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Abstract. In this paper, we investigate the second-order problem with dependence on
derivative in nonlinearity and Stieltjes integral boundary condition{

−u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],
u(0) = α[u], u′(1) = 0,

where f : [0, 1]×R+ ×R+ → R+ is continuous and α[u] is a linear functional. Some
inequality conditions on nonlinearity f and the spectral radius conditions of linear
operators are presented that guarantee the existence of positive solutions to the problem
by the theory of fixed point index on a special cone in C1[0, 1]. The conditions allow that
f (t, x1, x2) has superlinear or sublinear growth in x1, x2. Some examples are given to
illustrate the theorems respectively under multi-point and integral boundary conditions
with sign-changing coefficients.
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1 Introduction

In this paper, we discuss the existence of positive solutions for second-order boundary value
problem (BVP) with dependence on derivative in nonlinearity and Stieltjes integral boundary
conditions {

−u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],

u(0) = α[u], u′(1) = 0,
(1.1)

where α denotes linear functional given by α[u] =
∫ 1

0 u(t)dA(t) involving Stieltjes integral
with suitable function A of bounded variation.
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Recently, Li [7] considered the existence of solutions for second order boundary value
problem {

−u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],

u(0) = 0, u(1) = 0,
(1.2)

where f : [0, 1] ×R+ ×R → R+ is continuous. Under the conditions that the nonlinearity
f (t, x1, x2) may be superlinear or sublinear growth on x1 and x2, the existence of positive
solutions are obtained. It should be remarked that the constant π2 in the discussion plays an
important role and is the first eigenvalue of the linear eigenvalue problem corresponding to
BVP (1.2) which is related to the spectral radius of linear operator. The results of [7] extend
those of [14] in which only sublinear problem was treated. The fourth-order problem with
fully nonlinear terms was also investigated in [8].

Webb and Infante [11] gave a unified method of establishing the existence of positive so-
lutions for a large number of local and nonlocal boundary problems by applying the theory
of fixed point index on cones when f does not depend on u′. They dealt with the bound-
ary problems involving Stieltjes integrals with signed measures and their results included the
multipoint and integral boundary conditions as special cases. We also refer some other rele-
vant articles, for example, [3, 9–13] and references therein. In these works the nonlinearity is
independent of derivative term.

Inspired and motived by those previous works, we investigate BVP (1.1) in which not only
the nonlinearity depends on derivative term but also the boundary conditions involves Stieltjes
integral. Some inequality conditions on nonlinearity f and the spectral radius conditions of
linear operators are presented that guarantee the existence of positive solutions to BVP (1.1)
by the theory of fixed point index on a special cone in C1[0, 1]. The conditions allow that
f (t, x1, x2) has superlinear or sublinear growth in x1, x2. The readers can also refer to [4, 5, 15]
for some pertinent questions.

The organization of this paper is as follows. In Section 2, we give some lemmas useful for
our main results and present a reproducing cone P and a cone K which play important roles
in calculating fixed point indexes of nonlinear operator. In Section 3, we discuss the existence
of positive solutions to problem mentioned above and give its complete proof. At last in
Section 4, some examples are given to illustrate the theorems respectively under multi-point
and integral boundary conditions with sign-changing coefficients.

2 Preliminaries

Let C1[0, 1] denote the Banach space of all continuously differentiable functions on [0, 1] with
the norm ‖u‖C1 = max{‖u‖C, ‖u′‖C}. We first make the assumption:

(C1) f : [0, 1]×R+ ×R+ → R+ is continuous, here R+ = [0, ∞).

