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Abstract. We consider a system of equations describing automatic position control by
echo. The system can be reduced to a single differential equation with state-dependent
delay. The delayed terms come from the control mechanism and the reaction time.
H.-O. Walther [Differ. Integral Equ. 15(2002), No. 8, 923–944] proved that stable periodic
motion is possible for large enough reaction time. We show that, for sufficiently small
reaction lag, the control is perfect, i.e., the preferred position of the system is globally
asymptotically stable.
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1 Introduction

Figure 1.1: A control system

H.-O. Walther [10] considered the following idealized model of a control system depicted
on Figure 1.1. An object moves along a line and attempts to control its position relative to
an obstacle by approximating its position through sending and receiving reflected signals.
The obstacle is positioned at x = −w < 0, and the goal of the mechanism is to achieve
(asymptotically as time goes to infinity) the ideal position x = 0 while avoiding collision with
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the obstacle. The signals travel at speed c > 0. The object is able to measure the time τ(t)
between emission of a signal at time t− τ(t) and detection of the reflected signal at time t as

τ(t) =
1
c
(|x(t− τ(t)) + w|+ |x(t) + w|) .

The object approximates its current position based on the measured time τ(t) by

d(t) =
c
2

τ(t)− w,

which is the true position at least when x(t − τ(t)) = x(t) > −w. The object adjusts its
velocity, after a constant reaction lag r ≥ 0, that is,

ẋ(t) = v (d(t− r)− w) ,

where v is a response function. Thus, for given constants w > 0, c > 0, r ≥ 0, and a response
function v : R→ R, we obtain the following system of equations

ẋ(t) = v
( c

2
τ(t− r)− w

)
, (1.1)

τ(t) =
1
c
(|x(t− τ(t)) + w|+ |x(t) + w|) . (1.2)

Furthermore, assume that there is a constant b such that

0 < b <
c
4

, (1.3)

and the response function v : R→ R satisfies the following properties:

max
ξ∈[−w,w]

|v(ξ)| ≤ b, (1.4)

v is Lipschitz continuous, (1.5)

ξv(ξ) < 0 for all ξ ∈ [−w, w] \ {0} , (1.6)

v is differentiable at 0 and v′(0) < 0. (1.7)

Note that (1.3) and (1.4) imply that the signals travel faster than the object itself. The negative
feedback (1.6) is a natural condition, and (1.5), (1.6) imply

v(0) = 0. (1.8)

Therefore, x(t) ≡ 0 and τ(t) ≡ 2w
c satisfy (1.1) and (1.2) for all t ∈ R.

Walther [10] showed that the above hypotheses with certain additional conditions imply
that system (1.1) and (1.2) has a stable periodic orbit. The result of [10] is valid for more
general response functions as well. However, it is a general additional condition of [10] that
the reaction lag is large enough: r > 8w

c .
Our main result is that, for sufficiently small reaction lag r, the automatic control described

by system (1.1) and (1.2) is perfect: the zero solution is globally asymptotically stable.
This paper is organized as follows. In Section 2, following [10], we define the appropriate

phase space, which is an open subset of a compact metric space. On this phase space the
solutions generate a continuous semiflow. The semiflow continuously depends on the reaction
lag r as well. On the phase space, and in particular for possible solution segments, from
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equation (1.2) the delay τ(t) can be expressed uniquely as a functional of the solution segment.
A consequence is that system (1.1) and (1.2) is equivalent to the single differential equation

ẋ(t) = v
(

x(t− r) + x(t− r− σ(t))
2

)
, (1.9)

where σ(t) is a functional defined on the solution segment. In Section 3, we show that, in case
r = 0, all solutions of (1.9) approach zero as t → ∞. The proof uses an idea of Nussbaum
[9] (see also [7, 8]) which enables us to reduce the delay differential equation to an ordinary
differential equation in the Banach space l∞. We utilize the associated linearized equation in
Section 4 to prove local asymptotic stability of x = 0 for small r. Finally, Section 5 establishes
our main result, that is, global exponential stability of the zero solution for small reaction lags.
The fact that the phase space is an open subset of a compact metric space and the continuity
of the semiflow in the reaction lag r together with the results of Sections 3, 4 are applied in
the proof.

Our result shows that periodic solutions may appear in system (1.1) and (1.2) only if the
reaction lag is sufficiently large. In fact, the linearization in Section 4 shows that x = 0 is
unstable if r > r∗ for some r∗ > 0. It is expected that a Hopf bifurcation occurs at r = r∗.
It would be of interest to estimate the optional region for the reaction lag so that the global
attractivity of x = 0 persists. The result of [10] is different. It works for response functions
which are, in some sense, close to a step function. On the other hand, [10] gives stable periodic
orbits. We mention that a more realistic model, for automatic position control by echo, was
studied in [11] and [13] by Walther based on Newton’s law. In [11] and [13] the reaction lag
was assumed to be zero. It is also an interesting problem to understand the effect of a reaction
lag on the results of [11] and [13].

