerical solution of the deterministic SIS
model. As expected, since R0 = 0.15 < 1, the trajectory of the solution settles around
the disease free equilibrium (200, 0). The L-shape picture shows that the Infected popula-
tion vanishes quickly. In the middle two pictures of Figure 4.1, dynamics of expected val-
ues of Susceptible and Infected are plotted for the stochastic SIS with F1(S, I) = S−S2

K2 and
F2(S, I) = I−I2

K I{S>I}. They show that Susceptible and Infected populations, in average,
quickly settle around the disease free equilibrium (S, I) = (200, 0). This verifies Theorem 4.8
because βK

α = 0.31 < 1. The last two pictures display the evaluation of the variances of Sus-
ceptible and Infected. As it seen, variances rapidly go to zero. Hence the non-random disease
free equilibrium is approached.

Example 4.13. In this example we consider different perturbation functions F1 and F2 with the
same parameters explained in the previous example; α = 13, β = 0.02, γ = 13, µ = 0.013
and K = 200. Here we use three sets of perturbation functions:

(
F1(S, I) = I−I2

S , F2(S, I) =

cos(S− S2) I{S>I}
)
,
(

F1(S, I) = sin(S + 1), F2(S, I) = I2

K I{S>I}
)

and
(

F1(S, I) = 1
S+1 , F2(S, I) =

1
I2+1 I{S>I}

)
.

Figure 4.2 verifies that the perturbation functions Fi do not affect stochastic asymptotic
stability of the disease free equilibrium. However the system fluctuates by stochastic noises.
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Figure 4.1: Simulations of deterministic and stochastic SIS models with the
parameters α = 13, β = 0.02, γ = 13, µ = 0.013 and K = 200. We used
a simulation based on the Balanced Implicit Method (4.10) with initial value
(S0, I0) = (190, 10) and step size ∆ = 10−3 .

Simulations agree with analytic study
( βK

α = 0.31 < 1
)

for different perturbation func-
tions since trajectories of solutions of stochastic system (4.11) stay nearby the disease free
equilibrium when time goes to infinity.

Figure 4.2: Numerical solutions of stochastic SIS model with parameters α = 13,
β = 0.02, γ = 13, µ = 0.013 and K = 200 for different perturbation functions.
We used a simulation based on the method (4.10) with initial value (S0, I0) =

(190, 10) and step size ∆ = 10−3 .
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4.3 Stochastic asymptotic stability of endemic equilibrium

The stochastic SIS model (2.1) has a unique endemic equilibrium solution

(S2, I2) =

(
α + γ + µ

β
,

µK
γ + µ

− µ(α + γ + µ)

β(γ + µ)

)
=

(
K
R0

,
µK

γ + µ

(
1− 1
R0

)) (4.12)

if R0 > 1 and Fi(S2, I2) = 0.

Theorem 4.14. The endemic equilibrium solution (S2, I2) of the system (2.1) is stochastically asymp-
totically stable on D =

{
(S, I) : S > 0, I > 0, S + I ≤ K

}
if R0 = βK

α+γ+µ > 1 for some (Lebesgue-)
a.s. continuous Carathéodory functions Fi on D such that Fi(S2, I2) = 0 for i = 1, 2 and Fi satisfy
condition (3.5) and on D \ {(S2, I2)} we have

− µ(S− S2)
2 − (γ + µ)(I − I2)

2 +
(2µ + γ)I2

2β

(
S2F2

1 (S, I) + F2
2 (S, I)

)
< 0. (4.13)

Proof. Note that the conditions R0 > 1 and Fi(S2, I2) = 0 are needed for the existence of an
endemic equilibrium solution (S2, I2). We use the Lyapunov function considered in [35] for a
similar deterministic model

V(S, I) =
1
2
(S− S2 + I − I2)

2 +
2µ + γ

β

(
I − I2 − I2 ln

I
I2

)
(4.14)

on D =
{
(S, I) : S > 0, I > 0, S + I ≤ K

}
. Then,

LV(S, I) =
(
− βSI + µ(K− S) + αI

)∂V
∂S

+
(

βSI − (α + γ + µ)I
)∂V

∂I

+
1
2
(
S2 I2F2

1 (S, I) + I2F2
2 (S, I)

