Electronic Journal of Qualitative Theory of Differential Equations
2011, No. 44, 1-11; http://www.math.u-szeged.hu/ejqtde/

Forced oscillation of second-order superlinear dynamic
equations on time scales
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Abstract. In this paper, by constructing a class of Philos type functions on time scales, we

investigate the oscillation of the following second-order forced nonlinear dynamic equation

222() = p(Ola(g() () = e(t), teT

where T is a time scale, p,e : T — R are right dense continuous functions with p >
0, A > 1 is a constant, and ¢(t) = t or ¢(t) = o(t). Our results not only unify the
oscillation of second-order forced differential equations and their discrete analogues, but

also complement several results in the literature.
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1 Introduction

Following Hilger’s landmark paper [1], a rapidly expanding body of literature has sought to
unify, extend and generalize ideas from discrete calculus, quantum calculus and continuous
calculus to arbitrary time-scale calculus, where a time scale is an arbitrary closed subset
of the reals, and the cases when this time scale is equal to the reals or to the integers
represent the classical theories of differential and of difference equations. Many other
interesting time scales exist, e.g., T = ¢"0 = {¢' : t € Ny} for ¢ > 1 (which has important
applications in quantum theory), T = AN with A > 0, T = N? and T = T,, the space of the
harmonic numbers. For an introduction to time scale calculus and dynamic equations, we
refer to the seminal books by Bohner and Peterson [2,3].

Recently, many authors have expounded on various aspects of time scales, among
which, the oscillation theory has attracted considerable attention, e.g. see [4-19] and the

references cited therein. We are here concerned with the following second-order forced
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dynamic equation

228(t) —p()|z(q(t)ta(a(t) = et), teT (1)

where T is a time scale unbounded above with ¢ty € T; p and e are real-valued right dense
continuous functions on T with p > 0, A > 1 is a constant, ¢(t) =t or ¢(t) = o(t).

A solution of Eq. (1) is a nontrivial real function z : T — R such that z € C2[t,, co)r
with ¢, > to and [t,,00)r = [tz,00) N'T, and x satisfies Eq. (1) on T. A function z is
an oscillatory solution of Eq. (1) if and only if x is a solution of Eq. (1) that is neither
eventually positive nor eventually negative. Eq. (1) is oscillatory if and only if every
solution of Eq. (1) is oscillatory.

Some equations related to Eq. (1) have been extensively studied by many authors in
[20-27]. For the oscillation of the second-order forced dynamic Eq. (1), the oscillation
results in [6] can be applied to Eq. (1) with ¢(¢) = o(t) and oscillatory potentials. Fol-
lowing the idea in [27], the authors established several oscillation criteria for Eq. (1) with
p(t) > 0 and ¢(t) = o(t) in [18] and [19], while the case of ¢(t) = t remains unstudied.

The main purpose of this paper is to further study the oscillation of Eq. (1) in the
superlinear case when ¢(t) = o(t) and ¢(t) = t, respectively. We will show that the results
in [18] and [19] seem to be invalid when the time scale T only contains isolated points. We
also extend the results to the case of ¢(t) = t. Based on the usual Philos type functions
for differential equations, we first construct a class of explicit functions on time scales for
Eq. (1). Then, several oscillation criteria for Eq. (1) are established in both the case
q(t) = o(t) and the case ¢(t) = t, which complement those results in [18] and [19].

2 Time scale essentials

The definitions below merely serve as a preliminary introduction to the time-scale calculus;
they can be found in the context of a much more robust treatment than is allowed here
in the text [2] and the references therein.

Definition 2.1 Define the forward (backward) jump operator o(t) at t for ¢t < sup T
(respectively p(t) at t for t > inf T) by

o(t)=inf{s >t:se€ T}, (p(t)=sup{s<t:teT}), teT.

Also define o(supT) = supT, if supT < oo, and p(inf T) = inf T, if inf T > —oo. The
graininess functions are given by u(t) = o(t) —t and v(t) =t — p(t).
Throughout this paper, the assumption is made that T is unbounded above and has the

topology that it inherits from the standard topology on the real numbers R. Also assume
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throughout that a < b are points in T. The jump operators o and p allow the classification
of points in a time scale in the following way: If o(t) > ¢ the point ¢ is right-scattered,
while if p(t) < ¢ then ¢ is left-scattered. Points that are right-scattered and left-scattered
at the same time are called isolated. If ¢ < sup T and o(¢) = (¢) the point ¢ is right-dense;
if t > inf T and p(t) = ¢ then t is left-dense. Points that are right-dense and left-dense at
the same time are called dense. The composition f oo is often denoted f7.