2 The phase space and solutions

In the sequel, we shall only consider solutions of (1.1) and (1.2) such that x(t) ∈ (−w, w) for
all t in the domain of x. For such x, we have from (1.2) that 0 ≤ τ(t) ≤ 4w

c for all t. In addition,
(1.1) becomes

ẋ(t) = v
(

x(t− r) + x(t− r− τ(t− r))
2

)
. (2.1)

Now, assume that the reaction lag r is small, that is,

0 ≤ r ≤ r0 <

(
1
b
− 4

c

)
w, (2.2)

with some positive constant r0. Setting h = 4w
c , the delays appearing in (2.1) have the upper

bound R = r0 + h. Thus, we may work in the Banach space C = C([−R, 0], R) with the norm
‖ϕ‖ = maxs∈[−R,0] |ϕ(s)| for ϕ ∈ C.

We need some notation. For a map G : A→ F, A ⊂ E, E and F Banach spaces, we set

Lip(G) = sup
x,y∈A, x 6=y

|G(x)− G(y)|
|x− y| ≤ ∞.

If t1 < t2 and u : [t1 − R, t2) → R is continuous, then, for t ∈ [t1, t2), ut ∈ C is defined by
ut(s) = u(t + s), −R ≤ s ≤ 0.
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Consider X = {ϕ ∈ C : ‖ϕ‖ ≤ w, Lip(ϕ) ≤ b}. X is a compact subset of C by the Arzelà–
Ascoli theorem. The open subset Y = {ϕ ∈ X : ‖ϕ‖ < w} of X will be the phase space like in
[10]. We remark that it would be possible to apply the approach of Walther [12] and work on
a manifold, provided v is C1-smooth.

2.1 The delay τ

Now we show that equation (1.2) defines τ(t) uniquely provided that the segment xt of x
is in Y. Note that when analyzing τ, it is sufficient to consider the Banach space C0 =

C([−h, 0], R) with the norm ‖ϕ‖0 = maxs∈[−h,0] |ϕ(s)| for ϕ ∈ C0. The set X0 = {ϕ ∈ C0 :
‖ϕ‖0 ≤ w, Lip(ϕ) ≤ b} is compact in C0.

Proposition 2.1. For each ϕ ∈ X0 there is a unique σ∗(ϕ) ∈ [0, h] such that

σ∗(ϕ) =
1
c
[ϕ(0) + ϕ(−σ∗(ϕ)) + 2w] .

The map σ∗ : X0 → [0, h] is Lipschitz continuous:

|σ∗(ϕ)− σ∗(ψ)| ≤ 2
c− b

‖ϕ− ψ‖0 for all ϕ, ψ ∈ X0;

moreover, if ‖ϕ‖0 < w, then σ∗(ϕ) ∈ (0, h).

Proof. For given ϕ ∈ X0 and s ∈ [0, h] define

σ(ϕ)(s) =
1
c
[ϕ(0) + ϕ(−s) + 2w] .

Then σ(ϕ)(s) ∈ [0, h], and, for s, t ∈ [0, h] we have

|σ(ϕ)(s)− σ(ϕ)(t)| ≤ 1
c
|ϕ(−s)− ϕ(−t)| ≤ 1

c
Lip(ϕ) |s− t| ≤ b

c
|s− t| ≤ 1

4
|s− t| .

This implies that σ(ϕ) : [0, h]→ [0, h] is a contraction for all ϕ ∈ X0. Thus, σ(ϕ) : [0, h]→ [0, h]
has a unique fixed point denoted by σ∗(ϕ).

If ϕ, ψ ∈ X0, then

|σ∗(ϕ)− σ∗(ψ)| = 1
c
|ϕ(0)− ψ(0) + ϕ(−σ∗(ϕ))− ψ(−σ∗(ψ))|

≤ 1
c
|ϕ(0)− ψ(0)|+ 1

c
|ϕ(−σ∗(ϕ))− ψ(−σ∗(ϕ))|

+
1
c
|ψ(−σ∗(ϕ))− ψ(−σ∗(ψ))|

≤ 2
c
‖ϕ− ψ‖0 +

1
c

Lip(ψ) |σ∗(ϕ)− σ∗(ψ)|

≤ 2
c
‖ϕ− ψ‖0 +

b
c
|σ∗(ϕ)− σ∗(ψ)|

holds. This inequality clearly gives Lipschitz continuity with Lip(σ∗) ≤ 2
c−b since b < c.

Finally, for ‖ϕ‖0 < w it is obvious that σ∗(ϕ) ∈ (0, h).

For ρ ∈ [0, r0], define Πρ : X → X0 as (Πρ ϕ)(s) = ϕ(s− ρ) for s ∈ [−h, 0].
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2.2 Solutions

A solution of system (1.1), (1.2) on [−R, t∗) is a pair of continuous functions x : [−R, t∗) →
(−w, w) and τ : [−r, t∗) → (0, h) such that x is differentiable on (0, t∗), and equation (1.1)
holds on (0, t∗), equation (1.2) is satisfied on (−r, t∗ − r). If (x, τ) is a solution on [−R, t∗),
and, in addition, x0 ∈ Y, then from equation (1.1) and condition (1.4) it follows clearly that
xt ∈ Y for all t ∈ [0, t∗). Then, for each t ∈ [0, t∗) we have Πrxt ∈ X0, and by Proposition 2.1
with ϕ = Πrxt it follows that σ∗(Πrxt) ∈ [0, h] is unique with

σ∗(Πrxt) =
1
c
[x(t− r) + x(t− r− σ∗(Πrxt)) + 2w] .

Therefore,
τ(t− r) = σ∗(Πrxt).