As shown by Webb and Infante [11] BVP (1.1) has a solution if and only if there exists a
solution in C1[0, 1] for the following integral equation

u(t) = α[u] +
∫ 1

0
k(t, s) f (s, u(s), u′(s))ds =: (Tu)(t), (2.1)

where

k(t, s) =

{
s, 0 6 s 6 t 6 1,

t, 0 6 t 6 s 6 1,
(2.2)
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and α[u] =
∫ 1

0 u(t)dA(t). We set

(Fu)(t) :=
∫ 1

0
k(t, s) f (s, u(s), u′(s))ds,

so that (Tu)(t) = α[u] + (Fu)(t).
We also impose the following hypotheses:

(C2) A is of bounded variation and

KA(s) :=
∫ 1

0
k(t, s)dA(t) ≥ 0, ∀s ∈ [0, 1];

(C3) 0 ≤ α[1] < 1.

Adopting the notations and ideas in [11], define the operator S as

(Su)(t) =
α[Fu]

1− α[1]
+ (Fu)(t),

and thus S can be written in the form as follows,

(Su)(t) =
1

1− α[1]

∫ 1

0
KA(s) f (s, u(s), u′(s))ds +

∫ 1

0
k(t, s) f (s, u(s), u′(s))ds

=:
∫ 1

0
kS(t, s) f (s, u(s), u′(s))ds,

i.e.,

(Su)(t) =
∫ 1

0
kS(t, s) f (s, u(s), u′(s))ds, (2.3)

where
kS(t, s) =

1
1− α[1]

KA(s) + k(t, s). (2.4)

Lemma 2.1. If (C2) and (C3) hold, then there exists a nonnegative function Φ(s) satisfying

tΦ(s) ≤ kS(t, s) ≤ Φ(s) for t, s ∈ [0, 1],

where
Φ(s) =

1
1− α[1]

KA(s) + s.

Define two cones in C1[0, 1] and several linear operators as follow.

P =
{

u ∈ C1[0, 1] : u(t) ≥ 0, u′(t) ≥ 0, ∀t ∈ [0, 1]
}

, (2.5)

K =
{

u ∈ P : u(t) ≥ t‖u‖C, ∀t ∈ [0, 1], α[u] ≥ 0, u′(1) = 0
}

, (2.6)

(Liu)(t) =
∫ 1

0
kS(t, s)(aiu(s) + biu′(s))ds (i = 1, 2), (2.7)

(L3u)(t) = a1

∫ 1

0
kS(t, s)u(s)ds, (2.8)

where ai, bi (i = 1, 2) are nonnegative constants and τ ∈ (0, 1). We write u � v equivalently
v � u if and only if v− u ∈ P, to denote the cone ordering induced by P.
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Lemma 2.2. If (C1)–(C3) hold, then S : P→ K and Li : C1[0, 1]→ C1[0, 1] are completely continuous
operators with Li(P) ⊂ K (i = 1, 2, 3).

Proof. From (2.3), (2.4) and (C1)–(C3) we have for u ∈ P that (Su)(t) ≥ 0 and

(Su)′(t) =
∫ 1

t
f (s, u(s), u′(s))ds ≥ 0, ∀t ∈ [0, 1].

It is easy to see from (C1) that S : P → C1[0, 1] and Li : C1[0, 1] → C1[0, 1] (i = 1, 2, 3) are
continuous. Let F is a bounded set in P and there exists M > 0 such that ‖u‖C1 ≤ M for all
u ∈ F. By (C1) and Lemma 2.1 we have that ∀u ∈ F and t ∈ [0, 1],

(Su)(t) ≤
(

max
(s,x,y)∈[0,1]×[0,M]2

f (s, x, y)
) ∫ 1

0
Φ(s)ds,

(Su)′(t) ≤
(

max
(s,x,y)∈[0,1]×[0,M]2

f (s, x, y)
) ∫ 1

t
ds ≤ max

(s,x,y)∈[0,1]×[0,M]2
f (s, x, y),

then S(F) is uniformly bounded in C1[0, 1]. Moreover ∀u ∈ F and t1, t2 ∈ [0, 1] with t1 < t2,

