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1 Introduction

The aim of this paper is to consider the following boundary value problem involving an
ordinary differential equation with p(x)-Laplacian operator and nonhomogeneous Neumann
conditions

−
(
|u′(x)|p(x)−2u′(x)

)′
+ α(x)|u(x)|p(x)−2u(x) = λ f (x, u(x)) in (0, 1),

|u′(0)|p(0)−2u′(0) = −µg(u(0)),

|u′(1)|p(1)−2u′(1) = µh(u(1))

(P f
λ,µ)

where p ∈ C([0, 1], R), f : [0, 1]×R → R is a Carathéodory function, see [9, page 5] (that is
x → f (x, t) is measurable for all t ∈ R, t → f (x, t) is continuous for almost every x ∈ [0, 1]),
g, h : R → R are nonnegative continuous functions, λ and µ are real parameters with λ > 0
and µ ≥ 0, α ∈ L∞([0, 1]), with ess inf[0,1] α > 0.

The study of various problems with the variable exponent has received considerable atten-
tion in recent years both for their interesting in applications and for the many mathematical
questions arising from such problems. They can model various phenomena dealing with the
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study of nonlinear elasticity theory, electro-rheological fluids and so on (see [27,32]). The nec-
essary framework for the study of these problems is represented by the function spaces with
variable exponent Lp(x)(Ω) and Wm,p(x)(Ω). For background and recent results, we refer the
reader to [1,3,4,6,8–10,18,19,22–26,31] and the references therein. For example, Zhang in [31]
via Leray–Schauder degree, obtained sufficient conditions for the existence of one solution
for a weighted p(x)-Laplacian system. Bonanno and Chinnì in [3] by using a multiple critical
points theorem for non-differentiable functionals, investigated the existence and multiplicity
of solutions for the following problem{

−∆p(x)u(x) = λ( f (x, u) + µg(x, u)) in Ω,

u = 0 on ∂Ω

where Ω ⊂ RN is an open bounded domain with smooth boundary, p ∈ C(Ω̄), f and g are
functions possibly discontinuous with respect to u. Cammaroto et al. in [8] by using a three
critical points theorem due to Ricceri, obtained the existence of three weak solutions for the
following problem−∆p(x)u(x) + a(x)|u|p(x)−2u = λ f (x, u) + µg(x, u) in Ω,

∂u
∂n

= 0 on ∂Ω

where a ∈ L∞(Ω), a− = ess infΩ a(x) > 0, n is the outward unit normal to ∂Ω, λ, µ ∈ (0,+∞)

and p ∈ L∞(Ω) is such that 2 ≤ N < p− = ess infΩ p(x) ≤ p+ = ess supΩ p(x) < +∞. By
using variational methods, D’Aguì in [9] established the existence of an unbounded sequence
of weak solutions for the problem (P f

λ,µ) and Moschetto in [22] under suitable assumptions
on the functions α, f , p and g investigated the existence of at least three solutions for the
following Neumann problem{

−∆p(x)u + α(x)|u|p(x)−2u = α(x) f (u) + λg(x, u), in Ω,
∂u
∂n = 0, on ∂Ω.

We refer to [7, 14] in which the existence of infinitely many solutions for variational-
hemivariational inequalities and variational-hemivariational inequalities of Kirchhoff-type,
both small perturbations of nonhomogeneous Neumann boundary conditions by using the
nonsmooth analysis, was discussed, respectively.

Motivated by the above facts, in the present paper, by using a three critical point theorem
which is a smooth version of [2, Theorem 3.3] (see also [2, Remarks 3.9 and 3.10]) due Bonanno
and Candito we study the existence of at least three non-trivial weak solution for the problem
(P f

λ,µ). Our main result is Theorem 3.1. Example 3.4 illustrates Theorem 3.1. In Theorem 3.3
we present an application of Theorem 3.1. Finally, as a special case of Theorem 3.1, we obtain
Theorem 3.5 considering the case p(x) = p for every x ∈ [0, 1].

A special case of our main result, Theorem 3.1, is the following theorem.

Theorem 1.1. Let f be a non-negative Carathéodory function in [0, 1]× [0,+∞[. Assume that there
exist positive constants θ1 ≥ k, θ2, θ3 and η ≥ 1 with θ1 < p

√
‖α‖1kη, max

{
η, p
√
‖α‖1kη

}
< θ2 and

θ2 < θ3 such that

max

{∫ 1
0 F(x, θ1)dx

θ2
1

,

∫ 1
0 F(x, θ2)dx

θ2
2

,

∫ 1
0 F(x, θ3)dx

θ2
3 − θ2

2

}
<

1
k2‖α‖1

∫ 1
0 F(x, η)dx−

∫ 1
0 F(x, θ1)dx

η2
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where

k = 2

[
1

α−1
− + 1

] 1
2

+

[
1− 1

α−1
− + 1

] 1
2

α−2
− .