Consequently, a pair (x, τ) is a solution of system (1.1), (1.2) on [−R, t∗) with x0 ∈ Y if and
only if x : [−R, t∗) → (−w, w) is continuous, it is differentiable on (0, t∗), x0 ∈ Y, and x
satisfies

ẋ(t) = v
(

1
2

x(t− r) +
1
2

x(t− r− σ∗(Πrxt))

)
(2.3)

for all t ∈ (0, t∗).
Define f : Y× [0, r0]→ R by

f (ϕ, r) = v
(

1
2

ϕ(−r) +
1
2

ϕ(−r− σ∗(Πr ϕ))

)
.

Then, considering solutions with |x(t)| < w, an initial value problem for system (1.1), (1.2)
with initial segments in Y is equivalent with the initial value problem{

ẋ(t) = f (xt, r),

x0 = ϕ ∈ Y.
(2.4)

A solution of (2.4) on [−R, t∗) is a continuous function x : [−R, t∗) → (−w, w) such that x is
differentiable on (0, t∗), xt ∈ Y for all t ∈ [0, t∗), x0 = ϕ, and the differential equation in
(2.4) holds for all t ∈ (0, t∗). A solution of ẋ(t) = f (xt, r) on R is a differentiable function
x : R→ (−w, w) such that it satisfies the equation for all t ∈ R.

In order to show that the solutions of (2.4) generate a continuous semiflow we need to
show the Lipschitz continuity of f . This is a standard result. We sketch a proof only for
completeness, and to emphasize the smooth dependence on r.

Proposition 2.2. f is Lipschitz continuous in ϕ and r.

Proof. We have

| f (ϕ, r)− f (ψ, r)| ≤ Lv
1
2
|ϕ(−r)− ψ(−r)|+ Lv

1
2
|ϕ(−r− σ∗(Πr ϕ))− ψ(−r− σ∗(Πrψ))|

≤ 1
2

Lv‖ϕ− ψ‖+ 1
2

Lv |ϕ(−r− σ∗(Πr ϕ)− ψ(−r− σ∗(Πr ϕ))|+

+
1
2

Lv |ψ(−r− σ∗(Πr ϕ))− ψ(−r− σ∗(Πrψ))|

≤ 2 · 1
2

Lv‖ϕ− ψ‖+ 1
2

LvLip(ψ)Lip(σ∗)‖Πr ϕ−Πrψ‖0

≤ Lv‖ϕ− ψ‖+ 1
2

Lvb
2

c− b
‖ϕ− ψ‖

≤ Lv

(
1 +

b
c− b

)
‖ϕ− ψ‖ = Lv

c
c− b

‖ϕ− ψ‖
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and

| f (ψ, r)− f (ψ, s)| ≤ Lv
1
2
|ψ(−r)− ψ(−s)|+ Lv

1
2
|ψ(−r− σ∗(Πrψ))− ψ(−s− σ∗(Πsψ))|

≤ 1
2

LvLip(ψ) |r− s|+ 1
2

Lv |ψ(−r− σ∗(Πrψ)− ψ(−r− σ∗(Πsψ))|

+
1
2

Lv |ψ(−r− σ∗(Πsψ))− ψ(−s− σ∗(Πsψ))|

≤ 2 · 1
2

LvLip(ψ) |r− s|+ 1
2

LvLip(ψ)Lip(σ∗)‖Πrψ−Πsψ‖0

≤ LvLip(ψ) |r− s|+ 1
2

Lvb
2

c− b
Lip(ψ) |r− s|

≤ LvLip(ψ)
(

1 +
b

c− b

)
|r− s| = Lv

bc
c− b

|r− s| .

The Lipschitz continuity of f follows from the above inequalities and

| f (ϕ, r)− f (ψ, s)| ≤ | f (ϕ, r)− f (ψ, r)|+ | f (ψ, r)− f (ψ, s)| .

The Lipschitz continuity of f allows us to apply standard techniques for existence, unique-
ness of solutions and continuous dependence on initial data and parameters, see, e.g., [2, 5].
We state the result without proof.

Proposition 2.3. For all ϕ ∈ Y and for all r ∈ [0, r0] the initial value problem (2.4) has a solution
xϕ,r on some interval [−R, t∗), t∗ ≤ ∞, which is unique and maximal in the sense that for any other
solution x̃ on [−R, T) the relations T ≤ t∗ and x(t) = x̃(t) on [−R, T) hold.

2.3 Boundedness of solutions

In order to guarantee existence of solutions on [−R, ∞), a boundedness result will be shown.
We remark that condition (1.3) allows us to choose r0 such that (2.2) holds. Then it follows
that

bR = br0 +
4bw

c
< w.

Then, by (1.5) and (1.6), we can define the positive constant

m = min
bR≤|ξ|≤w

|v(ξ)|.

Proposition 2.4. For all ϕ ∈ Y and r ∈ [0, r0] the solution xϕ,r : [−R, t∗)→ (−w, w) satisfies

|xϕ,r(t)| ≤ max {‖ϕ‖, bR} for all t ∈ [0, t∗),

and
|xϕ,r(t)| ≤ bR for all t ∈ [0, t∗) with t ≥ R +

w− bR
m

.

Proof. Let ϕ ∈ Y and r ∈ [0, r0] be fixed. For simplicity, we omit the dependence of the solution
on ϕ and r.

