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Abstract. The aim of this paper is to present some results on the exponential stability
of the zero solution for a class of fractionally perturbed ordinary differential equations,
whose right-hand sides involve the Riemann–Liouville substantial fractional integrals of
different orders and we assume that they are polynomially bounded. In their proofs we
apply a method recently developed by Rigoberto Medina. We also prove an existence
result for this type of equations.
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1 Introduction

It is well known that the system of linear fractional differential equations

Dαx(t) = Ax(t), x(t) ∈ RN , α ∈ (0, 1), (1.1)

where Dαx(t) is the Riemann–Liouville or the Caputo derivative of x(t) of the order α ∈ (0, 1)
and A is a constant matrix, do not have exponentially stable solutions, but asymptotically
stable only. The equilibrium x = 0 of this equation is asymptotically stable if and only if
| arg(λ)| > απ

2 for all eigenvalues λ of the matrix A. In this case all components of x(t) decay
towards 0 like t−α (see e.g. [8]).

In the paper [3] a sufficient condition for the exponential stability of the zero solution of
nonlinear fractional systems of equations of the following class

ẋ(t) = Ax(t) + g
(
t, x(t),RL Iα1 x(t), . . . ,RL Iαm x(t)

)
, x(t) ∈ RN , (1.2)

is proved. Here A is a constant matrix and
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RL Iαx(t) =
1

Γ(α)

∫ t

0
(t− s)α−1x(s)ds (1.3)

is the Riemann–Liouville fractional integral of order α of the function x(t). The aim of this
paper is to prove a result of that type for the following class of fractional system

ẋ(t) = A(t)x(t) + F
(

t, x(t)
)
+ f

(
t, I(α1,β1)x(t), . . . , I(αm,βm)x(t)

)
,

t ≥ 0, x(t) ∈ RN , x(t0) = x0,
(1.4)

where

I(α,β)x(t) =
1

Γ(α)

∫ t

0
(t− s)α−1e−β(t−s)x(s)ds (1.5)

is the so-called fractional substantial integral of the function x(t) of order α > 0 with a pa-
rameter β > 0 (see e.g. [5]). This integral is more general than integrals defining the following
fractional derivations:

RLDαx(t) :=
1

Γ(α)
d
dt

∫ t

0
(t− s)α−1x(s)ds (Riemann–Liouville), (1.6)

CDγx(t) :=
1

Γ(1− γ)

∫ t

0
(t− s)−γ ẋ(s)ds, γ = 1− α (Caputo), (1.7)

CFDβx(t) :=
1

1− β

∫ t

0
e−

β
1−β (t−s) ẋ(s)ds (Caputo–Fabrizio). (1.8)

We remark that the substantial fractional derivative, corresponding to the substantial frac-
tional integral is defined as

D(α,β)x(t) =
1

Γ(α)

[
∂

∂t
+ β

] ∫ t

0
(t− s)α−1e−β(t−s)x(s)ds, 0 < α < 1, β > 0. (1.9)

Definition 1.1. We say that x(t) is a solution of the initial value problem (2.1), defined on
the interval [t0, T) it it is C1-differentiable, the fractional integrals in this equation exists, x(t)
fulfils the equality (2.1) for all t ∈ (0, T) with x(0) = x0. It is called maximal, if there no
its proper continuation, i.e. there is no ε > 0, such that there exists a solution y(t) of this
problem, defined on the interval [t0, T + ε) with y(t) = x(t) for all t ∈ [t0, T). If T = ∞, the
this solution is called global.

In the paper [4] the problem of exponential stability of fractional differential equations of
the type (1.2), where instead of the Riemann–Liouville fractional integrals there are Caputo–
Fabrizio fractional integrals, is studied.

The aim of this paper is to prove a result on the exponential stability of the zero solution of
equations of the form (1.2), where instead of the constant matrix A there is a time-dependent
matrix A(t) and instead the Riemann–Liouville fractional integrals there are the Riemann–
Liouville substantial fractional integrals. These integrals have some better properties, conve-
nient for the study asymptotic properties of solutions, than the Riemann–Liouville fractional
integrals.