Definition 2.2 A function f : T — R is said to be rd-continuous (denoted f €
Crq(T,R)) if it is continuous at each right-dense point and if there exists a finite left limit
in all left-dense points.

Every right-dense continuous function has a delta antiderivative [2, Theorem 1.74].
This implies that the delta definite integral of any right-dense continuous function exists.
Likewise every left-dense continuous function f on the time scale, denoted f € Ciy(T,R),
has a nabla antiderivative [2, Theorem 8.45]

Definition 2.3 Fix ¢t € T and let y : T — R. Define y*(¢) to be the number (if it
exists) with the property that given € > 0 there is a neighborhood U of ¢ such that, for all
seU,

ly(o (1) = y(s)] = y> (O)o(t) — sl < elo(t) — 5.

Call y2(t) the (delta) derivative of y at t.
Definition 2.4 If FA(t) = f(t) then define the (Cauchy) delta integral by

b
/ F(s)As = F(b) — F(a).

The following theorem is due to Hilger [1].

Theorem 2.5 Assume that f: T — T and let t € T".

(1) If f is differentiable at t, then f is continuous at ¢.

(2) If f is continuous at ¢t and t is right-scattered, then f is differentiable at ¢ with

_ fle®) — )
FA() = T -t

(3) If f is differentiable and t is right-dense, then

s—t t—s

(4) If f is differentiable at ¢, then f7(t) = f(t) + p(t)f2(t).
(5) If f and g are differentiable at ¢, then fg is differentiable at ¢ with

(f9)2 (1) = f2Dg(t) + £ (19> (1) = f()g>(8) + f2(1)g (8).
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3 Main results

We first construct Philos type functions on time scales for Eq. (1). In [18] and [19] the
authors only sketchily defined Philos type functions on time scales for Eq. (1), while they
did not answer how to construct these functions explicitly.

Let tg € T, Dg = {(t,s) € RZ : ¢t > s >ty and D = {(t,5) € R2 : t > 5 > to}.
Recall to introduce a usual Philos type function class X in [26] and [27]. The function
H(t,s) € C(D,R) is said to belong to the class X if H(¢,s) > 0 on D and H(t,s) > 0 on
Dy.

Just as shown in the sequel, the results in [18] and [19] seem to be invalid when the
time scale T only contains isolated points. Therefore, we are here concerned with the time
scale T which only contains isolated points.

Now, based on any functions Hi, Hy € X, we define the following Philos type function

class on time scales for Eq. (1)

Xr = {H(0(t),s)Hy(c%(t),s) : H,Hy € X, (t,s) € T?},

2

where 0“ = 0 o 0. Denote

H(t,s) := Hi(o(t), s)Ha(o(1). 5).

Then, H(t,0(s)) > 0 for tg < s < t and H(t,o(s)) = 0 only holds at s = ¢. Straightforward

computation yields
HA(t, ) [Hi(o(t), s)H2(0(t), 5)]%

= Hi(o(t),s)Hy (0(1), 5) + Hy* (0(1), ) Ha (02 (2), o(s)]

(2)

and

2

HA% (1) = Hi(o(t),0(s)Hy * (02(t), s) + HE* (o(t), ) HE" (o2(1), )]

A2,
+ H;°

(3)
(o(t), 8)Hz (0> (1), 0% (s)) + Hi*(o(t), ) Hy™* (07(t), o(s)))-

It is not difficult to verify
H(t,o(t)) = H2(t,0(t)) =0, teT. (4)

Before giving the main results of this paper, we first recall to introduce Theorem 2.2
in [18] as followings:

Theorem A [18]. Assume that ¢(t) = o(t). If there exists a function H(t,s) €
C,q(D1,R) which has a nonpositive continuous A-partial derivative H*s(t, s) and a non-

2
negative continuous second-order A-partial derivative H A2 (t, s) with respect to the second
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variable, such that H(t,t) =0, H(t,s) > 0 on Dy, H>*(a(t),o(t)) =0,