1. We claim that if t0 ∈ (0, t∗) and x(t0) ≥ bR then ẋ(t0) < 0. Indeed, suppose x(t0) ≥ bR
and ẋ(t0) ≥ 0. Then, (1.6) and (2.3) imply

x(t0 − r) + x(t0 − r− σ∗(Πrxt0)) ≤ 0.
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Since x(t0) > 0, σ∗(Πrxt0) ∈ (0, h), and r + h ≤ R, it follows that there exists z ∈ (t0 − R, t0)

such that x(z) = 0. Recall that Lip(ϕ) ≤ b for all ϕ ∈ Y. Then,

x(t0) = x(t0)− x(z) ≤ b(t0 − z) < bR,

a contradiction. Similarly, if t0 ∈ (0, t∗) and x(t0) ≤ −bR then ẋ(t0) > 0.
Hence the first inequality of the proposition easily follows. In addition, the interval

[−bR, bR] is positively invariant in the sense that if t1 ∈ [0, t∗) with |x(t1)| ≤ bR then
|x(t)| ≤ bR for all t ∈ [t1, t∗).

2. In order to show the second inequality of the proposition, suppose that R + w−bR
m < t∗

and there exists t2 ∈ (0, t∗) with t2 > R + w−bR
m and |x(t2)| > bR. Then, by the positive

invariance of [−bR, bR], we have either x(t) ∈ (bR, w) for all t ∈ [0, t2], or x(t) ∈ (−w,−bR)
for all t ∈ [0, t2]. First, assume x(t) ∈ (bR, w) for all t ∈ [0, t2]. Then, by using the negative
feedback property (1.6) of v and the definition of m, we obtain that

w− bR > x(R)− x(t2) = −
∫ t2

R
v
(

1
2

x(t− r) +
1
2

x(t− r− σ∗(Πrxt))

)
dt ≥ (t2 − R)m.

Hence

t2 < R +
w− bR

m
,

a contradiction. The case x(t) ∈ (−w,−bR) on [0, t2] leads to a contradiction analogously.
This completes the proof.

A consequence of Proposition 2.4 is that a standard continuation result can be applied to
conclude that all solutions of the initial value problem (2.4) exist on [−R, ∞), see [2, Chap-
ter VII, Proposition 2.2] or [5, Chapter 2, Theorem 3.1]. We summarize the properties of the
solutions obtained so far.

Proposition 2.5. For all r ∈ [0, r0] and for all ϕ ∈ Y, (2.4) has a unique solution xϕ,r : [−R, ∞)→ R

such that

|xϕ,r(t)| ≤ max {‖ϕ‖, bR} for all t ≥ 0, |xϕ,r(t)| ≤ bR for all t ≥ R +
w− bR

m
,

and
F : [0, ∞)×Y× [0, r0] 3 (t, ϕ, r) 7→ xϕ,r

t ∈ Y

is a continuous semiflow.

3 Global attractivity of x = 0 in case r = 0

In this section we assume r = 0. Then equation (2.3) contains only one delay. According to an
idea of Nussbaum [9] (see also [7,8]) it is possible to reduce the problem to an equation in l∞,
and this helps to conclude global attractivity of the zero solution.

Theorem 3.1. For any ϕ ∈ Y
F(t, ϕ, 0)→ 0 as t→ ∞.
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Proof. As r = 0 throughout the proof, we omit the dependence of the solutions on r. Let
ϕ ∈ Y be given and define α = lim supt→∞ |xϕ(t)|. By Proposition 2.4, the positive semi-
orbit

{
xϕ

t : t ≥ 0
}

is in the compact subset {ψ ∈ X : ‖ψ‖ ≤ max {‖ϕ‖, bR}}. Therefore, the
ω–limit set ω(xϕ) is nonempty, compact, and invariant in Y, see [3]. By the invariance, for all
ψ ∈ ω(xϕ) there exists a solution y = yψ : R → R of (2.3) such that

∣∣yψ(t)
∣∣ ≤ α for all t ∈ R.

Furthermore, there is a ψ ∈ ω(xϕ) such that
∣∣yψ(0)

∣∣ = |ψ(0)| = α.
We may assume that ψ(0) = α (the case ψ(0) = −α is analogous). Let y = yψ and define

η(t) = t− σ∗(Π0yt) for t ∈ R. As y(0) = α and α is a maximum of y, we have that ẏ(0) = 0.
Now, define the sequence

(
tj
)∞

j=0 by t0 = 0 and tj = η(tj−1) for j ∈N. Note that

ẏ(tj) = v
(

y(tj) + y(tj+1)

2

)
for j ∈N∪ {0} .

Then, the negative feedback condition (1.6) and ẏ(t0) = 0 imply that y(t0) + y(t1) = 0. Com-
bining this with y(t0) = α, we obtain y(t1) = −α, that, in turn, implies ẏ(t1) = 0. Clearly, by
induction, we have

ẏ(tj) = 0 and y(tj) = (−1)jα for j ∈N∪ {0} .