)(∂2V
∂S2 − 2

∂2V
∂SI

+
∂2V
∂I2

)
=
(
− βSI + µ(K− S) + αI

)
(S− S2 + I − I2)

+
(

βSI − (α + γ + µ)I
) (

S− S2 + I − I2 +
2µ + γ

β

(
1− I2

I

))
+

1
2

(
S2 I2F2

1 (S, I) + I2F2
2 (S, I)

)(2µ + γ

β

I2

I2

)
= (S− S2 + I − I2)

(
µ(K− S)− (γ + µ)I

)
+

2µ + γ

β
(I − I2)

(
βS− (α + γ + µ)

)
+

(2µ + γ)I2

2β

(
S2F2

1 (S, I) + F2
2 (S, I)

)
We can rewrite the terms µ(K− S)− (γ + µ)I and βS− (α + γ + µ) as follows:

µ(K− S)− (γ + µ)I = µK− µ(S− S2)− µS2 − (γ + µ)(I − I2)− (γ + µ)I2

(4.12)
= − µ(S− S2)− (γ + µ)(I − I2) + µK

(
1− 1
R0

)
− (γ + µ)

µK
γ + µ

(
1− 1
R0

)
= − µ(S− S2)− (γ + µ)(I − I2),
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respectively

βS− (α + γ + µ) = β

(
S− α + γ + µ

β

)
= β(S− S2).

Therefore

LV(S, I) = (S− S2 + I − I2)
(
− µ(S− S2)− (γ + µ)(I − I2)

)
+ (2µ + γ)(I − I2)(S− S2) +

(2µ + γ)I2

2β

(
S2F2

1 (S, I) + F2
2 (S, I)

)
= − µ(S− S2)

2 − (γ + µ)(I − I2)
2 − (2µ + γ)(S− S2)(I − I2)

+ (2µ + γ)(I − I2)(S− S2) +
(2µ + γ)I2

2β

(
S2F2

1 (S, I) + F2
2 (S, I)

)
= − µ(S− S2)

2 − (γ + µ)(I − I2)
2 +

(2µ + γ)I2

2β

(
S2F2

1 (S, I) + F2
2 (S, I)

)
.

Note that LV(S, I) = 0 at (S, I) = (S2, I2) under our additional condition Fi(S2, I2) = 0 and
by the choice of suitable functions Fi that satisfy (4.13), one can easily obtain LV(S, I) < 0
on D\{(S2, I2)}. Hence LV(S, I) is negative definite on D for some suitable Fi. Therefore, by
Theorem 4.6, the endemic equilibrium is stochastically asymptotically stable on D.

Example 4.15. We consider the stochastic SIS model with the parameters α = 13, β = 0.1, γ =

13, µ = 0.013, K = 500 and the perturbation functions F1(S, I) = S−S2
K2 , F2(S, I) = I−I2

K I{S>I}.
The endemic equilibrium (S2, I2) takes the value of (260.13, 0.24). Note that we use the same
perturbation functions in Example 1.

Since R0 = 1.92, the R0 > 1 condition satisfies. The inequality (4.13) also satisfies because

LV = −
(

µ− 2µ + γ

2β

S2

K4 I2

)
(S− S2)

2 −
(

µ + γ− 2µ + γ

2βK2 I2 I{S>I}

)
(I − I2)

2

is negative definite for all (S, I) ∈ D =
{
(S, I) : S > 0, I > 0, S + I ≤ K

}
. Hence Theo-

rem 4.14 guaranties the stochastic asymptotic stability of the endemic equilibrium (S2, I2) =

(260.13, 0.24).
Figure 4.3 displays dynamics of expected values and variances of Susceptible and Infected

populations. It shows that Susceptible and Infected populations, in average, quickly settle
around the endemic equilibrium with vanishing variation. Therefore Figure 4.3 confirms
Theorem 4.14.

In Figure 4.4, we fix all the parameters other than the recovery rate α and plot the graphs
of expected values of Susceptible and Infected versus time versus α. These pictures show the
effects of the recovery rate on the asymptotic stability of equilibria. If α gets large then we
lose existence of an endemic equilibrium and verify the stochastic asymptotic stability of the
disease free equilibrium of the system.