|(Su)(t1)− (Su)(t2)| ≤
∫ 1

0
|kS(t1, s)− kS(t2, s)| f (s, u(s), u′(s))ds

≤
(

max
(s,x,y)∈[0,1]×[0,M]2

f (s, x, y)
) ∫ 1

0
|kS(t1, s)− kS(t2, s)|ds,

|(Su)′(t1)− (Su)′(t2)| =
∫ t2

t1

f (s, u(s), u′(s))ds ≤
(

max
(s,x,y)∈[0,1]×[0,M]2

f (s, x, y)
)
|t2 − t1|,

thus S(F) and S′(F) =: {v′ : v′(t) = (Su)′(t), u ∈ F} are equicontinuous.
Therefore S : P → C1[0, 1] is completely continuous by the Arzelà–Ascoli theorem and so

are Li : C1[0, 1]→ C1[0, 1] (i = 1, 2, 3) similarly.
For u ∈ P it follows from Lemma 2.1 that

‖Su‖C =
∫ 1

0
kS(1, s) f (s, u(s), u′(s))ds ≤

∫ 1

0
Φ(s) f (s, u(s), u′(s))ds,

and hence for t ∈ [0, 1],

(Su)(t) =
∫ 1

0
kS(t, s) f (s, u(s), u′(s))ds ≥ t

∫ 1

0
Φ(s) f (s, u(s), u′(s))ds ≥ t‖Su‖C.

From (C1)–(C3) it can easily be checked that α[Su] ≥ 0 and (Su)′(1) = 0. Thus S : P→ K.
By the same way, we have Li : P→ K (i = 1, 2, 3).

Lemma 2.3 ([11]). If (C1)–(C3) hold, then S and T have the same fixed points in K. As a result, BVP
(1.1) has a solution if and only if S has a fixed point.

3 Main results

In order to prove the main theorems, we need the following properties of fixed point index,
see for example [1, 2].
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Lemma 3.1. Let Ω be a bounded open subset of X with 0 ∈ Ω and K be a cone in X. If A : K∩Ω→ K
is a completely continuous operator and µAu 6= u for u ∈ K ∩ ∂Ω and µ ∈ [0, 1], then the fixed point
index i(A, K ∩Ω, K) = 1.

Lemma 3.2. Let Ω be a bounded open subset of X and K be a cone in X. If A : K ∩Ω → K is a
completely continuous operator and there exists v0 ∈ K \ {0} such that u− Au 6= νv0 for u ∈ K∩ ∂Ω
and ν ≥ 0, then the fixed point index i(A, K ∩Ω, K) = 0.

Recall that a cone P in Banach space X is said to be reproducing if X = P− P.

Lemma 3.3 (Krein–Rutman). Let P be a reproducing cone in Banach space X and L : X → X be a
completely continuous linear operator with L(P) ⊂ P. If the spectral radius r(L) > 0, then there exists
ϕ ∈ P \ {0} such that Lϕ = r(L)ϕ, where 0 denotes the zero element in X.

In the sequel, let X = C1[0, 1] and denote Ωr = {u ∈ C1[0, 1] : ‖u‖C1 < r} for r > 0.

Theorem 3.4. Under the hypotheses (C1)–(C3) suppose that

(F1) there exist constants a1 > 0, b1 ≥ 0, c1 ≥ 0 such that

f (t, x1, x2) ≤ a1x1 + b1x2 + c1, (3.1)

for all (t, x1, x2) ∈ [0, 1]×R+ ×R+, moreover the spectral radius r(L1) < 1;

(F2) there exist constants a2 > 0, b2 ≥ 0 and r > 0 such that

f (t, x1, x2) ≥ a2x1 + b2x2, (3.2)

for all (t, x1, x2) ∈ [0, 1]× [0, r]2, moreover the spectral radius r(L2) ≥ 1, where Li : C1[0, 1]→
C1[0, 1] (i = 1, 2) are defined by (2.7).

Then BVP (1.1) has at least one nondecreasing positive solution.

Proof. Let W = {u ∈ K : u = µSu, µ ∈ [0, 1]} where S and K are respectively defined in (2.3)
and (2.6).