Let zj(t) = y(tj + t) − y(tj). Then, zj(0) = 0 for all j ∈ N ∪ {0}. Analyzing the derivative
yields

∣∣żj(t)
∣∣ = ∣∣∣∣v(y(tj + t) + y(η(tj + t))

2

)
− v

(
y(tj) + y(η(tj))

2

)∣∣∣∣
≤ 1

2
Lv
(∣∣y(tj + t)− y(tj)

∣∣+ ∣∣y(η(tj + t))− y(η(tj))
∣∣) .

(3.1)

Note that tj+1 = η(tj) = tj − σ∗(Π0ytj) implies tj = tj+1 + σ∗(Π0ytj). Therefore,∣∣y (η(tj + t)
)
− y

(
η(tj)

)∣∣
=
∣∣∣y (tj + t− σ∗(Π0ytj+t)

)
− y

(
tj+1

)∣∣∣
=
∣∣∣y (tj+1 + t−

[
σ∗(Π0ytj+t)− σ∗(Π0ytj)

])
− y

(
tj+1

)∣∣∣
≤
∣∣y (tj+1 + t

)
− y

(
tj+1

)∣∣+ ∣∣∣y (tj+1 + t−
[
σ∗(Π0ytj+t)− σ∗(Π0ytj)

])
− y

(
tj+1 + t

)∣∣∣
≤
∣∣zj+1(t)

∣∣+ Lip(y)
∣∣∣σ∗(Π0ytj+t)− σ∗(Π0ytj)

∣∣∣
=
∣∣zj+1(t)

∣∣+ b
∣∣∣σ∗(Π0ytj+t)− σ∗(Π0ytj)

∣∣∣ .

(3.2)

Observe that∣∣∣σ∗(Π0ytj+t)− σ∗(Π0ytj)
∣∣∣

=
1
c

∣∣∣y(tj + t)− y(tj) + y(tj + t− σ∗(Π0ytj+t))− y(tj − σ∗(Π0ytj))
∣∣∣

≤ 1
c
∣∣zj(t)

∣∣+ 1
c
∣∣y(η(tj + t))− y(η(tj))

∣∣ .

(3.3)

Combining (3.2) and (3.3), it follows that

∣∣y (η(tj + t)
)
− y

(
η(tj)

)∣∣ ≤ ∣∣zj+1(t)
∣∣+ b

c
∣∣zj(t)

∣∣+ b
c
∣∣y(η(tj + t))− y(η(tj))

∣∣ .
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Therefore,

∣∣y (η(tj + t)
)
− y

(
η(tj)

)∣∣ ≤ 1
1− b

c

(∣∣zj+1(t)
∣∣+ b

c
∣∣zj(t)

∣∣)
=

c
c− b

∣∣zj+1(t)
∣∣+ b

c− b
∣∣zj(t)

∣∣ . (3.4)

Now, (3.1) and (3.4) imply that

∣∣żj(t)
∣∣ ≤ 1

2
Lv

(∣∣zj(t)
∣∣+ b

c− b
∣∣zj(t)

∣∣+ c
c− b

∣∣zj+1(t)
∣∣)

=
1
2

Lv
c

c− b
(∣∣zj(t)

∣∣+ ∣∣zj+1(t)
∣∣) (3.5)

for all t ∈ R and j ∈ N ∪ {0}. To analyze zj, we define Z : R 3 t 7→
(
zj(t)

)∞
j=0 ∈ l∞. Clearly,

‖Z(t)‖∞ ≤ 2w, and

‖Z(t)− Z(s)‖∞ = sup
j∈N∪{0}

∣∣zj(t)− zj(s)
∣∣ = sup

j∈N∪{0}

∣∣y(tj + t)− y(tj + s)
∣∣ ≤ b |t− s|

for all s, t ∈ R. Therefore, Z is Lipschitz continuous. Using (3.5) and zj(0) = 0, we get for
t ≥ 0 that

∣∣zj(t)
∣∣ = ∣∣zj(t)− zj(0)

∣∣ = ∣∣∣∣∫ t

0
żj(s)ds

∣∣∣∣ ≤ ∫ t

0

∣∣żj(s)
∣∣ds

≤ 1
2

Lv
c

c− b

∫ t

0

(∣∣zj(s)
∣∣+ ∣∣zj+1(s)

∣∣)ds.

Hence,

‖Z(t)‖∞ ≤ Lv
c

c− b

∫ t

0
‖Z(s)‖∞ ds

for t ≥ 0. Then, Gronwall’s inequality implies Z(t) = 0 for t ≥ 0. Finally, as

t0 − t1 = −η(0) = σ∗(Π0y0) > 0,

from
2α = y(t0)− y(t1) = y(t1 + t0 − t1)− y(t1) = z1(t0 − t1) = 0

we conclude that α = 0. The proof is complete.

4 Local asymptotic stability for small reaction lags

In this section we show that the zero solution of (2.4) is locally asymptotically stable if r is
sufficiently small. Namely, we prove

Theorem 4.1. There exist M > 0, β > 0, δ > 0, and r1 ∈ (0, r0] such that for each r ∈ [0, r1] and for
each ϕ ∈ Y with ‖ϕ‖ ≤ δ the inequality

‖F(t, ϕ, r)‖ ≤ M‖ϕ‖e−βt for all t ≥ 0

holds.
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Note that r0 was chosen so that (2.2) holds.
The well known heuristic linearization technique of Cooke and Huang [1] is applied: we

freeze the delay in equation (2.3) at x = 0, and linearize the obtained equation with constant
delay. Then we get the linear equation

ẏ(t) = −ay(t− r)− ay
(

t− r− 2w
c

)
, (4.1)

where
a = −1

2
v′(0) > 0.