In the papers [7] a sufficient condition for the asymptotic stability of the zero solution of
the equation

RLDαx(t) = f (t, x(t)), α ∈ (0, 1), x ∈ R, (1.10)
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where
| f (t, x)| ≤ tµΦ(t)e−σt|x|m, µ ≥ 0, m > 1, σ > 0, (1.11)

f , Φ are continuous functions, are proved. In this case solutions decay toward 0 as t→ ∞ like
t−α. It is proven in the paper [13] that solutions of the equation

u′′(t) + aCDαu(t) + bu(t) = 0, α ∈ (0, 1), a > 0, b > 0 (1.12)

have the same asymptotic properties. This equation can be written in the form of the sys-
tem (1.4) and this means that there is a chance to obtain some conditions for the exponential
stability of the zero solution of a fractional perturbation of the equation (1.12), or the corre-
sponding system, only if we consider time dependent coefficients a, b. We consider this type of
equations in [3,4] with the Riemann–Liouville and Caputo–Fabrizio fractional integrals and in
this paper we study equations of this type with the Riemann–Liouville substantial fractional
integrals.

2 Existence result

In this section, we prove a local existence and uniqueness result concerning the initial value
problem

ẋ(t) = A(t)x(t) +F
(

t, x(t), I(α1,β1)x(t), . . . , I(αm,βm)x(t)
)

, x(t0) = x0, (2.1)

where A(t) is a continuous matrix function and F (t, x, v1, v2, . . . , vm) is a continuous mapping
in the variables (t, x, v1, v2, . . . , vm) in all variables t ≥ 0, v1, v2, . . . , vm ∈ RN .

Theorem 2.1. Let G ⊂ R×RN be a region, Hm ⊂ Rm is a region with 0 ∈ Hm and F ∈ C(G ×
Hm, RN) be a continuous locally Lipschitz mapping. Then for any (t0, x0) ∈ G, t0 ≥ 0, there exists
a δ > 0 such that the initial value problem (2.1) has a unique solution x(t) on the interval Iδ =

[t0, t0 + δ).

Proof. Let

G0 =
{
(t, x, u1, . . . , um) ∈ G× Hm : t0 ≤ t ≤ t0 + a, t0 ≥ 0,

‖x− x0‖ ≤ b, |ui| ≤ ‖x0‖+ b, i = 1, 2, . . . , m
}

,
(2.2)

for some a > 0, b > 0. Let

M1 = max
‖x−x0‖≤b,t0≤t≤t0+a

‖A(t)x‖},

M2 = max
(t,x,u1,...,um)∈G0

‖F (t, x, u1, . . . , um)‖

M3 = max
t0≤t≤t0+a

‖A(t)‖

(2.3)

and the mapping F satisfies the condition

‖F (t, x, u1, u2, . . . , um)−F (t, y, v1, v2, . . . , vm)‖ ≤ L0‖x− y‖+
m

∑
i=1

Li‖ui − vi‖ (2.4)

for all (t, x, u1, u2, . . . , um), (t, y, v1, v2, . . . , vm) ∈ G0. Let

0 < δ = min
{

a,
b

M1 + M2
, c,

1
M3 + L0 + ∑m

i=1 Li

}
, (2.5)
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where c = min1≤i≤m
[
Γ(αi)αi

] 1
αi . Let Cδ := C(Iδ, RN), Iδ = [t0, t0 + δ], be the Banach space

of continuous mappings from Iδ into RN endowed with the metrics d(h, g) := ‖h − g‖ :=
maxt∈Iδ

‖h(t) − g(t)‖. Let us define the successive approximations {xn}∞
n=0, xn ∈ Cδ :=

C(Iδ, RN), by

x0(t) ≡ x0,

xn+1(t) = x0 +
∫ t

t0

A(s)xn(s)ds

+
∫ t

t0

F
(

s, xn(s),
1

Γ(α1)

∫ s

0
(s− τ)α1−1e−β1(s−τ)xn(τ)dτ,

. . . ,
1

Γ(αm)

∫ s

0
(s− τ)αm−1e−βm(s−τ)xn(τ)dτ

)
ds,

t ∈ Iδ, n = 1, 2, . . .

(2.6)

First, let us show that ‖xn(t)− x0‖ ≤ b for all n ≥ 1, t ∈ Iδ. From the definition of the
number c it follows that

1
Γ(αi)

∫ t

0
(t− s)αi−1e−βi(t−s)ds ≤ 1

Γ(αi)

δαi

αi
≤ 1

Γ(αi)

cαi

δαi

≤ 1
Γ(αi)

Γ(αi)αi

αi
= 1, i = 1, 2, . . . , m

(2.7)

and so, we have∥∥∥∥ 1
Γ(αi)

∫ t

t0

(t− τ)αi−1e−βi(t−s)x0dτ

∥∥∥∥ ≤ 1
Γ(αi)