We first assert that W is a bounded set. In fact, if u ∈W, then u = µSu for some µ ∈ [0, 1].
From (2.7) and (3.1) we have that

u(t) = µ(Su)(t) = µ
∫ 1

0
kS(t, s) f (s, u(s), u′(s))ds

≤
∫ 1

0
kS(t, s)[a1u(s) + b1u′(s) + c1]ds = (L1u)(t) + c1

∫ 1

0
kS(t, s)ds

and

((I − L1)u)(t) ≤ c1

∫ 1

0
kS(t, s)ds =: v(t).

Obviously v ∈ P and it is easy to see from (2.4) that

u′(t) = µ
∫ 1

t
f (s, u(s), u′(s))ds ≤

∫ 1

t
[a1u(s) + b1u′(s) + c1]ds = (L1u)′(t) + v′(t),

that is, ((I − L1)u)′(t) ≤ v′(t) for t ∈ [0, 1], and thus (I − L1)u � v. Because of the spectral
radius r(L1) < 1, we know that I − L1 has a bounded inverse operator (I − L1)

−1 which can
be written as

(I − L1)
−1 = I + L1 + L2

1 + · · ·+ Ln
1 + · · · .
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Since L1(P) ⊂ K ⊂ P by Lemma 2.2, we have (I − L1)
−1(P) ⊂ P which implies the inequality

u � (I − L1)
−1v. Therefore,

u(t) ≤ ((I − L1)
−1v)(t), u′(t) ≤ ((I − L1)

−1v)′(t), ∀t ∈ [0, 1]

and hence ‖u‖C1 ≤ ‖(I − L1)
−1v‖C1 , i.e. W is bounded.

Now select R > max{r, sup W}, then µAu 6= u for u ∈ K ∩ ∂ΩR and µ ∈ [0, 1], and
i(S, K ∩ΩR, K) = 1 follows from Lemma 3.1.

It is easy to verify that P is a solid cone, i.e. the interior point set P̊ 6= ∅, then P is
reproducing (cf. [1, 2, 6]). Since L2 : P→ K ⊂ P and r(L2) ≥ 1, it follows from Lemma 3.3 that
there exists ϕ0 ∈ P \ {0} such that L2ϕ0 = r(L2)ϕ0. Furthermore, ϕ0 = (r(L2))−1L2ϕ0 ∈ K.

We may suppose that S has no fixed points in K ∩ ∂Ωr and will show that u− Su 6= νϕ0

for u ∈ K ∩ ∂Ωr and ν ≥ 0.
Otherwise, there exist u0 ∈ K ∩ ∂Ωr and ν0 ≥ 0 such that u0 − Su0 = ν0ϕ0, and it is clear

that ν0 > 0. Since u0 ∈ K ∩ ∂Ωr, we have 0 ≤ u0(t), u′0(t) ≤ r, ∀t ∈ [0, 1]. It follows from (2.4),
(2.7) and (3.2) that (Su0)(t) ≥ (L2u0)(t) and

(Su0)
′(t) =

∫ 1

t
f (s, u0(s), u′0(s))ds ≥

∫ 1

t
[a2u0(s) + b2u′0(s)]ds = (L2u0)

′(t), ∀t ∈ [0, 1]

which imply that
u0 = ν0ϕ0 + Su0 � ν0ϕ0 + L2u0 � ν0ϕ0. (3.3)

Set ν∗ = sup{ν > 0 : u0 � νϕ0}, then ν0 ≤ ν∗ < +∞ and u0 � ν∗ϕ0. Thus it follows from (3.3)
that

u0 � ν0ϕ0 + L2u0 � ν0ϕ0 + ν∗L2ϕ0 � ν0ϕ0 + ν∗r(L2)ϕ0.

But r(L2) ≥ 1, so u0 � (ν0 + ν∗)ϕ0, which is a contradiction to the definition of ν∗. Therefore
u− Au 6= νϕ0 for u ∈ K ∩ ∂Ωr and ν ≥ 0.