HM (o)
" o)~ O
o(t)
lin sup m [ o). 0(6)els) ~ G )]s = 4o,
o(t)
lim inf — [ [H(o(t), 0(s))e(s) + G(t, )] As = —oo,

t—oo H(O’(t), to) to

where
A 1

G(t,5) = (A = DATE[H (0(t), 3)] 3T [H (o (t), o (5))p(s)] =,

then Eq. (1) with ¢(t) = o(t) is oscillatory.
We show that Theorem A seems to be invalid for the case when the time scale T only
contains isolated points. In fact, in the proof of Theorem 2.2 in [18], the authors used a

basic inequality
F(x):ax—bx)‘g()\—l))\ﬁaﬁbﬁ, a,z>0,b>0 (5)

to estimate

Note that H(o(t),o(t)) = 0 and ¢ is an isolated point, we do not use the inequality (5) to
get that

o® R o(t)
/ [H™s2 (0 (t), s)x(0(s)) — H(a(t),o(s))p(s)z" (0(s))]As < G(t,s)As.

to to
Based on the definition of H(t, s), we can only conclude that

/ (B2 (1), 8)a(0(s)) — H(o(t), o(s))p(s)e* (o(s)]As < [ G(t,5)As.

to to
Therefore, the term
(1)
H2(0(t), 8)z(0(s))As
t

remains unestimated.

To complement those results in [18] and [19], we here focus on the oscillation of Eq.
(1) on time scales which only contain isolated points.

Theorem 3.1. Assume that ¢(t) = o(t). If there exist a function H(¢,s) € Xt and a
right dense continuous function ¢(¢) > 0 on T such that

Bs(t,t
lim sup A (t,to) (t.t0)

t—o0 H(tatO) (6)
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p(H2 ()] o(o (1) (7)

lim tsllg)o H{t 1) < 00
p(t
lim tiui)o H Z —G(t,s)] As = 400 (8)
p(t
lim Efo Hi to Z ) +G(t,s)] As = —o0 9)

=to

where
A 1

G(t,s) = (A — DA [HA2 (1, 5) 51 [H(t, 0(s))p(s)] 3

then all solutions of Eq. (1) satisfying |z(t)| = O(¢(t)) are oscillatory.
Proof. Let x(t) be a nonoscillatory solution of Eq. (1). Without loss of generality,
assume that x(t) > 0 for t > tg and ¢t € T. Multiplying (1) by H(t,o(s)) and integrating

from ¢ty to o(t) yield
o(t) o(t)
t H(t,0(s))e(s)As = t H(t,o(s))[a>2(s) — p(s)2* (o (s))]As.

By using the integration by parts formula two times, the definition of H and (4), we get

o(t)
H(t,o(s))e(s)As

= —H(t, to)x™(to) + H™* (¢, t0)z(t0) (10)
a(t) 2
+/t (22 (L, s)z(0(s)) — H(t, o(s))p(s)a* (o (s))] As.

Notice that H(t,o(s)) = 0 only holds at s = ¢t and x(t) = O(¢(t)). Then, there exists an
appropriate constant M > 0 such that

a(t) A2,
/t H% (1, 5)2(0(5)) — H(t, 0(5))p(s)7* (0(5))]As
’ a(t
<M/ 2(t,)|6(0(s)) As (11)
+ [ (3% 9lata(s) - Mt o(s)p()a o (s))As.

to

By the inequality (5), we have

|HA§2 (t,s)|z(o(s)) — H(t,o(s))p(s)z*(a(s)) < G(t,s), s € [to,t)r. (12)
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Thus, from (10)-(12) and noting that H(¢,0(t)) = 0 and H(t,o(s)) > 0 on [tg,t)r for
teT, we get

o(t) .
H(tl,to) ) H(t,o(s))e(s)As — t G(t,s)As
1 : ¢ p(t)
= Ty | 2 Mol - 3 6(s)
) o)
= H(t o) > [H(t,(s))e(s) — G(t, 5)]
H2: (¢, to) Mu(t)[H™% (¢, 1) (o (1)) |

< _xA(tO) + H(t,to) x(tO) + H(t,to)