δαi

αi
[‖x0‖+ b] ≤ ‖x0‖+ b,

i = 1, 2, . . . , m, t ∈ Iδ.
(2.8)

Hence, the first approximation x1(t) is well defined and

‖x1(t)− x0‖ ≤ M1δ + M2δ = (M1 + M2)δ ≤ (M1 + M2)
b

M1 + M2
= b, t ∈ Iδ. (2.9)

This yields the inequality
‖x1(t)‖ ≤ ‖x0‖+ b for all t ∈ Iδ (2.10)

and thus (
t, x1(t),

1
Γ(α1)

∫ t

0
(t− τ)α1−1e−β1(t−s)x1(τ)dτ,

. . . ,
1

Γ(αm)

∫ t

0
(t− τ)αm−1e−βm(t−s)x1(τ)dτ

)
∈ G0

(2.11)

for all t ∈ Iδ. Now, similarly as in the proof of the existence theorem in [3] we find using the
Lipschitz condition (2.4) and the inequality (2.7) that

‖x2 − x1‖ ≤ kδ‖x1 − x0‖, (2.12)

where k = M3 + L0 + ∑m
i=1 Li and one can show by induction that

‖xn+1 − xn‖ ≤ (kδ)n‖x1 − x0‖, n = 1, 2 . . . (2.13)
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Since

xn(t) = x0(t) +
n

∑
i=1

[xi(t)− xi−1(t)] with x0(t) ≡ x0, (2.14)

we obtain

‖x0(t) +
n

∑
i=1

[xi(t)− xi−1(t)]‖ ≤ ‖x0‖+
n

∑
i=1
‖xi(t)− xi−1(t)‖

≤
(
‖x0‖+

n

∑
i=1

(kδ)i
)
‖x1 − x0‖, ∀ t ∈ Iδ.

(2.15)

From the definition of δ it follows that kδ < 1, and so the series ‖x0‖+ ∑∞
i=1(kδ)i is conver-

gent. This yields the uniform convergence of the sequence {xn(t)}∞
i=0 on the interval Iδ to a

continuous mapping x ∈ Cδ, which is a unique solution of the equation (2.1).

Corollary 2.2. For any x0 ∈ RN and any t0 ≥ 0 there exists a maximal solution of the initial value
problem (2.1).

This corollary is a consequence of Theorem 2.1.

3 Exponential stability of fractionally perturbed ODEs with linearly
bounded right-hand sides

The results described in this section, is based upon a method developed by Rigoberto Medina
in the paper [9] for systems of the form (1.4) without the fractional part. We extend his results
to the fractional system (1.4). We will work with the logarithmic norm µ(B), of a square N×N
matrix B = (bij) defined by

µ(B) = lim
ε→0+

‖I + εB‖ − 1
ε

, (3.1)

where I is the unit matrix and ‖ · ‖ is a norm on RN . For example,

µ(B) = µ1(B) = max
{

bjj +
n

∑
i 6=j
|bij|

}
, (3.2)

with respect to the 1-norm ‖x‖ := ‖x‖1 = ∑N
i=1 |xi|, x = (x1, x2, . . . , xN) (see [9, Lemma 5]).

We will apply the following Coppel’s inequality:

‖eBt‖ ≤ eµ(B)t, ∀t ≥ 0. (3.3)

To established the main results we make the following assumptions:

(H1) There are positive numbers Θ, q such that

‖A(t)− A(s)‖ ≤ q|t− s|Θ, ∀t, s ≥ 0, (3.4)

where ‖ · ‖ denotes a norm in RN .

(H2) For any logarithmic norm µ, the matrix A(t) satisfies

ρ = − sup
t≥0

µ(A(t)) > 0. (3.5)
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(H3) For a positive constant r ≤ ∞, there is a constant γ = γ(r) such that ρ > γ and

‖F(t, u)‖ ≤ γ‖u‖, ∀t ≥ 0, ∀u ∈ Ω(r), (3.6)

where Ω(r) = {h ∈ RN : ‖h‖ < r}.