Then, for every

λ ∈
(

η2

2 ‖α‖1∫ 1
0 F(x, η)dx−

∫ 1
0 F(x, θ1)dx

,
1

2k2 min

{
θ2

1∫ 1
0 F(x, θ1)dx

,
θ2

2∫ 1
0 F(x, θ2)dx

,
θ2

3 − θ2
2∫ 1

0 F(x, θ3)dx

})

and for every non-negative continuous functions g, h : R→ R there exists δ(λ) > 0 given by

δ(λ) = min

 1
2k2 min

{
θ2

1 − 2λk2
∫ 1

0 F(x, θ1)dx
G(θ1) + H(θ1)

,
θ2

2 − 2λk2
∫ 1

0 F(x, θ2)dx
G(θ2) + H(θ2)

,

(θ2
3 − θ2

2)− 2λk2
∫ 1

0 F(x, θ3)dx
G(θ3) + H(θ3)

}
,

η2

2 ‖α‖1 − λ
(∫ 1

0 F(x, η)dx−
∫ 1

0 F(x, θ1)dx
)

G(η) + H(η)− G(θ1)− H(θ1)


such that for each µ ∈ [0, δ(λ)), the problem

u′′(x) + α(x)u(x) = λ f (x, u(x)) in (0, 1),

u′(0) = −µg(u(0)),

u′(1) = µh(u(1))

possesses at least three non-negative weak solutions u1, u2, and u3 such that

max
x∈[0,1]

u1(x) < θ1, max
x∈[0,1]

u2(x) < θ2 and max
x∈[0,1]

u3(x) < θ3.

The paper consists of three sections. Section 2 contains some background facts concerning
the generalized Lebesgue–Sobolev spaces. The main results and their proofs are given in
Section 3.

2 Preliminaries

Our main tool to discuss the existence of three solutions for the problem (P f
λ,µ) is the following

three critical point theorem due Bonanno and Candito, see [2, Theorem 3.3 and Remarks 3.9
and 3.10].

Let X be a nonempty set and Φ, Ψ : X → R be two functions. For all r, r1, r2 > infX Φ, r2 >

r1, r3 > 0, we define

ϕ(r) := inf
u∈Φ−1(−∞,r)

(supu∈Φ−1(−∞,r) Ψ(u))−Ψ(u)

r−Φ(u)
,

β(r1, r2) := inf
u∈Φ−1(−∞,r1)

sup
v∈Φ−1[r1,r2)

Ψ(v)−Ψ(u)
Φ(v)−Φ(u)

,

γ(r2, r3) :=
supu∈Φ−1(−∞,r2+r3)

Ψ(u)

r3
,

α(r1, r2, r3) := max{ϕ(r1), ϕ(r2), γ(r2, r3)}.
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Theorem 2.1 ([2, Theorem 3.3]). Let X be a reflexive real Banach space, Φ : X → R be a convex,
coercive and continuously Gâteaux differentiable functional whose Gâteaux derivative admits a contin-
uous inverse on X∗, Ψ : X → R be a continuously Gâteaux differentiable functional whose Gâteaux
derivative is compact, such that

(a1) infX Φ = Φ(0) = Ψ(0) = 0;

(a2) for every λ as in the conclusion and for every u1 and u2 which are local minima for the functional
Φ− λΨ such that Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0, one has

inf
s∈[0,1]

Ψ(su1 + (1− s)u2) ≥ 0.

Assume that there are three positive constants r1, r2, r3 with r1 < r2, such that

(a3) ϕ(r1) < β(r1, r2);

(a4) ϕ(r2) < β(r1, r2);

(a5) γ(r2, r3) < β(r1, r2).

Then, for each λ ∈
( 1

β(r1,r2)
, 1

α(r1,r2,r3)

)
the functional Φ − λΨ admits three distinct critical points

u1, u2, u3 such that u1 ∈ Φ−1(−∞, r1), u2 ∈ Φ−1[r1, r2) and u3 ∈ Φ−1(−∞, r2 + r3).

We refer the interested reader to the papers [5, 15–17, 20] in which Theorem 2.1 has been
successfully employed to obtain the existence of at least three solutions for boundary value
problems.

For the reader’s convenience, we state some basic properties of variable exponent Sobolev
spaces and introduce some notations. For more details, we refer the reader to [11–13,21,27,29].

We assume that the function p ∈ C([0, 1], R) satisfies the condition

1 < p− := min
x∈[0,1]

p(x) ≤ p+ := max
x∈[0,1]

p(x). (2.1)

The variable exponent Lebesgue spaces are defined as follows

Lp(x)([0, 1]) :=
{

u : [0, 1]→ R measurable and
∫ 1

0
|u(x)|p(x)dx < +∞

}
.

equipped with the norm

‖u‖Lp(x)([0,1]) = inf

{
β > 0 :

∫ 1

0

∣∣∣∣u(x)
β

∣∣∣∣p(x)

dx ≤ 1

}
.

The space
(

Lp(x)([0, 1]), ‖u‖Lp(x)([0,1])

)
is a Banach space called a variable exponent Lebesgue

space. Define the Sobolev space with variable exponent

W1,p(x)([0, 1]) =
{

u ∈ Lp(x)([0, 1]) : u′ ∈ Lp(x)([0, 1])
}

equipped with the norm

‖u‖W1,p(x)([0,1]) := ‖u‖Lp(x)([0,1]) + ‖u
′‖Lp(x)([0,1]). (2.2)
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It is well known (see [13]) that, in view of (2.1), the spaces Lp(x)([0, 1]) and W1,p(x)([0, 1]), with
corresponding norms, are separable, reflexive and uniformly convex Banach spaces. More-
over, since α ∈ L∞([0, 1]) and α− := ess inf∈[0,1] α(x) > 0 the norm

‖u‖α := inf

{
β > 0 :

∫ 1

0

(∣∣∣∣u′(x)
β

∣∣∣∣p(x)

+ α(x)
∣∣∣∣u(x)

β

∣∣∣∣p(x)
)

dx ≤ 1

}
,

on W1,p(x)([0, 1]) is equivalent to that introduced in (2.2).
Next, we refer to the following embedding result of G. D’Agui [9]:

Proposition 2.2 ([9, Proposition 2.1]). For all u ∈W1,p(x)([0, 1]), one has

‖u‖C0[0,1] ≤ k‖u‖α (2.3)

where

k =



2

 1

α
p+

p−(1−p+)

− + 1


1

p+

+

1− 1

α
1

1−p+

− + 1

 1
p+

α
2

1−p+

− if α− < 1,

2

 1

α
1

1−p+

− + 1

 1
p+

+

1− 1

α
1

1−p+

− + 1

 1
p+

α
2

1−p+

− if α− ≥ 1.