From Lemma 3.2 it follows that i(S, K ∩Ωr, K) = 0.
Making use of the properties of fixed point index, we have that

i(S, K ∩ (ΩR \Ωr), K) = i(S, K ∩ΩR, K)− i(S, K ∩Ωr, K) = 1

and hence S has at least one fixed point in K. Therefore, BVP (1.1) has at least one nonde-
creasing positive solution by Lemma 2.3.

Theorem 3.5. Under the hypotheses (C1)–(C3) suppose that

(F3) there exist positive constants a1, c1 satisfying

a1

∫ 1

0
sΦ(s)ds > 1 (3.4)

such that
f (t, x1, x2) ≥ a1x1 − c1, (3.5)

for all (t, x1, x2) ∈ [0, 1]×R+ ×R+;

(F4) there exist constants a2 > 0, b2 ≥ 0 and r > 0 such that

f (t, x1, x2) ≤ a2x1 + b2x2, (3.6)

for all (t, x1, x2) ∈ [0, 1]× [0, r]2, moreover the spectral radius r(L2) < 1, where L2 is defined
by (2.7).
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If the following Nagumo condition is fulfilled, i.e.

(F5) for any M > 0 there is a positive continuous function HM(ρ) on R+ satisfying∫ +∞

0

ρdρ

HM(ρ) + 1
= +∞ (3.7)

such that
f (t, x, y) ≤ HM(y), ∀(t, x, y) ∈ [0, 1]× [0, M]×R+, (3.8)

then BVP (1.1) has at least one nondecreasing positive solution.

Proof. (i) First we prove that µSu 6= u for u ∈ K ∩ ∂Ωr and µ ∈ [0, 1]. In fact, if there exist
u1 ∈ K ∩ ∂Ωr and µ0 ∈ [0, 1] such that u1 = µ0Su1, then we deduce from

0 ≤ u1(t), u′1(t) ≤ r, ∀t ∈ [0, 1]

and (3.6) that

u1(t) = µ0(Su1)(t) = µ0

∫ 1

0
kS(t, s) f (s, u1(s), u′1(s))ds

≤
∫ 1

0
kS(t, s)[a2u1(s) + b2u′1(s)]ds = (L2u1)(t)

and from (2.4) that

u′1(t) = µ0

∫ 1

t
f (s, u1(s), u′1(s))ds ≤

∫ 1

t
[a2u1(s) + b2u′1(s)]ds = (L2u1)

′(t), ∀t ∈ [0, 1],

thus (I − L2)u1 � 0. Because of the spectral radius r(L2) < 1, we know that I − L2 has a
bounded inverse operator (I − L2)−1 : P → P and u1 � (I − L2)−10 = 0 which contradicts
u1 ∈ K ∩ ∂Ωr.

Therefore, i(S, K ∩Ωr, K) = 1 follows from Lemma 3.1.
(ii) Let

M =
c1
∫ 1

0 Φ(s)ds

a1
∫ 1

0 sΦ(s)ds− 1
. (3.9)

By (3.7) it is easy to see that ∫ +∞

0

ρdρ

HM(ρ) + c1
= +∞,

hence there exists M1 > M such that∫ M1

0

ρdρ

HM(ρ) + c1
> M. (3.10)

(iii) For u ∈ P define

(S1u)(t) =
∫ 1

0
kS(t, s)[ f (s, u(s), u′(s)) + c1]ds. (3.11)

Similar to the proof in Lemma 2.2, we know that S1 : P→ K is completely continuous.
Let R > max{r, M1} and we will show that

(1− λ)Su + λS1u 6= u, ∀u ∈ K ∩ ∂ΩR, λ ∈ [0, 1]. (3.12)
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If it does not hold, there exist u2 ∈ K ∩ ∂ΩR and λ0 ∈ [0, 1] such that