The characteristic function for (4.1) is ∆ : C→ C given by

∆(λ) = λ + ae−λr + ae−λr−λ
2w
c .

From a result of Hale and Huang [4] it follows that Re(λ) < 0 holds for all zeros of ∆ provided

0 ≤ r ≤ 1
2a

.

Moreover, by [4], for each fixed positive constants a, w, c, there exists r∗ > 1
2a so that Re(λ) < 0

for all zeros of ∆ provided 0 ≤ r < r∗, and a pair of complex conjugate zeros cross the
imaginary axis at r = r∗. It is expected that a Hopf bifurcation takes place at r = r∗ for
equation (2.3).

Here we consider only the case r = 0 where a direct elementary proof can also be given
to show that Re(λ) < 0 for all zeros of ∆. It would be possible to apply the linearization
result of [1] for each r ∈ [0, 1

2a ], and then to study the dependence on r, since we need an
estimation which is uniform in r. This approach certainly would give a larger r1 comparing
to that of Theorem 4.1. However, as we can show global attractivity only when r = 0, this still
would not lead to an explicit region for r where global stability of x = 0 is valid. Although
the technique below to prove Theorem 4.1 is very close to that of [1], we give the proof here
as the dependence on the parameter r requires minor modifications.

Consider the associated linear equation to (2.3), when r = 0,

ẏ(t) = −ay(t)− ay
(

t− 2w
c

)
. (4.2)

Now, introducing h : [0, ∞)→ R by

h(t) = v
(

1
2

x(t− r) +
1
2

x (t− r− σ∗(Πrxt))

)
+ a

[
x(t) + x

(
t− 2w

c

)]
(4.3)

problem (2.4) can be written as{
ẋ(t) = −a

[
x(t) + x

(
t− 2w

c

)]
+ h(t) for t > 0,

x0 = ϕ ∈ Y.
(4.4)

Proposition 4.2. There exist K ≥ 1 and α > 0 such that

eαt |xϕ,r(t)| ≤ K‖ϕ‖+ K
∫ t

0
eαs |h(s)|ds

for all t ≥ 0, r ∈ [0, r0], and ϕ ∈ Y.
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Proof. Since Re(λ) < 0 holds for all zeros of the characteristic function of (4.2), it follows from
[5] that there exist K ≥ 1 and α > 0 such that, for the fundamental solution Φ : [−R, ∞) → R

of (4.2)
|Φ(t)| ≤ Ke−αt for all t ≥ 0 (4.5)

holds, and for the solution yϕ : [−R, ∞)→ R of (4.2) with yϕ
0 = ϕ ∈ C we have

‖yϕ
t ‖ ≤ Ke−αt‖ϕ‖ for all t ≥ 0. (4.6)

For given r ∈ [0, r0] and ϕ ∈ Y let x = xϕ,r be the unique solution of (2.4) on [−R, ∞). By
the variation of constants formula for (4.4) (see [5])

x(t) = yϕ(t) +
∫ t

0
Φ(t− s)h(s)ds for t ≥ 0,

which together with (4.5) and (4.6) implies

|x(t)| ≤ Ke−αt‖ϕ‖+ K
∫ t

0
e−α(t−s) |h(s)|ds for t ≥ 0.

Thus, we obtain

eαt |x(t)| ≤ K‖ϕ‖+ K
∫ t

0
eαs |h(s)|ds for t ≥ 0.

Proposition 4.3. For all t ≥ 0, r ∈ [0, r0], and ϕ ∈ Y we have

‖xϕ,r
t ‖ ≤ ‖ϕ‖eLvt.

Proof. For given r ∈ [0, r0] and ϕ ∈ Y let x = xϕ,r be the unique solution of (2.4) on [−R, ∞).
From (2.4), we have

x(t) = x(0) +
∫ t

0
v
(

x(s− r) + x (s− r− σ∗(Πrxs))

2

)
ds for t ≥ 0,

which implies using equations (1.5) and (1.8) that

‖xt‖ ≤ ‖ϕ‖+
∫ t

0
Lv

∣∣∣∣ x(s− r) + x (s− r− σ∗(Πrxs))

2
− 0
∣∣∣∣ds

≤
∫ t

0
Lv
‖xs‖+ ‖xs‖

2
ds =

∫ t

0
Lv‖xs‖ds for t ≥ 0.

Then, by Gronwall’s inequality, we obtain

‖xt‖ ≤ ‖ϕ‖eLvt for t ≥ 0.

We need the following notation. For x : [−R, ∞)→ R and t ≥ R let

‖x(t + ·)‖2R = max
θ∈[−2R,0]

|x(t + θ)| .

Property (1.7) implies that for all ρ > 0 there exists µ(ρ) > 0 such that∣∣v(u)− v′(0)u
∣∣ ≤ ρ |u| for all |u| < µ. (4.7)

For r ≥ 0, ρ > 0, and ν ∈ (0, µ(ρ)], define κ = κ(r, ν, ρ) by

κ(r, ν, ρ) = |v′(0)|Lv

(
r +

1
c

ν

)
+ ρ.
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Proposition 4.4. If r ∈ [0, r0], ρ > 0, ν ∈ (0, µ(ρ)], ϕ ∈ Y, and T ∈ (R, ∞) are such that
|xϕ,r(t)| < ν for all t ∈ [−R, T], then

|h(t)| ≤ κ(r, ν, ρ)‖xϕ,r(t + ·)‖2R for all t ∈ [R, T].