Now, we present the following propositions which will be used later.

Proposition 2.3 ([13, 19]). Set ρ(u) =
∫ 1

0 (|u
′(x)|p(x) + α(x)|u(x)|p(x))dx. For u ∈ X we have

(i) ‖u‖α < (=;>)1⇔ ρ(u) < (=;>)1,

(ii) ‖u‖α < 1⇒ ‖u‖p+
α ≤ ρ(u) ≤ ‖u‖p−

α ,

(iii) ‖u‖α > 1⇒ ‖u‖p−
α ≤ ρ(u) ≤ ‖u‖p+

α .

Remark 2.4 ([9, Remark 2.2]). It is worth mentioning that if α− ≥ 1, the constant k does not
exceed 2. Instead, when α− < 1, k depends on α− and in particular is less than 2

(
1 + 1

α−

)
.

We introduce the functions F : [0, 1]×R→ R, G : R→ R and H : R→ R, corresponding
to the functions f , g and h as follows

F(x, t) =
∫ t

0
f (x, ξ)dξ for all (x, t) ∈ [0, 1]×R,

G(t) =
∫ t

0
g(ξ)dξ for all t ∈ R

and

H(t) =
∫ t

0
h(ξ)dξ for all t ∈ R.

We say that a function u ∈W1,p(x)([0, 1]) is a weak solution of problem (P f
λ,µ) if

∫ 1

0
|u′(x)|p(x)−2u′(x)v′(x)dx +

∫ 1

0
α(x)|u(x)|p(x)−2u(x) v(x) dx

− λ
∫ 1

0
f (x, u(x))v(x)dx− µ(g(u(0))v(0) + h(u(1))v(1)) = 0

holds for all v ∈W1,p(x)([0, 1]).
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3 Main results

We fix four positive constants θ1 ≥ k, θ2, θ3 and η ≥ 1, put

δλ,g,h := min

 1
kp− p+

min

{
θ

p−
1 − λkp− p+

∫ 1
0 F(x, θ1)dx

G(θ1) + H(θ1)
,

θ
p−
2 − λkp− p+

∫ 1
0 F(x, θ2)dx

G(θ2) + H(θ2)
,
(θ

p−
3 − θ

p−
2 )− λkp− p+

∫ 1
0 F(x, θ3)dx

G(θ3) + H(θ3)

}
, (3.1)

ηp+

p− ‖α‖1 − λ
(∫ 1

0 F(x, η)dx−
∫ 1

0 F(x, θ1)dx
)

G(η) + H(η)− G(θ1)− H(θ1)

 .

We present our main result as follows.

Theorem 3.1. Let f be a non-negative Carathéodory function in [0, 1]× [0,+∞[. Assume that there
exist positive constants θ1 ≥ k, θ2, θ3 and η ≥ 1 with θ1 < p−

√
‖α‖1kη and

max

{
η, p−

√
p+‖α‖1

p−
kη

p+

p−

}
< θ2 < θ3

such that

(A1) max

{∫ 1
0 F(x, θ1)dx

θ
p−
1

,

∫ 1
0 F(x, θ2)dx

θ
p−
2

,

∫ 1
0 F(x, θ3)dx

θ
p−
3 − θ

p−
2

}

<
p−

kp− p+‖α‖1

∫ 1
0 F(x, η)dx−

∫ 1
0 F(x, θ1)dx

ηp+ .

Then, for every

λ∈
( ηp+

p− ‖α‖1∫ 1
0 F(x, η)dx−

∫ 1
0 F(x, θ1)dx

,
1

p+kp− min

{
θ

p−
1∫ 1

0 F(x, θ1)dx
,

θ
p−
2∫ 1

0 F(x, θ2)dx
,

θ
p−
3 − θ

p−
2∫ 1

0 F(x, θ3)dx

})

and for every non-negative continuous functions g, h : R → R there exists δλ,g,h > 0 given by (3.1)
such that for each µ ∈ [0, δλ,g,h), the problem (P f

λ,µ) possesses at least three non-negative weak solutions
u1, u2, and u3 such that

max
x∈[0,1]

u1(x) < θ1, max
x∈[0,1]

u2(x) < θ2 and max
x∈[0,1]

u3(x) < θ3.