Similarly in Figure 4.5, we fix all the parameters other than the contact rate β and plot the
graphs of expected values of Susceptible and Infected versus time versus β. These pictures
show the effects of the contact rate on the asymptotic stability of equilibria. If β gets small
then we lose existence of an endemic equilibrium and verify the stochastic asymptotic stability
of the disease free equilibrium.
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Figure 4.3: The endemic equilibrium (S2, I2) = (260.13, 0.24) is stochastically
asymptotically stable for α = 13, β = 0.1, γ = 13, µ = 0.013, K = 500 and
the perturbation functions F1(S, I) = S−S2

K2 , F2(S, I) = I−I2
K I{S>I}. We used

a simulation based on the Balanced Implicit Method (4.10) with initial value
(S0, I0) = (490, 10) and step size ∆ = 10−3 .

Example 4.16. In this example we show the influence of random perturbations on a determin-
istic system. We consider a deterministic SIS model

dS =
(
− βSI + µ(K− S) + αI

)
dt

dI =
(

βSI − (α + γ + µ)I
)

dt
(4.15)

with the parameters α = 13, β = 0.25, γ = 13, µ = 0.013 and K = 400. Since the basic reproduc-
tion numberR0 = βK

α+γ+µ = 3.85 > 1, the endemic equilibrium (S2, I2) =
( K
R0

, µK
γ+µ

(
1− 1

R0

))
=

(104.1, 0.3) of ODE (4.15) is asymptotically stable. Figure 4.6 illustrates that.
In order to investigate stochastic effects for the classical model (4.15), we put noises into

the contact and recovery rates. We replace β by β+ S−S2
S2+1

dW1
dt and α by α+ I−I2

I2+1 I{S>I}
dW2(t)

dt ; and
obtain

dS =
(
− βSI + µ(K− S) + αI

)
dt− S− S2

S2 + 1
SI dW1 +

I − I2

I2 + 1
I I{S>I} dW2

dI =
(

βSI − (α + γ + µ)I
)

dt +
S− S2

S2 + 1
SI dW1 −

I − I2

I2 + 1
I I{S>I} dW2.

(4.16)

Theorem 4.14 only guaranties stochastic asymptotic stability of endemic equilibrium under
the conditions R0 > 1 and (4.13), i.e.

− µ(S− S2)
2 − (γ + µ)(I − I2)

2 +
(2µ + γ)I2

2β

(
S2F2

1 (S, I) + F2
2 (S, I)

)
(4.17)

must be negative definite for all (S, I) ∈ D =
{
(S, I) : S > 0, I > 0, S + I ≤ K

}
. Since the

parameters in the deterministic model and stochastic counterpart are the same, R0 > 1 condi-
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Figure 4.4: Expected values of Susceptible and Infected populations for variable
recovery rate α and fixed β = 0.1, γ = 13, µ = 0.013 and K = 500. If α ≥ 50
then βK

α = 50
α ≤ 1, and there exists only one equilibrium (S, I) = (500, 0), which

is stochastically asymptotically stable. If α < 26.987 then R0 = 50
13.013+α > 1

and LV becomes negative definite. Hence an endemic equilibrium (S, I) =

(130.13 + 10α, 0.3695− 0.010α) is stochastically asymptotically stable. We used
a simulation based on the Balanced Implicit Method (4.10) with initial value
(S0, I0) = (490, 10) and step size ∆ = 10−3 .

tion satisfies (R0 = 3.85). However, the condition (4.13) does not satisfy for the perturbation
functions F1(S, I) = S−S2

1+S2 and F2(S, I) = I−I2
1+I2 I{S>I}. Because the expression

LV(S, I) = −
(

µ− 2µ + γ

2β

S2

(S2 + 1)2 I2

)
(S− S2)

2

−
(

µ + γ− 2µ + γ

2β

1
(I2 + 1)2 I{S>I} I2

)
(I − I2)

2

= −
(

0.013− 7.70S2

(S2 + 1)2

)
(S− 104.1)2 −

(
13.013− 7.70

(I2 + 1)2 I{S>I}

)
(I − 0.3)2

is not negative for all (S, I) ∈ D (for instance LV(20, 1) = 38 > 0). In that case the stochastic
noise destabilizes a stable system.