Proof. For given r ∈ [0, r0] and ϕ ∈ Y let x = xϕ,r be the unique solution of (2.4) on [−R, ∞).
We add and subtract

a
[

x(t− r) + x
(

t− r− 2w
c

)
+ x (t− r− σ∗(Πrxt))

]
to the right-hand side of (4.3) and regroup the terms to obtain

h(t) =
1
2

v′(0)
[

x(t− r)− x(t)
]
+

1
2

v′(0)
[

x
(

t− r− 2w
c

)
− x
(

t− 2w
c

)]
+

1
2

v′(0)
[

x(t− r− σ∗(Πrxt))− x
(

t− r− 2w
c

)]
+ v

(
x(t− r) + x (t− r− σ∗(Πrxt))

2

)
− v′(0)

[
x(t− r) + x (t− r− σ∗(Πrxt))

2

]
.

(4.8)

Equations (1.8) and (2.3) imply |ẋ(s)| ≤ Lv‖xs‖ for s > 0. Thus, we get the following local
upper bound for the Lipschitz constant of x

|x(s)− x(s′)| ≤ Lv‖x(t + ·)‖2R |s− s′| for s, s′ ∈ [t− R, t], (4.9)

where t ∈ [R, T]. Note that∣∣∣∣σ∗(Πrxt)−
2w
c

∣∣∣∣ = ∣∣∣∣ x(t− r) + x (t− r− σ∗(Πrxt))

c

∣∣∣∣ ≤ 2
c
‖xt‖. (4.10)

As |xϕ,r(t)| < ν for all t ∈ [−R, T], equations (4.7), (4.8), (4.9), and (4.10) imply

|h(t)| ≤ 1
2
|v′(0)|Lv‖x(t + ·)‖2R r +

1
2
|v′(0)|Lv‖x(t + ·)‖2R r

+
1
2
|v′(0)|Lv‖x(t + ·)‖2R

2
c
‖xt‖+ ρ‖xt‖

≤
[
|v′(0)|Lv

(
r +

1
c

ν

)
+ ρ

]
‖x(t + ·)‖2R

for all t ∈ [R, T].

Now, we are ready to prove the main result of this section.

Proof of Theorem 4.1. First, choose r1 ∈ (0, r0], ρ > 0, ν ∈ (0, µ(ρ)] such that

κ(r, ν, ρ) <
α

2Ke2αR for all r ∈ [0, r1].

Let κ = κ(r, ν, ρ). Define

M = e2αR ·max
{

K + KR(Lv + 2a)e(α+Lv)R, eLvR
}

.



Global stability in a system using echo for position control 13

Choose T0 > R such that
e(Lv+α/2)T0 ≥ M.

Finally, set

δ =
ν

2
e−LvT0 .

Fix any ϕ ∈ Y such that ‖ϕ‖ ≤ δ, and fix r ∈ [0, r1]. Let x = xϕ,r be the unique solution of
(2.4) on [−R, ∞). From Proposition 4.3 we have

‖xt‖ ≤ δeLvT0 =
ν

2
< ν

for all t ∈ [0, T0]. Define

T∗ = sup {t ≥ 0 : |x(s)| < ν for all s ∈ [−R, t]} .

Clearly, T∗ > T0, and |x(t)| < ν for all t ∈ [−R, T∗). Thus, Proposition 4.4 establishes

|h(t)| ≤ κ‖x(t + ·)‖2R for all t ∈ [R, T∗).

In addition, (1.8), (4.3), and Proposition 4.3 imply

|h(t)| ≤ Lv‖xt‖+ 2a‖xt‖ ≤ (Lv + 2a)eLvR‖ϕ‖ for all t ∈ [0, R].

Using Proposition 4.2, the above bounds on |h(t)|, and the choices of κ, M, we obtain

eαt |x(t)| ≤ K‖ϕ‖+ K
∫ R

0
eαs|h(s)|ds + K

∫ t

R
eαs|h(s)|ds

≤
[
K + KR(Lv + 2a)e(α+Lv)R

]
‖ϕ‖+ K

∫ t

R
eαsκ‖x(s + ·)‖2R ds

≤ e−2αR M‖ϕ‖+ e−2αR α

2

∫ t

R
eαs‖x(s + ·)‖2R ds for all t ∈ [R, T∗).

On the other hand, it is obvious that

eαt|x(t)| ≤ e−2αR M‖ϕ‖ for all t ∈ [−R, R]

since ‖x0‖ = ‖ϕ‖ and ‖xR‖ ≤ eLvR‖ϕ‖. From the above two estimations for eαt |x(t)|, it follows
that

eαt‖x(t + ·)‖2R = max
−2R≤θ≤0

e−αθeα(t+θ)|x(t + θ)|

≤ e2αR max
−2R≤θ≤0

eα(t+θ)|x(t + θ)|

≤ max
R≤V≤t

(
M‖ϕ‖+ α

2

∫ V

R
eαs‖x(s + ·)‖2R ds

)
≤ M‖ϕ‖+ α

2

∫ t

R
eαs‖x(s + ·)‖2R ds

for all t in [R, T∗). Applying Gronwall’s lemma, we obtain

eαt‖x(t + ·)‖2R ≤ M‖ϕ‖e(α/2)(t−R) ≤ M‖ϕ‖e(α/2)t for all t ∈ [R, T∗).