Proof. Without loss of generality, we can assume f (x, t) = f (x, 0) for all (x, t) ∈ [0, 1]×]−∞, 0[.
We apply Theorem 2.1 to our problem. Let X be the Sobolev space W1,p(x)([0, 1]). Fix λ, g
and µ as in the conclusion. In order to apply Theorem 2.1 to our problem, we define Φ, Ψ for
every u ∈ X by

Φ(u) :=
∫ 1

0

1
p(x)

(
|u′(x)|p(x) + α(x)|u(x)|p(x)

)
dx (3.2)
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and

Ψ(u) :=
∫ 1

0
F(x, u(x))dx + G(u(0)) + H(u(1)), (3.3)

and put Iλ(u) = Φ(u)− λΨ(u) for every u ∈ X. Note that the weak solutions of (P f
λ,µ) are

exactly the critical points of Iλ. The functionals Φ and Ψ satisfy the regularity assumptions of
Theorem 2.1. Indeed, Φ is Gâteaux differentiable and sequentially weakly lower semicontinu-
ous and its Gâteaux derivative is the functional Φ′(u) ∈ X∗, given by

Φ′(u)(v) =
∫ 1

0
|u(x)′|p(x)−2u′(x)v′(x)dx +

∫ 1

0
α(x)|u(x)|p(x)−2u(x) v(x) dx

for every v ∈ X. We prove that Φ′ admits a continuous inverse on X∗. Assuming ‖u‖α > 1,
by Proposition 2.3 we have

Φ′(u)(u) =
∫ 1

0
|u(x)′|p(x) + α(x)|u(x)|p(x) dx ≥ ‖u‖p−

α ,

and since p− > 1, it follows that Φ′ is coercive. Since Φ′ is the Fréchet derivative of Φ, it
follows that Φ′ is continuous and bounded. Using the elementary inequality [28]

|x− y|γ ≤ 2γ(|x|γ−2x− |y|γ−2y)(x− y) if γ ≥ 2,

for all (x, y) ∈ RN ×RN , N ≥ 1, we obtain for all u, v ∈ X such that u 6= v,

〈Φ′(u)−Φ′(v), u− v〉 > 0,

which means that Φ′ is strictly monotone. Thus Φ′ is injective. Consequently, thanks to
the Minty–Browder theorem [30], the operator Φ′ is an surjection and has an inverse Φ′−1 :
X∗ → X, and one has Φ′−1 is continuous. On the other hand, it is well known that Ψ is a
differentiable functional whose differential at the point u ∈ X is

Ψ′(u)(v) =
∫ 1

0
f (x, u(x))v(x)dx + g(u(0))v(0) + h(u(1))v(1)

for any v ∈ X as well as it is sequentially weakly upper semicontinuous. Furthermore Ψ′ :
X → X∗ is a compact operator. Put

r1 :=
1

p+

(
θ1

k

)p−

, r2 :=
1

p+

(
θ2

k

)p−

, r3 :=
1

p+

(
θ

p−
3 − θ

p−
2

kp−

)
and w(x) = η for all x ∈ [0, 1]. We clearly observe that w ∈ X. Hence, we have definitively,

Φ(w) =
∫ 1

0

1
p(x)

(
|w′(x)|p(x) + α(x)|w(x)|p(x)

)
dx

=
∫ 1

0

1
p(x)

α(x)|w(x)|p(x)dx ≤ ηp+

p−
‖α‖1

and

Φ(w) =
∫ 1

0

1
p(x)

(
|w′(x)|p(x) + α(x)|w(x)|p(x)

)
dx

=
∫ 1

0

1
p(x)

α(x)|w(x)|p(x)dx ≥ ηp−

p+
‖α‖1.
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From the conditions θ3 > θ2, θ1 < p−
√
‖α‖1kη and

p−

√
p+‖α‖1

p−
kη

p+

p− < θ2,

we get r3 > 0 and r1 < Φ(w) < r2. By Proposition 2.3 and the fact that max
{

r1/p−
1 , r1/p+

1

}
=

r1/p−
1 , we deduce

{u ∈ X : Φ(u) < r1} ⊆
{

u ∈ X : ‖u‖α < r1/p−
1

}
=

{
u ∈ X : ‖u‖α <

θ1

k

}
.

Moreover, due to (2.3), we have

|u(x)| ≤ ‖u‖∞ ≤ k‖u‖α ≤ θ1, ∀x ∈ [0, 1].

Hence, {
u ∈ X : ‖u‖α <

θ1

k

}
⊆ {u ∈ X : ‖u‖∞ ≤ θ1}

and this ensures

Ψ(u) ≤ sup
u∈Φ−1(−∞,r1)

[∫ 1

0
F(x, u(x))dx + G(u(0)) + H(u(1))

]
≤
∫ 1

0
max
|t|≤θ1

F(x, t)dx + max
|t|≤θ1

[G(t) + H(t)]

=
∫ 1

0
max
|t|≤θ1

F(x, t)dx + G(θ1) + H(θ1)

for every u ∈ X such that Φ(u) < r1. Since we assumed that f is non-negative, one has

sup
Φ(u)<r1

Ψ(u) ≤
∫ 1

0
F(x, θ1)dx + G(θ1) + H(θ1).

In a similar way, we have

sup
Φ(u)<r2

Ψ(u) ≤
∫ 1

0
F(x, θ2)dx + G(θ2) + H(θ2)

and

sup
Φ(u)<r2+r3

Ψ(u) ≤
∫ 1

0
F(x, θ3)dx + G(θ3) + H(θ3).

Therefore, since 0 ∈ Φ−1(−∞, r1) and Φ(0) = Ψ(0) = 0, one has

ϕ(r1) = inf
u∈Φ−1(−∞,r1)

(supu∈Φ−1(−∞,r1)
Ψ(u))−Ψ(u)

r1 −Φ(u)

≤
supu∈Φ−1(−∞,r1)

Ψ(u)

r1

=
supu∈Φ−1(−∞,r1)

[∫ 1
0 F(x, u(x))dx + µ

λ (G(u(0)) + H(u(1)))
]

r1

≤
∫ 1

0 F(x, θ1)dx + µ
λ (G(θ1) + H(θ1))

1
p+

(
θ1
k

)p− ,
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ϕ(r2) ≤
supu∈Φ−1(−∞,r2)