Figure 4.7 verifies that the endemic equilibrium is not stable for the given parameters and
perturbation functions.
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Figure 4.5: Expected values of Susceptible and Infected population for variable
contact rate β and fixed α = 13, γ = 13, µ = 0.013 and K = 500. If β ≤
0.026 then βK

α = 38.4165β ≤ 1, and there exists only one equilibrium (S, I) =

(500, 0), which is stochastically asymptotically stable. If β > 0.052 then R0 =
500β

26.013 > 1 and LV becomes negative definite. Hence an endemic equilibrium

(S, I) =
(

26.013
β , 0.500− 0.0260

β

)
is stochastically asymptotically stable. We used

a simulation based on the Balanced Implicit Method (4.10) with initial value
(S0, I0) = (490, 10) and step size ∆ = 10−3 .

Figure 4.6: Numerical solutions of the deterministic SIS model for the param-
eters α = 13, β = 0.25, γ = 13, µ = 0.013 and K = 400. In the simulation we
consider the initial value (S0, I0) = (390, 10) and step size ∆ = 10−3.
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Figure 4.7: The endemic equilibrium (S2, I2) = (104.1, 0.3) is not stochastically
asymptotically stable for α = 13, β = 0.25, γ = 13, µ = 0.013, K = 400,
F1(S, I) = S−S2

1+S2 and F2(S, I) = I−I2
1+I2 I{S>I}. We used the Balanced Implicit

Method (4.10) for simulations with initial value (S0, I0) = (390, 10) and step
size ∆ = 10−3.

5 Conclusion and summary

We obtained a family of stochastic SIS models with generally state-dependent diffusion co-
efficients Fi by introducing random fluctuations on contact and recovery rates in well-known
deterministic model. We extended some major results of paper [29] on stochastic logistic
equations in R1 to R2 here. The existence of unique strong solution of IVPs for non-linear
SDEs has been shown by a mathematically rigorous proof of Theorem 3.2. This is a non-trivial
task since we deal with non-linear SDEs with non-globally Lipschitz-continuous coefficients.
This investigation revealed a biologically relevant bounded domain D ⊂ R2

+ on which ran-
dom dynamics of Susceptible and Infected with non-globally Lipschitz-continuous coefficients
takes places. This fact is non-trivial under the presence of erratic unbounded martingale-type
noises. Furthermore we discussed stochastic asymptotic stability of disease free and endemic
equilibria. As common, stochastic asymptotic stability of equilibria is connected to the basic
reproduction number R0. Stochastic asymptotic stability of the disease free equilibrium de-
pending on the recovery rate α and the contact rate β is shown by Theorem 4.8 for almost sure
locally Lipschitz-continuous perturbation functions F1 and F2 of Carathéodory-type under the
condition βK ≤ α. This condition does not contradict with the well-known R0 < 1 rule. This
is verified by the help of invariance principle and Lyapunov’s second method. Finally the
stochastic asymptotic stability of the endemic equilibrium is investigated by Theorem 4.14.
A sufficient condition for stochastic asymptotic stability is found in terms of parameters and
the perturbation functions (4.13). A remarkable fact of the criteria (4.13) is that a sufficient
condition for stability can be found even for arbitrary locally Lipschitz-continuous functions
F1 and F2 which are Lipschitz-continuous on D. Some graphical illustrations demonstrate the
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applicability of the mathematical approach. The simulations show parametric dependence of
asymptotic stability of related equilibria in view of expectations and variances. Moreover, we
have exploited our main idea of studying effects of variable diffusion rates Fk on the qualita-
tive behavior of stochastic models – an idea which is originally introduced by the authors in
[28] (but there for the case of stochastic SIR model).