Taking lim sup on both sides of the above inequality as ¢ — oo and using conditions (6)-(8),
we get a desired contradiction. This completes the proof of Theorem 3.1. U
Theorem 3.2. Assume that ¢(t) = t. If there exist a function H(t,s) € Xt and a

right dense continuous function ¢(¢) > 0 on T such that

. HA (¢, to
lim tsl}fo W (13)
o) o
S; [H™s2(t, p(s))o(s)]|
lim tS_l)ch;)O HiE 1o) < 00 (14)
p(t)
> At a(s)e(s) = Glt,5)| = +oc (15)
SZU(tQ)

o 1 p(t) 3
lim inf s :z(jt) ()M (2,0 (5))e(s) + Gt )] = —o0 (16)

lim su
t—>cI>)o H(t, to)

where

~ . A2 . 1
Gt s) = (A= DA ulp()) [HT2 (8, p()) |1 [u(s)H(E, 0 (5))p(s)]
then all solutions of Eq. (1) satisfying |z(t)| = O(¢(t)) are oscillatory.

Proof. Let z(t) be a nonoscillatory solution of Eq. (1). Say z(t) > 0 for ¢ > ¢y and
t € T. Multiplying Eq. (1) by H(¢,0(s)) and integrating from to to o(t) by the integration
by parts formula, we get

o(t)
H(t,o(s))e(s)As

< —H(t, )™ (to) + HA5 (t, to)x(to)

a(t) 2
4 [ o) - (ko (6)pls) ()]s,

to
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Noting that H(t,o(t)) = 0 and T only contains isolated points, we have

o(t) 5
| s)a(o(s) - Mt ool (5)As

to
t

= Y ()R )| (o(s)) — Mt o(5))p(s)a (s)]

o(t) p(t)

= > wlp()IH2(t, p(s)|x(s) = Y p(s)H(t, o (s))p(s)a? (s)
s=o(to) s=to
o(t)

< D Mo (o)t

p(t)
S [lp(e)[HE2 (2, p(s)) 2 (s) — u(s)H(E, o (s)p(s)a(5)].

SZU(tQ)

Similar to the same argument in Theorem 3.1, we have

1 t p(t)
Hit o) ;M(S)H Szl;)g (t,s)
1 p(t) p(t)
= Ht fo) Szto,u(s)H Sztog (t,s)
o(t) 9
A M3 plp()) K22 (2, p(s))(5)
s —at(o) + H(t, to) wto) + H(t, to)

This together with (13)-(15) yield a contradiction. The proof of Theorem 3.2 is complete.[]
For the special case T = Z, we have the following oscillation results:
Corollary 3.1. Assume that ¢(t) = o(t) and T = Z. If there exist a function
H(t,s) € Xt and a right dense continuous function ¢(¢) > 0 on T such that

t—o0o H(t to)
2
HA2 (¢, 1)
li — " Ht+1) <
lmfﬁfo Hitgg) CE T <
t—1
lim su (t,s+ 1)e Gg(t,s)] = +o0
s ks S s+t 609
t—1
hmtEEOHtto Szto (t,s +1)e(s) +G(t,s)] = —o0
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where

G(t,5) = (A — DA [HA2 (8, 8)] 51 [H(E, s + D)p(s)] 13

then all solutions of Eq. (1) satisfying |z(t)| = O(¢(t)) are oscillatory.
Corollary 3.2. Assume that ¢(t) =t and T = Z. If there exist a function H(¢, s) € A

and a right dense continuous function ¢(t) > 0 on T such that

t—»cI?o H(t to)
HA2 (8,1 — 1)p(t) + HA2 (1) p(t + 1)
l- b b
s H(t, to) =
t—1 i
hmsupH Z { (t,s+ 1)e(s) — g(t,s)] = 400
t—00 s=to+1
t—1 i
hmts_l)lfo 'H 8 %1 { (t,s+1e(s) +G(¢, S)] = -0

where

Gt,5) = (A — DATE[HA2 (1, s — D]ST[H(t, s + 1)p(s)] T

then all solutions of Eq. (1) satisfying |z(t)| = O(¢(t)) are oscillatory.

To illustrate the usefulness of the results, we state the corresponding theorems in the
above for the special case T = Z. It is not difficult to provide similar results for other
specific time scales of interest. On the other hand, all the results obtained in this paper
are restricted to those solutions satisfying |z(t)| = O(¢(t)). At present, it seems difficult
to obtain sufficient conditions for the oscillation of all solutions of Eq. (1) with p(¢) > 0
and A > 1 when the time scale T only contains isolated points. This problem is left for

future study.
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