Ψ(u)

r2

=
supu∈Φ−1(−∞,r2)

[∫ 1
0 F(x, u(x))dx + µ

λ (G(u(0)) + H(u(1)))
]

r2

≤
∫ 1

0 F(x, θ2)dx + µ
λ (G(θ2) + H(θ2))

1
p+

(
θ2
k

)p−

and

γ(r2, r3) ≤
supu∈Φ−1(−∞,r2+r3)

Ψ(u)

r3

=
supu∈Φ−1(−∞,r2+r3)

[∫ 1
0 F(x, u(x))dx + µ

λ (G(u(0)) + H(u(1)))
]

r3

≤
∫ 1

0 F(x, θ3)dx + µ
λ (G(θ3) + H(θ3))

1
p+

(
θ

p−
3 −θ

p−
2

kp−

) .

On the other hand, we have

Ψ(w) =
∫ 1

0
F(x, w(x))dx +

µ

λ
(G(w) + H(w))

=
∫ 1

0
F(x, η)dx +

µ

λ
(G(η) + H(η)).

For each u ∈ Φ−1(−∞, r1) one has

β(r1, r2) ≥
∫ 1

0 F(x, η)dx−
∫ 1

0 F(x, θ1)dx + µ
λ (G(η) + H(η)− G(θ1)− H(θ1))

Φ(w)−Φ(u)

≥
∫ 1

0 F(x, η)dx−
∫ 1

0 F(x, θ1)dx + µ
λ (G(η) + H(η)− G(θ1)− H(θ1))

ηp+

p− ‖α‖1

.

Due to (A1) we get
α(r1, r2, r3) < β(r1, r2).

Now, we show that the functional Iλ satisfies the assumption (a2) of Theorem 2.1. Let u1 and
u2 be two local minima for Iλ. Then u1 and u2 are critical points for Iλ, and so, they are weak
solutions for the problem (P f

λ,µ). We want to prove that they are non-negative. Let u0 be a (non-
trivial) weak solution of the problem (P f

λ,µ). Arguing by a contradiction, assume that the set
A = {x ∈ [0, 1] : u0(x) < 0} is non-empty and of positive measure. Put v̄(x) = min{0, u0(x)}
for all x ∈ [0, 1]. Clearly, v̄ ∈ X and one has

∫ 1

0
|u′0(x)|p(x)−2u′0(x)v̄′(x)dx +

∫ 1

0
α(x)|u0(x)|p(x)−2u0(x)v̄(x)dx

− λ
∫ 1

0
f (x, u0(x))v̄(x)dx− µg(u0(0))v̄(0)− µh(u0(1))v̄(1) = 0.
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Since we could assume that f is non-negative, and g and h are non-negative, for fixed λ > 0
and µ ≥ 0 and by choosing v̄(x) = u0(x) one has

∫
A
|u′0(x)|p(x)dx +

∫
A

α(x)|u0(x)|p(x)dx

= λ
∫
A

f (x, u0(x))u0(x)dx + µg(u0(0))(u0(0) + µh(u0(1))(u0(1) ≤ 0.

Hence ‖u0‖w1,p(x)(A) = 0 which is an absurd. Hence, our claim is proved. Then, we observe
u1(x) ≥ 0 and u2(x) ≥ 0 for every x ∈ [0, 1]. Thus, it follows that (λ f + µ(g + h))(x, su1 +

(1− s)u2) ≥ 0 for all s ∈ [0, 1], and consequently, Ψ(su1 + (1− s)u2) ≥ 0, for every s ∈ [0, 1].
Hence, Theorem 2.1 implies that for every

λ∈
( ηp+

p− ‖α‖1∫ 1
0 F(x, η)dx−

∫ 1
0 F(x, θ1)dx

,
1

p+kp− min

{
θ

p−
1∫ 1

0 F(x, θ1)dx
,

θ
p−
2∫ 1

0 F(x, θ2)dx
,

θ
p−
3 − θ

p−
2∫ 1

0 F(x, θ3)dx

})

and µ ∈ [0, δλ,g), the functional Iλ has three critical points ui, i = 1, 2, 3, in X such that
Φ(u1) < r1, Φ(u2) < r2 and Φ(u3) < r2 + r3, that is,

max
x∈[0,1]

u1(x) < θ1, max
x∈[0,1]

u2(x) < θ2 and max
x∈[0,1]

u3(x) < θ3.

Then, taking into account the fact that the weak solutions of the problem (P f
λ,µ) are exactly

critical points of the functional Iλ we have the desired conclusion.

Remark 3.2. We observe that, in Theorem 3.1, no asymptotic conditions on f and g are needed
and only algebraic conditions on f are imposed to guarantee the existence of the weak solu-
tions.

For positive constants θ1 ≥ k, θ4 and η ≥ 1, set

δ′λ,g,h := min

 1
kp− p+

min

 θ
p−
1 − λkp− p+

∫ 1
0 F(x, θ1)dx

G(θ1) + H(θ1)
,

θ
p−
4 − 2λkp− p+

∫ 1
0 F(x, 1

p−√2
θ4)dx

2
(

G
(

1
p−√2

θ4

)
+ H

(
1

p−√2
θ4

)) ,
θ

p−
4 − 2λkp− p+

∫ 1
0 F(x, θ4)dx

2(G(θ4) + H(θ4))

 ,

ηp+

p− ‖α‖1 − λ
(∫ 1

0 F(x, η)dx−
∫ 1

0 F(x, θ1)dx
)

G(η) + H(η)− G(θ1)− H(θ1)

 .