Appendix A Mean square convergence of well-posed BIMs

Mean square convergence of numerical sequences Yn := (Sn, In) to exact solution X(t) :=
(S(t), I(t)) of our stochastic SIS models (2.2) can be verified along any nonrandom par-
titions (η = η∆([0, T]))∆>0 of fixed, finite time–intervals [0, T] when maximum step size
∆ = max ∆i = max {|ti+1 − ti| : ti, ti+1 ∈ η} tends to zero. The criterion of mean square
convergence is given by

∀T > 0 ∃K(T) ∀∆ < δ ∀η = η∆([0, T]) sup
tn∈η

E‖X(tn)−Yn‖2 ≤ K(T)∆2γ (A.1)

where γ is said to be the (least) order (rate) of mean square convergence of numerical se-
quence Y = (Yi)i∈N and K = K(T) the leading error constant which depends on several
system-parameters (here ‖ · ‖ is the Euclidean vector norm in R2).

Theorem A.1 (Convergence of BIMs). Assume the coefficients Fk in our SIS models (2.2) are
such that the noise-intensity terms SIF1(S, I) and IF2(S, I) are almost surely Lipschitz-continuous
on bounded, closed triangular domain D where

D = {(S, I) ∈ R2; S ≥ 0, I ≥ 0, S + I ≤ K}.

Let the condition (3.5) be satisfied, i.e. we have

ess sup
(S,I)∈D

[
I2

S2 F2
2 (S, I)− α

I
S
− µ

K
S

]
+

< +∞.

Then, the numerical approximation (Yn)n∈N with Yn = (Sn, In) governed by

Sn+1 = Sn +
[
− βSn In + µ(K− Sn) + αIn

]
∆n − Sn InF1(Sn, In)∆W1

n

+ InF2(Sn, In)∆W2
n + An(Sn − Sn+1)

In+1 = In +
[

βSn In − (α + γ + µ)In

]
∆n + Sn InF1(Sn, In)∆W1

n

− InF2(Sn, In)∆W2
n + An(In − In+1)

(A.2)

with weights (∆Wk
n are Gaussian N (0, ∆n)-distributed)

An = (α + γ + µ + βIn) ∆n + K |F1(Sn, In) ∆W1
n |+

K
Sn
|F2(Sn, In) ∆W2

n |

is mean square convergent with order γ = 0.5 towards the exact solution X = (S, I) of (2.2) on D,
whenever started at Y0 = X(0) = (S(0), I(0)) ∈ D (a.s.).

For detailed proof of Theorem A.1, one may combine the results of papers [31] and [32]
with Lyapunov function V(S, I) = 1 + S2 + I2. Note that the BIMs with specific weights
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An are positive and D-invariant almost surely (for detailed verification of those facts, see
also [34]). For example, every polynomial Fk(S, I) in the variables S and I guarantees the
Lipschitz-continuity of terms SIF1(S, I) and IF2(S, I) on compact domain D.

In passing, we note that the numerical scheme (A.2) can be equivalently rewritten to its
increment form

∆Sn =

(
− βSn In + µ(K− Sn) + αIn

)
∆n − Sn InF1(Sn, In)∆W1

n + InF2(Sn, In)∆W2
n

1 + An

∆In =

(
βSn In − (α + γ + µ)In

)
∆n + Sn InF1(Sn, In)∆W1

n − InF2(Sn, In)∆W2
n

1 + An

in terms of their increments ∆Sn = Sn+1 − Sn and ∆In = In+1 − In. This is obviously possible
due to the linear-implicit character of BIMs (A.2). Moreover, the scheme values (Sn, In) and An

cannot explode to infinity whenever S0 > 0 due to its nonnegativity and Lipschitz-continuous
coefficients Fk. In fact, when Sn tends to 0 then An with any coefficient |F2(0, In)| > 0 would
tend to +∞ and ∆Sn = Sn+1 − Sn to 0 at the same time. So, we may define the increment
∆Sn+1 = 0 whenever Sn = 0. However, although of less importance, this case is physically
relevant (from the point of view of any practically relevant biological modelling) since any
disease cannot spread out more if there are no susceptable species. Furthermore, the positivity
of both S and I, and the boundedness S + I ≤ K of all numerical values (Sn, In) of BIMs (A.2)
are guaranteed by the choice of any step sizes ∆n satisfying