(H4) There are positive constants ηi, µi > ρ, i = 1, 2, . . . , m such that

‖ f (t, v1, v2, . . . , vm)‖ ≤
m

∑
i=1

ηie−µit‖vi‖, ∀t ≥ 0, ∀vi ∈ Ω(r), i = 1, 2, . . . , m. (3.7)

Theorem 3.1. Suppose that the conditions (H1)–(H4) are satisfied. In addition, let

G(A(.), F, f ) := q
Γ(Θ + 1)

ρΘ+1 +
γ

ρ
+

1
ρ

m

∑
i=1

ηi

βαi
i (µi − ρ)

< 1, (3.8)

where
Γ(z) =

∫ ∞

0
τz−1e−τdτ (3.9)

is the Euler’s Gamma function. Then the zero solution of the equation (1.4) is exponentially stable with
respect to the ball Ω(λ), with λ = r(1− G(A(·), F, f )), provided that

‖x(0)‖ < λ. (3.10)

Proof. Let x(t) be a solution of the equation (1.4) on the interval [0, T), 0 < T < ∞ with the
initial value x(0) ∈ Ω(λ). Rewrite this system in the form

ẋ(t) = A(τ)x(t) + [A(t)− A(τ)]x(t) + F
(

t, x(t)
)
+ f

(
t, I(α1,β1)x(t), . . . , I(αm,βm)x(t)

)
, (3.11)

regarding an arbitrary τ ≥ 0 as fixed. Then

x(t) = eA(τ)tx(0)

+
∫ t

0
eA(τ)(t−s)[A(s)− A(τ)]x(s)ds

+
∫ t

0
eA(τ)(t−s)F(s, x(s))ds

+
∫ t

0
eA(τ)(t−s) f

(
s, I(α1,β1)x(s), . . . , I(αm,βm)x(s)

)
ds.

(3.12)

There are two cases to consider: r = ∞ and r < ∞. First, assume that r = ∞. Then we obtain
the relation

‖x(t)‖ ≤ eµ(A(τ))t‖x(0)‖+
∫ t

0
eµ(A(τ))(t−s)q|s− τ|Θ‖x(s)‖ds

+
∫ t

0
eµ(A(τ))(t−s)γ‖x(s)‖ds

+
∫ t

0
eµ(A(τ))(t−s)

( m

∑
i=1

ηi
∥∥I(αi ,βi)x(s)

∥∥ds
)

,

(3.13)

where ∥∥I(αi ,βi)x(s)
∥∥ ≤ 1

Γ(αi)

∫ t

0
(t− s)αi−1e−βi(t−s)‖x(s)‖ds. (3.14)
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Hence, we have

‖x(t)‖ ≤ eµ(A(τ))t‖x(0)‖

+
∫ t

0
eµ(A(τ))(t−s)q|s− τ|Θ‖x(s)‖ds

+
∫ t

0
eµ(A(τ))(t−s)γ‖x(s)‖ds

+
∫ t

0
eµ(A(τ))(t−s)

( m

∑
i=1

ηie−µis 1
Γ(αi)

∫ s

0
(s− σ)αi−1e−βi(s−σ)‖x(σ)‖dσ

)
ds.

(3.15)

Denote by Ψ(t) the right-hand side of this inequality. Then

‖x(t)‖ ≤ Ψ(t) ≤ eµ(A(τ))t‖x(0)‖

+
∫ t

0
eµ(A(τ))(t−s)q|s− τ|ΘΨ(s)ds

+ γ
∫ t

0
eµ(A(τ))(t−s)Ψ(s)ds

+
∫ t

0
eµ(A(τ))(t−s)

( m

∑
i=1

ηie−µis 1
Γ(αi)

∫ s

0
(s− σ)αi−1e−βi(s−σ)Ψ(σ)dσ

)
ds.

(3.16)

Since the function Ψ(t) is nondecreasing and∫ t

0
eµ(A(τ))(t−s)|s− τ|Θds ≤

∫ t

0
e−ρ(t−s)|T − s|Θds

≤
∫ ∞

0
e−ρζζΘdζ

=
1

ρΘ+1

∫ ∞

0
zΘe−zdz =

Γ(Θ + 1)
ρΘ+1 ,

(3.17)

∫ t

0
eµ(A(τ))(t−s)ds ≤

∫ ∞

0
e−ρζdζ =

1
ρ

, (3.18)

∫ s

0
(s− σ)αi−1e−βi(s−σ)dσ ≤

∫ ∞

0
ζαi−1e−βiζdζ =

Γ(αi)

βαi
i

, (3.19)

we obtain the inequality

Ψ(t) ≤ e−ρt‖x(0)‖+
(

q
Γ(Θ + 1)

ρΘ+1

)
+

γ

ρ
+

m

∑
i=1

ηi

βαi
i (µi − ρ)

)
Ψ(t). (3.20)

Hence, we have the inequality

Ψ(t)
(

1− G(A(·), F, f )
)
≤ e−ρt‖x(0)‖, (3.21)

i.e.