(3.4)

Now, we deduce the following straightforward consequence of Theorem 3.1.

Theorem 3.3. Let f be a non-negative Carathéodory function in [0, 1]× [0,+∞[. Assume that there
exist positive constants θ1 ≥ k, θ4 and η ≥ 1 with

θ1 < min
{

η
p+

p− , p−
√
‖α‖1kη

}
and max

{
η, p−

√
2p+‖α‖1

p−
kη

p+

p−

}
< θ4
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such that

(A2) max

{∫ 1
0 F(x, θ1)dx

θ
p−
1

,
2
∫ 1

0 F(x, θ4)dx

θ
p−
4

}
<

p−

p− + kp− p+‖α‖1

∫ 1
0 F(x, η)dx

ηp+ .

Then, for every

λ ∈

 p−+kp− p+‖α‖1

p+p−kp− ηp+∫ 1
0 F(x, η)dx

,
1

p+kp− min

{
θ

p−
1∫ 1

0 F(x, θ1)dx
,

θ
p−
4

2
∫ 1

0 F(x, θ4)dx

}
and for every non-negative continuous functions g, h : R → R there exists δ′λ,g,h > 0 given by (3.4)
such that for each µ ∈ [0, δ′λ,g,h), the problem (P f

λ,µ) possesses at least three non-negative weak solutions
u1, u2 and u3 such that

max
x∈[0,1]

u1(x) < θ1, max
x∈[0,1]

u2(x) <
1

p−√2
θ4 and max

x∈[0,1]
u3(x) < θ4.

Proof. Choose θ2 = 1
p−√2

θ4 and θ3 = θ4. So, from (A2) one has

∫ 1
0 F(x, θ2)dx

θ
p−
2

=
2
∫ 1

0 F
(

x, 1
p−√2

θ4

)
dx

θ
p−
4

≤
2
∫ 1

0 F(x, θ4)dx

θ
p−
4

(3.5)

<
p−

p− + kp− p+‖α‖1

∫ 1
0 F(x, η)dx

ηp+

and ∫ 1
0 F(x, θ3)dx

θ
p−
3 − θ

p−
2

=
2
∫ 1

0 F(x, θ4)dx

θ
p−
4

<
p−

p− + kp− p+‖α‖1

∫ 1
0 F(x, η)dx

ηp+ . (3.6)

Moreover, taking into account that θ1 < η
p+

p− , by using (A2) we have

p−

kp− p+‖α‖1

∫ 1
0 F(x, η)dx−

∫ 1
0 F(x, θ1)dx

ηp+

>
p−

kp− p+‖α‖1

∫ 1
0 F(x, η)dx

ηp+ − p−

kp− p+‖α‖1

∫ 1
0 F(x, θ1)dx

θ
p−
1

>
p−

kp− p+‖α‖1

(∫ 1
0 F(x, η)dx

ηp+ − p−

p− + kp− p+‖α‖1

∫ 1
0 F(x, η)dx

ηp+

)

=
p−

p− + kp− p+‖α‖1

∫ 1
0 F(x, η)dx

ηp+ .

Hence, from (A2), (3.5) and (3.6), it is easy to see that the assumption (A1) of Theorem 3.1 is
satisfied, and it follows the conclusion.

We now present the following example to illustrate Theorem 3.3.
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Example 3.4. We consider the problem
−
(
|u′(x)|p(x)−2u′(x)

)′
+ α(x)|u(x)|p(x)−2u(x) = λ f (u(x)) in (0, 1),

|u′(0)|p(0)−2u′(0) = −µg(u(0)),

|u′(1)|p(1)−2u′(1) = µh(u(1))

(3.7)

where p(x) = x2 + 4 for every x ∈ [0, 1], α(x) = x2 + 1 for every x ∈ [0, 1] and

f (t) =

{
7t6, if t ≤ 1,

6t + e1−t, if t > 1.

We have

F(t) =

{
t7, if t ≤ 1,

3t2 − e1−t − 1, if t > 1.

By simple calculations, we obtain k = 3 5√16
2 , α− = 1, α+ = 2, p− = 4 and p+ = 5. Taking

θ1 = 1
10 , θ4 = 104 and η = 1, then all conditions in Theorem 3.3 are satisfied. Therefore, it

follows that for each

λ ∈
(

12 + 20k4

60k4 ,
103

5k4

)
≈ (0.33763, 4.299)

and for every non-negative continuous functions g, h : R→ R there exists δ > 0 such that, for
each µ ∈ [0, δ), the problem (3.7) possesses at least three non-negative weak solutions u1, u2

and u3 such that

max
x∈[0,1]

u1(x) <
1

10
, max

x∈[0,1]
u2(x) <

1
4
√

2
104 and max

x∈[0,1]
u3(x) < 104.

We want to point out a simple consequence of Theorem 3.3, in which the function f has
separated variables.

Theorem 3.5. Let f1 ∈ L1([0, 1]) and f2 ∈ C(R) be two functions. Put F̃(t) =
∫ t

0 f2(ξ)dξ for all
t ∈ R and assume that there exist positive constants θ1 ≥ k, θ4 and η ≥ 1 with

θ1 < min
{

η
p+

p− , p−
√
‖α‖1kη

}
and max

{
η, p−

√
2p+‖α‖1

p−
kη

p+

p−

}
< θ4

such that

(A3) f1(x) ≥ 0 for each x ∈ [0, 1] and f2(t) ≥ 0 for each t ∈ [0,+∞[;

(A4) max

{
sup|t|≤θ1

F̃(t)

θ
p−
1

,
2 sup|t|≤θ4

F̃(t)

θ
p−
4

}
<

p−

p− + kp− p+‖α‖1

F̃(η)
ηp+ .