(α + γ + µ)∆n ≤ 1, βK∆n ≤ 1

for all n ∈ N. Consequently, the numerical scheme of BIMs (A.2) with those restrictions on
step sizes ∆n is well-posed for any initial data (S0, I0) ∈ D.
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[18] R. Khas’minskiĭ, Stochastic stability of differential equations, Sijthoff & Noordhoff, Alphen
aan den Rijn, 1980. MR600653

https://doi.org/10.1016/0898-1221(86)90054-4
https://doi.org/10.1016/0898-1221(86)90054-4
https://www.ams.org/mathscinet-getitem?mr=855769
https://doi.org/10.1016/S0378-4754(97)00106-7
https://www.ams.org/mathscinet-getitem?mr=1622405
https://doi.org/10.1007/978-1-4757-3516-1
https://doi.org/10.1007/978-1-4757-3516-1
https://www.ams.org/mathscinet-getitem?mr=1822695
https://doi.org/10.1007/978-3-540-78911-6
https://doi.org/10.1007/978-3-540-78911-6
https://www.ams.org/mathscinet-getitem?mr=2452129
https://doi.org/10.1016/S0025-5564(01)00089
https://doi.org/10.1016/S0025-5564(01)00089
https://www.ams.org/mathscinet-getitem?mr=1882285
https://doi.org/10.1051/mmnp:2008011
https://www.ams.org/mathscinet-getitem?mr=2434863
https://www.ams.org/mathscinet-getitem?mr=917064
https://doi.org/10.1137/10081856X
https://doi.org/10.1137/10081856X
https://www.ams.org/mathscinet-getitem?mr=2821582
https://www.ams.org/mathscinet-getitem?mr=2327745
https://doi.org/10.1016/0025-5564(76)90132-2
https://www.ams.org/mathscinet-getitem?mr=0401216
https://www.ams.org/mathscinet-getitem?mr=2409886
https://doi.org/10.1016/j.jde.2005.06.017
https://doi.org/10.1016/j.jde.2005.06.017
https://www.ams.org/mathscinet-getitem?mr=2170527
https://doi.org/10.1098/rspa.1927.0118
https://doi.org/10.1098/rspa.1927.0118
https://www.ams.org/mathscinet-getitem?mr=600653


Stability of stochastic SIS models with variable diffusion rates 23

[19] A. Korobeinikov, G. C. Wake, Lyapunov functions and global stability for SIR, SIRS, and
SIS epidemiological models, Appl. Math. Lett. 15(2002), No. 8, 955–960. https://doi.org/
10.1016/S0893-9659(02)00069; MR1925920

[20] A. Korobeinikov, P. K. Maini, Non-linear incidence and stability of infectious disease
models, Math. Med. Biol. 22(2005), 113–128. https://doi.org/10.1093/imammb/dqi001

[21] A. Korobeinikov, Lyapunov functions and global stability for SIR and SIRS epidemio-
logical models with non-linear transmission, Bull. Math. Biol. 68(2006), 615–626. https:
//doi.org/10.1007/s11538-005-9037-9; MR2224783

[22] A. Korobeinikov, Lyapunov functions and global properties for SEIR and SEIS epidemic
models, Math. Med. Biol. 21(2004), No. 2, 75–83. https://doi.org/10.1093/imammb/21.
2.75

[23] A. Lahrouz, L. Omari, D. Kiouach, A. Belmaati, Complete global stability for an
SIRS epidemic model with generalized non-linear incidence and vaccination, Appl. Math.
Comput. 218(2012), No. 11, 6519–6525. https://doi.org/10.1016/j.amc.2011.12.024;
MR2879132

[24] A. Lahrouz, L. Omari, D. Kiouach, Global analysis of a deterministic and stochastic
nonlinear SIRS epidemic model, Nonlinear Anal. Model. Control 16(2011), No. 1, 59–76.
MR2885695

[25] A. Lahrouz, L. Omari, D. Kiouach, A. Belmaati, Deterministic and stochastic stability
of a mathematical model of smoking, Statist. Probab. Lett. 81(2011), No. 8, 1276–1284.
https://doi.org/10.1016/j.spl.2011.03.029; MR2803774

[26] A. M. Lyapunov, The general problem of the stability of motion, Taylor & Francis, London,
1992. Translated from Edouard Davaux’s French translation (1907) of the 1892 Russian
original and edited by A. T. Fuller. MR1229075