‖x(t)‖ ≤ Ψ(t) ≤ e−ρt
(

1− G(A(·), F, f )
)−1

‖x(0)‖ ∀t ∈ [0, T), (3.22)

where G(A(·), F, f ) is given by (3.8). Since the right-hand side of (3.8) is independent of T this
inequality holds for all t ∈ [0, ∞).
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Hence the condition ‖x(0)‖ < λ = r[1− G(A(·), F, f )], ensure the exponential stability of
the solution x(t) with respect to the ball Ω(λ).

If r < ∞, then using the Uryson’s lemma [2, Lemma 10.2], we get the exponential stability
in this case.

4 Example 1

Let us illustrate Theorem 3.1 by the following example, which is a fractional perturbation of
the [9, Example 9, p. 4]:

ẋ(t) = A(t)x(t)

+ F
(

x(t)
)
+ f

(
t, I(α1,β1)x(t), I(α2,β2)x(t)

)
, t ≥ 0, x(t) ∈ RN , x(t0) = x0,

(4.1)

where

A(t) =

[
−[a1 + d1(t)] d2(t)

d1(t) −[a2 + d2(t)]

]
, (4.2)

where a1, a2, γ1, γ2 are positive constants, d1(t), d2(t) are continuous nonnegative and bounded
functions.

x(t) =
(

x1(t), x2(t)
)T, F(x(t)) =

(
F1(x(t), F2(x(t))

)
=
(
γ1x1(t)e−δ1x1(t), γ2x2(t)e−δ2x2(t)

)
, (4.3)

where γi, δi(i = 1, 2) are positive constants,

f (t, v1, v2) = e−µ1tBv1 + e−µ2tCv2, vi ∈ R2, i = 1, 2, (4.4)

where B, C are constant 2× 2 matrices and µ1 > ρ, µ2 > ρ are constants.

Theorem 4.1. Suppose that the following conditions are satisfied:

(C1) There are positive numbers Θ, q1, q2 such that

|di(t)− di(s)| ≤ qi|t− s|Θ, ∀t, s ≥ 0; (4.5)

(C2)
ρ > γ, (4.6)

where ρ = min{a1, a2}, γ = max{γ1, γ2};

(C3) For a positive r ≤ ∞, there is a constant γ = γ(r) such that

‖F(u)‖ ≤ γ‖u‖, ∀t ≥ 0, ∀u ∈ Ω(r); (4.7)

(C4)

S0 = q
Γ(Θ + 1)

ρΘ+1 +
γ

ρ
+

1
ρ

(
‖B‖

βα1
1 (µ1 − ρ)

+
‖C‖

βα2
2 (µ2 − ρ)

)
< 1, (4.8)

where q = max{2q1, 2q2}.

Then the zero solution of the equation (4.1) is exponentially stable with respect to the ball Ω(λ0) with
λ0 = r(1− S0).
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Proof. One can check that the condition (C1) yields the inequality

‖A(t)− A(s)‖ ≤ q|t− s|Θ ∀t, s ≥ 0, (4.9)

i.e. the condition (H1) of Theorem 3.1 is fulfilled. By the formula [9, (44)] µ(A(t)) = −ρ, t = 0,
where ρ is defined in (C2), the condition (H2) of Theorem 3.1 is also fulfilled. Since Fi(x) =
γi|xi|, i = 1, 2, where γ1, γ2 > 0, ‖F(x)‖ ≤ γ‖x‖ with γ = max{γ1, γ2}, the condition (H4) of
Theorem 3.1 is fulfilled with η1 = ‖B‖, η2 = ‖C‖. If the condition (C4) is satisfied, then the
condition formulated in Theorem 3.1 is satisfied and hence we have proved that the assertion
of Theorem 4.1 is a consequence of Theorem 3.1.

5 Exponential stability of fractionally perturbed ODEs with several
power nonlinearities

In this section we consider the equation (1.4) under the following assumptions:

(G1) There are positive numbers Θ, q such that

‖A(t)− A(s)‖ ≤ q|t− s|Θ, ∀t, s ≥ 0; (5.1)

(G2) For any logarithmic norm µ, the matrix A(t) satisfies

ρ = − sup
t≥0

µ(A(t)) > 0; (5.2)