Then, for every

λ ∈

 p−+kp− p+‖α‖1

p+p−kp− ηp+

F̃(η)
∫ 1

0 f1(x)dx
,

1

p+kp−
∫ 1

0 f1(x)dx
min

{
θ

p−
1

sup|t|≤θ1
F̃(t)

,
θ

p−
4

2 sup|t|≤θ4
F̃(t)

}
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and for every non-negative continuous functions g, h : R→ R there exists δλ > 0 given by

δλ = min

 1
kp− p+

min

{
θ

p−
1 − λkp− p+ sup|t|≤θ1

F̃(t)
∫ 1

0 f1(x)dx

G(θ1) + H(θ1)
,

θ
p−
4 − 2λkp− p+ sup|t|≤ 1

p−√2
θ4

F̃(t)
∫ 1

0 f1(x)dx

2(G( 1
p−√2

θ4) + H( 1
p−√2

θ4))
,

θ
p−
4 − 2λkp− p+ sup|t|≤θ4

F̃(t)
∫ 1

0 f1(x)dx

2(G(θ4) + H(θ4))

}
,

ηp+

p− ‖α‖1 − λ
∫ 1

0 f1(x)dx
(

F̃(η)− sup|t|≤θ1
F̃(t)

)
[G(η) + H(η)− G(θ1)− H(θ1)]


such that for every µ ∈ [0, δλ) the problem

−
(
|u′(x)|p(x)−2u′(x)

)′
+ α(x)|u(x)|p(x)−2u(x) = λ f1(x) f2(u) in (0, 1),

|u′(0)|p(0)−2u′(0) = −λg(u(0)),

|u′(1)|p(1)−2u′(1) = λh(u(1))

possesses at least three non-negative weak solutions u1, u2 and u3 such that

max
x∈[0,1]

u1(x) < θ1, max
x∈[0,1]

u2(x) <
1

p−√2
θ4 and max

x∈[0,1]
u3(x) < θ4.

Proof. Set f (x, u) = f1(x) f2(u) for each (x, u) ∈ [0, 1]×R. Since

F(x, t) = f1(x)F̃(t),

from (A4) we obtain (A2).

Next, we present a simple consequence of Theorem 3.3 in the case f does not depend
upon x.

Theorem 3.6. Assume that there exist positive constants θ1 ≥ k, θ4 and η ≥ 1 with

θ1 < min
{

η
p+

p− , p−
√
‖α‖1kη

}
and max

{
η, p−

√
2p+‖α‖1

p−
kη

p+

p−

}
< θ4

such that

(A5) f (t) ≥ 0 for each t ∈ [0,+∞[;

(A6) max

{
F(θ1)

θ
p−
1

,
2F(θ4)

θ
p−
4

}
<

p−

p− + kp− p+‖α‖1

F(η)
ηp+ .

Then, for every

λ ∈

 p−+kp− p+‖α‖1

p+p−kp− ηp+

F(η)
,

1
p+kp− min

{
θ

p−
1

F(θ1)
,

θ
p−
4

2F(θ4)

}
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and for every non-negative continuous functions g, h : R→ R there exists δ′λ > 0 given by

δ′λ = min

 1
kp− p+

min

{
θ

p−
1 − λkp− p+F(θ1)

G(θ1) + H(θ1)
,

θ
p−
4 − 2λkp− p+F

(
1

p−√2
θ4

)
2
(

G
(

1
p−√2

θ4

)
+ H

(
1

p−√2
θ4

)) ,
θ

p−
4 − 2λkp− p+F(θ4)

2(G(θ4) + H(θ4))

 ,
ηp+

p− ‖α‖1 − λ (F(η)− F(θ1))

G(η) + H(η)− G(θ1)− H(θ1)


such that for every µ ∈ [0, δ′λ) the problem

−
(
|u′(x)|p(x)−2u′(x)

)′
+ α(x)|u(x)|p(x)−2u(x) = λ f (u(x)) in (0, 1),

|u′(0)|p(0)−2u′(0) = −λg(u(0)),

|u′(1)|p(1)−2u′(1) = λh(u(1))

possesses at least three non-negative weak solutions u1, u2 and u3 such that

max
x∈[0,1]

u1(x) < θ1, max
x∈[0,1]

u2(x) <
1

p−√2
θ4 and max

x∈[0,1]
u3(x) < θ4.

The following result is a consequence of Theorem 3.3 when µ = 0.

Theorem 3.7. Let f : [0, 1] × R → R be a continuous function such that t f (x, t) > 0 for all
(x, t) ∈ [0, 1]× (R\{0}). Assume that

(A7) limt→0
f (x, t)
|t|p−−1 = lim|t|→∞

f (x, t)
|t|p−−1 = 0.

Then, for every λ > λ where

λ =
p− + kp− p+‖α‖1

p+p−kp−

×max

{
inf
η≥1

ηp+∫ 1
0 F(x, η)dx

; inf
0<η<1

ηp−∫ 1
0 F(x, η)dx

; inf
−1<η<0

(−η)p−∫ 1
0 F(x, η)dx

; inf
η≤−1

(−η)p+∫ 1
0 F(x, η)dx

}
,

the problem (P f
λ,µ), in the case µ = 0 possesses at least four distinct non-trivial solutions.