(1− λ0)Su2 + λ0S1u2 = u2, (3.13)

thus by (3.5) and Lemma 2.1 we obtain that

‖u2‖C = (1− λ0)
∫ 1

0
kS(1, s) f (s, u2(s), u′2(s))ds + λ0

∫ 1

0
kS(1, s)[ f (s, u2(s), u′2(s)) + c1]ds

≥
∫ 1

0
kS(1, s)[ f (s, u2(s), u′2(s)) + λ0c1]ds ≥

∫ 1

0
kS(1, s)[a1u2(s)− c1 + λ0c1]ds

≥
∫ 1

0
kS(1, s)[a1u2(s)− c1]ds ≥ a1

∫ 1

0
Φ(s)u2(s)ds− c1

∫ 1

0
Φ(s)ds

≥ a1‖u2‖C

∫ 1

0
sΦ(s)ds− c1

∫ 1

0
Φ(s)ds

which implies that

‖u2‖C ≤
c1
∫ 1

0 Φ(s)ds

a1
∫ 1

0 sΦ(s)ds− 1
= M. (3.14)

We can derive from (3.8), (3.13) and (3.14) that

−u′′2 (t) = (1− λ0) f (t, u2(t), u′2(t)) + λ0( f (t, u2(t), u′2(t)) + c1)

= f (t, u2(t), u′2(t)) + λ0c1 ≤ f (t, u2(t), u′2(t)) + c1

≤ HM(u′2(t)) + c1.

Multiplying both sides of the above inequality by u′2(t) ≥ 0, we have that

−u′2(t)u
′′
2 (t)

HM(u′2(t)) + c1
≤ u′2(t), t ∈ [0, 1]. (3.15)

Then integrating the inequality (3.15) over [0, 1] and making the variable transformation ρ =

u′2(t), we also obtain from (3.14) that∫ ‖u′2‖C

0

ρdρ

HM(ρ) + c1
=
∫ u′2(0)

u′2(1)

ρdρ

HM(ρ) + c1
≤ u2(1)− u2(0) ≤ ‖u2‖C ≤ M

since u′′2 (t) ≤ 0 and u′2(1) = 0. Hence by (3.10) and (3.14) we have that ‖u′2‖C ≤ M1 and
‖u2‖C1 ≤ M1, which is a contradiction to ‖u2‖C1 = R > M1.

From (3.12) it follows that

i(S, K ∩ΩR, K) = i(S1, K ∩ΩR, K) (3.16)

by the homotopy invariance property of fixed point index.
(iv) For the function h(t) = t, we have from Lemma 2.1 that

(L3h)(t) = a1

∫ 1

0
skS(t, s)ds ≥ a1t

∫ 1

0
sΦ(s)ds =

(
a1

∫ 1

0
sΦ(s)ds

)
h(t),

so by a result of Krasnosel’skii [6, p. 76, Theorem 2.5], there exist λ1 ≥ a1
∫ 1

0 sΦ(s)ds > 1 and
ϕ0 ∈ C[0, 1] with ϕ0(t) ≥ 0 such that ϕ0 = λ−1

1 L3ϕ0 as L3 is a completely continuous linear
operator in C[0, 1]. Since

ϕ′0(t) = a1λ−1
1

∫ 1

t
ϕ0(s)ds ≥ 0, t ∈ [0, 1],
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we have ϕ0 ∈ P and thus ϕ0 ∈ K by Lemma 2.2.
(v) In this step we prove that u− S1u 6= νϕ0 for u ∈ K ∩ ∂ΩR and ν ≥ 0, where ϕ0 is as in

step (iv), and hence
i(S1, K ∩ΩR, K) = 0 (3.17)

holds by Lemma 3.2.
If there exist u0 ∈ K ∩ ∂ΩR and ν0 ≥ 0 such that u0 − S1u0 = ν0ϕ0. Obviously ν0 > 0 by