[27] G. N. Milstein, E. Platen, H. Schurz, Balanced implicit methods for stiff stochas-
tic systems, SIAM J. Numer. Anal. 35(1998), 1010–1019. https://doi.org/10.1137/
S0036142994273525; MR1619926

[28] H. Schurz, K. Tosun, Stochastic asymptotic stability of SIR model with variable diffu-
sion rates, J. Dynamics Differ. Equat. 27(2015), No. 1, 69–82. https://doi.org/10.1007/
s10884-014-9415-9; MR3317392

[29] H. Schurz, Modelling, analysis and discretization of stochastic logistic equations, Int. J.
Numer. Anal. Mod. 4(2007), No. 2, 178–197. MR2287604

[30] H. Schurz, On moment-dissipative stochastic dynamical systems, Dynam. Syst. Appl.
10(2001), No. 1, 11–44. MR1844325

[31] H. Schurz, Convergence and stability of balanced implicit methods for SDEs, Int. J.
Numer. Anal. Model. 2(2005), No. 2, 197–220. MR2111748

[32] H. Schurz, An axiomatic approach to numerical approximations of stochastic processes,
Int. J. Numer. Anal. Model. 3(2006), No. 4, 459–480. MR2238168

https://doi.org/10.1016/S0893-9659(02)00069
https://doi.org/10.1016/S0893-9659(02)00069
https://www.ams.org/mathscinet-getitem?mr=1925920
https://doi.org/10.1093/imammb/dqi001
https://doi.org/10.1007/s11538-005-9037-9
https://doi.org/10.1007/s11538-005-9037-9
https://www.ams.org/mathscinet-getitem?mr=2224783
https://doi.org/10.1093/imammb/21.2.75
https://doi.org/10.1093/imammb/21.2.75
https://doi.org/10.1016/j.amc.2011.12.024
https://www.ams.org/mathscinet-getitem?mr=2879132
https://www.ams.org/mathscinet-getitem?mr=2885695
https://doi.org/10.1016/j.spl.2011.03.029
https://www.ams.org/mathscinet-getitem?mr=2803774
https://www.ams.org/mathscinet-getitem?mr=1229075
https://doi.org/10.1137/S0036142994273525
https://doi.org/10.1137/S0036142994273525
https://www.ams.org/mathscinet-getitem?mr=1619926
https://doi.org/10.1007/s10884-014-9415-9
https://doi.org/10.1007/s10884-014-9415-9
https://www.ams.org/mathscinet-getitem?mr=3317392
https://www.ams.org/mathscinet-getitem?mr=2287604
https://www.ams.org/mathscinet-getitem?mr=1844325
https://www.ams.org/mathscinet-getitem?mr=2111748
https://www.ams.org/mathscinet-getitem?mr=2238168


24 H. Schurz and K. Tosun

[33] G. Stephanopoulos, R. Aris, A. G. Fredrickson, A stochastic analysis of the growth
of competing microbial populations in a continuous biochemical reactor, Math. Biosci.
45(1979), No. 1–2, 99–125. https://doi.org/10.1016/0025-5564(79)90098-1; MR535956

[34] K. Tosun, Qualitative and quantitative analysis of stochastic models in mathematical epidemiol-
ogy, PhD thesis, SIU, Carbondale, 2013.

[35] C. Vargas-De-León, Constructions of Lyapunov functions for classic SIS, SIR and SIRS
epidemic model with variable population size, Revista Electronica de Contenido Matematico
26(2009), 1–12.

[36] C. Vargas-De-León, Stability analysis of a SIS epidemic model with standard incidence,
Revista Electronica de Contenido Matematico 28(2011), 1–11.

[37] WHO, Global report for research on infectious diseases of poverty, WHO, 2012; ISBN:
9789241564489.

https://doi.org/10.1016/0025-5564(79)90098-1
https://www.ams.org/mathscinet-getitem?mr=535956

	Introduction
	Stochastic model with martingale-type noise
	Existence of a unique global solution
	Preliminary
	Existence of a unique global solution of stochastic SIS model

	Stability of equilibria
	Preliminary
	Global stochastic asymptotic stability of disease free equilibrium
	Stochastic asymptotic stability of endemic equilibrium

	Conclusion and summary
	Mean square convergence of well-posed BIMs