Proof. Set

f1(x, t) =

{
f (x, t), if (x, t) ∈ [0, 1]× [0,+∞),

0, otherwise,

and

f2(x, t) =

{
− f (x,−t), if (x, t) ∈ [0, 1]× [0,+∞),

0, otherwise,

and define F1(x, t) :=
∫ t

0 f1(x, ξ)dξ for every (x, t) ∈ [0, 1]×R. Fix λ > λ∗, and let η ≥ 1 such
that

λ >

(
p−+kp− p+‖α‖1

p+p−kp−

)
ηp+∫ 1

0 F1(x, η)dx
.
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From

lim
t→0+

f1(x, t)
tp−−1 = lim

t→+∞

f1(x, t)
tp−−1 = 0,

there is θ1 ≥ k such that

θ1 < min
{

η
p+

p− , p−
√
‖α‖1kη

}
and

∫ 1
0 F1(x, θ1)dx

θ
p−
1

<
1

λkp− p+

and there is θ4 > 0 such that

max

{
η, p−

√
2p+‖α‖1

p−
kη

p+

p−

}
< θ4 and

∫ 1
0 F1(x, θ4)dx

θ
p−
4

<
1

2λkp− p+
.

Then, (A2) in Theorem 3.3 is satisfied,

λ ∈

 p−+kp− p+‖α‖1

p+p−kp− ηp+∫ 1
0 F1(x, η)dx

,
1

p+kp− min

{
θ

p−
1∫ 1

0 F1(x, θ1)dx
,

θ
p−
4

2
∫ 1

0 F1(x, θ4)dx

} .

Hence, the problem (P f1
λ ), in the case µ = 0 admits two positive solutions u1, u2, which are

positive solutions of the problem (P f
λ,µ), in the case µ = 0. Next, arguing in the same way,

from

lim
t→0+

f2(x, t)
tp−−1 = lim

t→+∞

f2(x, t)
tp−−1 = 0,

we ensure the existence of two positive solutions u3, u4 for the problem (P f2
λ ), in the case

µ = 0. Clearly, −u3, −u4 are negative solutions of the problem (P f
λ,µ), in the case µ = 0 .

Remark 3.8. We explicitly observe that in Theorem 3.7 no symmetric condition on f is as-
sumed. However, whenever f is an odd continuous non-zero function such that f (x, t) ≥ 0
for all (x, t) ∈ [0, 1]× [0,+∞), (A7) can be replaced by

(A8) limt→0+
f (x, t)
tp−−1 = limt→∞

f (x, t)
tp−−1 = 0,

ensuring the existence of at least four distinct non-trivial solutions the problem (P f
λ,µ), in the

case µ = 0 for every λ > λ∗ where

λ∗ = inf
η≥1

p−+kp− p+‖α‖1

p+p−kp− ηp+∫ 1
0 F(x, η)dx

.

We end this paper by presenting the following version of Theorem 3.1, in the case p(x) = p
for every x ∈ [0, 1] and α(x) = 1 for every x ∈ [0, 1].

Theorem 3.9. Let f be a non-negative Carathéodory function in [0, 1]× [0,+∞[. Let p(x) = p > 1
for every x ∈ [0, 1]. Assume that there exist positive constants θ1 ≥ k, θ2, θ3 and η ≥ 1 with θ1 < kη,
max {η, kη} < θ2 and θ2 < θ3 such that

(A9) max

{∫ 1
0 F(x, θ1)dx

θ
p
1

,

∫ 1
0 F(x, θ2)dx

θ
p
2

,

∫ 1
0 F(x, θ3)dx

θ
p
3 − θ

p
2

}
<

1
kp

∫ 1
0 F(x, η)dx−

∫ 1
0 F(x, θ1)dx

ηp
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where k = 3
[ 1

2

] 1
p . Then, for every

λ ∈
( ηp

p∫ 1
0 F(x, η)dx−

∫ 1
0 F(x, θ1)dx

,
1

pkp min

{
θ

p
1∫ 1

0 F(x, θ1)dx
,

θ
p
2∫ 1

0 F(x, θ2)dx
,

θ
p
3 − θ

p
2∫ 1

0 F(x, θ3)dx

})

for every non-negative continuous functions g, h : R→ R there exists δλ,g > 0 given by

δλ,g = min

 1
pkp min

{
θ

p
1 − λkp p

∫ 1
0 F(x, θ1)dx

G(θ1) + H(θ1)
,

θ
p
2 − λkp p

∫ 1
0 F(x, θ2)dx

G(θ2) + H(θ2)
,

(θ
p
3 − θ

p
2 )− λkp p

∫ 1
0 F(x, θ3)dx

G(θ3) + H(θ3)

}
,

ηp

p − λ
(∫ 1

0 F(x, η)dx−
∫ 1

0 F(x, θ1)dx
)

G(η) + H(η)− G(θ1)− H(θ1)


such that for every µ ∈ [0, δλ,g) the problem

−
(
|u′(x)|p−2u′(x)

)′
+ |u(x)|p−2u(x) = λ f (x, u(x)) in (0, 1),

|u′(0)|p−2u′(0) = −λg(u(0)),

|u′(1)|p−2u′(1) = λh(u(1))

possesses at least three non-negative weak solutions u1, u2, and u3 such that

max
x∈[0,1]

u1(x) < θ1, max
x∈[0,1]

u2(x) < θ2 and max
x∈[0,1]

u3(x) < θ3.
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