Multiplying by e−αt results in

‖x(t + ·)‖2R ≤ M‖ϕ‖e−(α/2)t for all t ∈ [R, T∗),
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which implies
‖xt‖ ≤ M‖ϕ‖e−(α/2)t for all t ∈ [0, T∗).

If T∗ < ∞ then, from the definition of T∗ and by continuity, |x(T∗)| = ν follows. On the
other hand, by T∗ > T0 and the choice of M and δ,

|x(T∗)| ≤ ‖x(T∗ + ·)‖2R ≤ M‖ϕ‖e−(α/2)T∗ ≤ Mδe−(α/2)T0 = M
ν

2
e−(Lv+(α/2))T0 ≤ ν

2
,

a contradiction. Therefore, T∗ = ∞, and the proof is complete with β = α
2 .

5 Global exponential stability for small reaction lags

By Proposition 2.5, we may apply previous results [3, Theorem 3.5.2] that have established
that the global attractor of the semiflow F is upper semicontinuous in r. Theorem 3.1 shows
that 0 attracts all solutions when r = 0. Moreover, Theorem 4.1 establishes that 0 attracts a
fixed neighbourhood of itself for all r ∈ [0, r1]. It follows that the fixed point 0 is the global
attractor for all sufficiently small r ≥ 0. Nevertheless, we provide an elementary proof for the
special case (2.4) as we believe it demonstrates some useful, albeit standard, techniques.

Theorem 5.1. There exist N > 0, β > 0, and r2 ∈ (0, r1] such that for each r ∈ [0, r2] and for each
ϕ ∈ Y

‖F(t, ϕ, r)‖ ≤ N‖ϕ‖e−βt for all t ≥ 0.

Proof. Step 1. Proposition 2.5 implies that if we define T1 = 2R + w−bR
m and

Ŷ = {ϕ ∈ Y : ‖ϕ‖ ≤ bR} ,

then for all ϕ ∈ Y and r ∈ [0, r0] the relation

F(T1, ϕ, r) ∈ Ŷ

holds.

Step 2. We claim that there exist T2 > 0 and r2 ∈ (0, r1] such that for all ϕ ∈ Ŷ and for all
r ∈ [0, r2] the inequality

‖F(T2, ϕ, r)‖ ≤ δ

is satisfied, where constant δ > 0 is given in Theorem 4.1.
By Theorem 3.1, for all ϕ ∈ Y there exists Tϕ > 0 such that

‖F(Tϕ, ϕ, 0)‖ < δ

2M
,

where M > 1 is also given in Theorem 4.1. The continuity of F implies that there exist an
open neighbourhood Vϕ of ϕ in Y and rϕ ∈ (0, r1] such that for all ψ ∈ Vϕ and for all r ∈ [0, rϕ]

we have
‖F(Tϕ, ψ, r)‖ < δ

M
.

Then, as M > 1, Theorem 4.1 implies that

‖F(t + Tϕ, ψ, r)‖ ≤ M‖F(Tϕ, ψ, r)‖e−βt < M
δ

M
e−βt ≤ δ
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for all ψ ∈ Vϕ, for all r ∈ [0, rϕ], and for all t ≥ 0.
The compactness of Ŷ implies that there exists a finite number of points ϕ1, . . . , ϕk in Ŷ

such that

Ŷ ⊆
k⋃

i=1

Vϕi .

Then, by setting

r2 = min
{

rϕ1 , . . . , rϕk

}
and

T2 = max
{

Tϕ1 , . . . , Tϕk

}
,

the proof of the claim is completed.

Step 3. With β > 0 and M > 1 given in Theorem 4.1, define

N = Me(Lv+β)(T1+T2).

Let ϕ ∈ Y and r ∈ [0, r2].
If t ∈ [0, T1 + T2] then, by Proposition 4.3,

‖F(t, ϕ, r)‖ ≤ eLvt‖ϕ‖ ≤ eLv(T1+T2)‖ϕ‖,

and

‖F(t, ϕ, r)‖ ≤ eLvt‖ϕ‖
= e(Lv+β)t‖ϕ‖e−βt

≤ e(Lv+β)(T1+T2)‖ϕ‖e−βt

≤ N‖ϕ‖e−βt.

By Step 1 we have F(T1, ϕ, r) ∈ Ŷ, and then, by Step 2,

‖F(T1 + T2, ϕ, r)‖ = ‖F(T2, F(T1, ϕ, r), r)‖ < δ.

If t > T1 + T2 then, by Theorem 4.1 and the above estimations,

‖F(t, ϕ, r)‖ = ‖F(t− (T1 + T2), F(T1 + T2, ϕ, r), r)‖
≤ M‖F(T1 + T2, ϕ, r)‖e−β(t−(T1+T2))

≤ MeLv(T1+T2)‖ϕ‖e−β(t−(T1+T2))

= Me(Lv+β)(T1+T2)‖ϕ‖e−βt

= N‖ϕ‖e−βt.

This completes the proof.
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