(3.12) and
u0(t) = (S1u0)(t) + ν0ϕ0(t) ≥ ν0ϕ0(t) (3.18)

for t ∈ [0, 1]. Set
ν∗ = sup{ν > 0 : u0(t) ≥ νϕ0(t), ∀t ∈ [0, 1]},

then ν0 ≤ ν∗ < +∞ and u0(t) ≥ ν∗ϕ0(t) for t ∈ [0, 1]. From (3.5) and (3.18) we have that for
t ∈ [0, 1],

u0(t) = (S1u0)(t) + ν0ϕ0(t) ≥ (L3u0)(t) + ν0ϕ0(t)

≥ ν∗(L3ϕ0)(t) + ν0ϕ0(t) = λ1ν∗ϕ0(t) + ν0ϕ0(t).

Since λ1 > 1, we have r(L3)ν∗ + ν0 > ν∗ which contradicts the definition of ν∗.
(vi) From (3.16) and (3.17) it follows that i(S, K ∩ΩR, K) = 0 and

i(S, K ∩ (ΩR \Ωr), K) = i(S, K ∩ΩR, K)− i(S, K ∩Ωr, K) = −1.

Hence S has at least one fixed solution and BVP (1.1) has at least one nondecreasing positive
solution by Lemma 2.3.

4 Examples

For the sake of providing some examples to illustrate the theorems, we roughly estimate some
coefficients by inequalities in advance.

Consider 4-point boundary problem with sign-changing coefficients as follows:{
−u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],

u(0) = 1
4 u( 1

4 )−
1
12 u( 3

4 ), u′(1) = 0.
(4.1)

Then α[u] = 1
4 u( 1

4 )−
1
12 u( 3

4 ) from which it follows that

KA(s) =
∫ 1

0
k(t, s)dA(t) =

1
4

k
(1

4
, s
)
− 1

12
k
(3

4
, s
)
=


s
6 , 0 ≤ s ≤ 1

4 ,

3−4s
48 , 1

4 < s ≤ 3
4 ,

0, 3
4 < s ≤ 1.

It is easy to see that 0 ≤ KA(s) ≤ 1
24 , α[1] = 1

6 , thus (C2) and (C3) are satisfied. From (2.4)
follows that

kS(t, s) =
6
5

KA(s) + k(t, s) ≤ 21
20

,

Φ(s) =
6
5

KA(s) + s.
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Since for u ∈ C1[0, 1] and t ∈ [0, 1],

|(Liu)(t)| ≤
21
20

∫ 1

0
(ai|u(s)|+ bi|u′(s)|)ds ≤ 21

20
(ai + bi)‖u‖C1 ,

|(Liu)′(t)| ≤
∫ 1

0
(ai|u(s)|+ bi|u′(s)|)ds ≤ (ai + bi)‖u‖C1 (i = 1, 2),

we have that r(Li) ≤ ‖Li‖ ≤ (21/20)(ai + bi) < 1 when ai + bi < 20/21 (i = 1, 2).
From Lemma 2.1 and Lemma 2.2 we have that for u ∈ K \ {0} and t ∈ [0, 1],

(Liu)(t) ≥ ait
∫ 1

0
Φ(s)u(s)ds ≥ ait

∫ 1

0
sΦ(s)‖u‖Cds = ait‖u‖C

∫ 1

0
sΦ(s)ds

and

‖(Liu)‖C = (Liu)(1) ≥ ai‖u‖C

∫ 1

0
sΦ(s)ds (i = 1, 2),

hence

(L2
i u)(t) ≥ ai

∫ 1

0
kS(t, s)(Liu)(s)ds ≥ ait

∫ 1

0
Φ(s)(Liu)(s)ds

≥ ait
∫ 1

0
sΦ(s)‖(Liu)‖Cds ≥ a2

i t‖u‖C

( ∫ 1

0
sΦ(s)ds

)2

and

‖(L2
i u)‖C = (L2

i u)(1) ≥ a2
i ‖u‖C

( ∫ 1

0
sΦ(s)ds

)2
.

By induction,

‖(Ln
i u)‖C = (Ln

i u)(1) ≥ an
i ‖u‖C

( ∫ 1

0
sΦ(s)ds

)n
.

Consequently for u ∈ K \ {0},

‖Ln
i ‖‖u‖C1 ≥ ‖Ln

i u‖C1 ≥ ‖Ln
i u‖C ≥ an

i ‖u‖C

( ∫ 1

0
sΦ(s)ds

)n
,

and by virtue of Gelfand’s formula, the spectral radius

r(Li) = lim
n→∞
‖Ln

i ‖1/n ≥ ai

( ∫ 1

0
sΦ(s)ds

)
lim
n→∞

( ‖u‖C

‖u‖C1

)1/n
= ai

( ∫ 1

0
sΦ(s)ds

)
. (4.2)

Hence we can obtain that r(Li) ≥ 163
480 ai (i = 1, 2).

Example 4.1. If f (t, x1, x2) = 3
√

x1 + 3
√

x2, while a1 = 1
4 , b1 = 1

6 and c1 is large enough for (F1),

and a2 = 3, b2 = 1, r =
√

3
9 for (F2). By Theorem 3.4 we know that BVP (4.1) has at least one

positive solution.

Example 4.2. If

f (t, x1, x2) =
1
4 x1

4 + 1
6 x4

2

1 + x2
1 + x2

2
,

while a1 = 3 and c1 is large enough for (F3), and a2 = 1
4 , b2 = 1

6 , r < 1 for (F4), HM(ρ) =

M2 + ρ2. By Theorem 3.5 we know that BVP (4.1) has at least one positive solution.
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Our last example is the following problem with integral boundary condition in which one
should notice that cos(πt) is sign-changing over [0, 1]:{

−u′′(t) = f (t, u(t), u′(t)), t ∈ [0, 1],

u(0) = −
∫ 1

0 u(t) cos(πt)dt, u′(1) = 0,
(4.3)

Then α[u] = −
∫ 1

0 u(t) cos(πt)dt from which it follows that

0 ≤ KA(s) = −
∫ 1

0
k(t, s) cos(πt)dt =

1− cos(πs)
π2 ≤ 2

π2

and α[1] = −
∫ 1

0 cos(πt)dt = 0. Thus (C2) and (C3) are satisfied and from (2.4) follows that

kS(t, s) =
1− cos(πs)

π2 + k(t, s) ≤ 2 + π2

π2 .

Φ(s) = KA(s) + s.

Since for u ∈ C1[0, 1] and t ∈ [0, 1],

|(Liu)(t) ≤
2 + π2

π2

∫ 1

0
(ai|u(s)|+ bi|u′(s)|)ds ≤ 2 + π2

π2 (ai + bi)‖u‖C1 ,

|(Liu)′(t)| ≤
∫ 1

0
(ai|u(s)|+ bi|u′(s)|)ds ≤ (ai + bi)‖u‖C1 (i = 1, 2),

we have that

r(Li) ≤ ‖Li‖C1 ≤
2 + π2

π2 (ai + bi) < 1

when ai + bi < π2

2+π2 (i = 1, 2). Moreover, (4.2) holds, from which we can obtain r(Li) ≥
2π4+3π2+12

6π4 ai (i = 1, 2).

Example 4.3. If f (t, x1, x2) =
√

x1 +
√

x2, while a1 = 1
4 , b1 = 1

5 and c1 is large enough for (F1),
and a2 = 3, b2 = 1, r = 1

9 for (F2). By Theorem 3.4 we know that BVP (4.3) has at least one
positive solution.

Example 4.4. If

f (t, x1, x2) =
1
4 x1

4 + 1
5 x4

2

1 + x2
1 + x2

2
,

while a1 = 3 and c1 is large enough for (F3), and a2 = 1
4 , b2 = 1

5 , r = 3
4 for (F4), HM(ρ) =

M2 + ρ2. By Theorem 3.5 we know that BVP (4.3) has at least one positive solution.
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