(G3) For a positive r < ∞, there are constants γ = γ(r), εi = εi(r) such that

‖F(u)‖ ≤ γ‖u‖+
m

∑
i=1

εi‖u‖ωi , ∀t ≥ 0, ∀u ∈ Ω(r), (5.3)

where 1 < ω1 < ω2 < · · · < ωm are constants, independent of r such that

ωiαi > 1, ωi > ρ, i = 1, 2, . . . , m. (5.4)

(G4) There are positive constants ηi, ξi, i = 1, 2, . . . , m and µi, µi > ρ, νi, νi > ρ, i = 1, 2, . . . , m
such that

‖ f (t, v1, v2, . . . , vm)‖ ≤
m

∑
i=1

ηie−µit‖vi‖+
m

∑
i=1

ξie−νit‖vi‖ωi , ∀t ≥ 0, ∀vi ∈ Ω(r), (5.5)

where 1 < ω1 < ω2 < · · · < ωm are constants, independent of r with the additional
property: ωiαi > 1, ωi > ρ, i = 1, 2, . . . , m.

Theorem 5.1. Let the conditions (G1)–(G4) be satisfied. In addition, let

G(A(·), F, f ) := q
Γ(Θ + 1)

ρΘ+1 +
γ

ρ
+

1
ρ

m

∑
i=1

ηi

βαi
i (µi − ρ)

< 1 (5.6)

Then the solution x(t) of the initial value problem (2.1) with t0 = 0 is global and

‖x(t)‖ ≤ H(‖x(0)‖)e−ρt ∀t ∈ [0, ∞), (5.7)



10 M. Medved’ and E. Brestovanská

where

H(z) = zKD1(z)D2(z) · · ·Dm(z), z ∈ Ω(r), (5.8)

D1(z) =
(

1− (ω1 − 1)(Kz)ω1−1G1

)− 1
ω1−1

Di(z) =
(

1− (ωi − 1)(Di−1)
ωi−1Gi

)− 1
ωi−1

, i = 2, 3, . . . , m,

(5.9)

where

Gi =
K

ωi − ρ

(
εi +

Li

Γ(αi)ωi [νi − ρ]

)
,

Li =

(
ωi − 1
ωiβi

)ωi βi−1[
Γ
(

ωiαi − 1
ωi − 1

)]ωi−1

, i = 1, 2, 3, . . . , m,

K =

(
1− G(A(·), F, f )

)−1

,

(5.10)

provided x(0) ∈ Ω(r) with

r = sup{z : (ωi − 1)Di(z)ωi−1Gi < 1, i = 1, 2, . . . , m}. (5.11)

Proof. Let x(t) be a solution of the initial value problem (2.1) with x(0) = x0. Then

‖x(t)‖ ≤ ‖x(0)‖e−ρt + q
∫ t

0
e−ρ(t−s)|s− τ|Θ‖x(s)‖ds + γ

∫ t

0
e−ρ(t−s)‖x(s)‖ds

+
∫ t

0
e−ρ(t−s)

( m

∑
i=1

ηi
1

Γ(αi)

∫ s

0
(s− σ)αi−1e−βi(s−σ)‖x(σ)‖dσ

)
ds

+
m

∑
i=1

εi

∫ t

0
e−ρ(t−s)‖x(s)‖ωi ds

+
∫ t

0
e−ρ(t−s)

m

∑
i=1

ξie−νis 1
Γ(αi)ωi

( ∫ s

0
(s− σ)αi−1e−βi(s−σ)‖x(σ)‖dσ

)ωi

ds.

(5.12)

The first three integrals are the same as in the linear case studied in Section 4. Therefore we
can apply the same procedure as in the proof of Theorem 3.1. Denote by Φ(t) the right-hand
side of the inequality (5.12). Hence, if K =

(
1− G(A(·), F, f )

)−1, then from this inequality we
have

‖x(t)‖ ≤ Φ(t)

≤ e−ρtK‖x(0)‖+ K
m

∑
i=1

εi

∫ t

0
e−ρ(t−s)Φ(s)ωi ds

+ K
∫ t

0
e−ρ(t−s)

m

∑
i=1

ξie−νis 1
Γ(αi)ωi

( ∫ s

0
(s− σ)αi−1e−βi(s−σ)Φ(σ)dσ

)ωi

ds.

(5.13)

Now, let us apply the desingularization method suggested in the paper [10] (see also
[11, 12]). Using the Hölder inequality with ωi and κi =

ωi
ωi−1 we obtain the estimate:
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( ∫ s

0
(s− σ)αi−1e−βi(s−σ)Φ(σ)dσ

)ωi

≤
( ∫ s

0
(s− σ)κi(αi−1)e−κi βi(s−σ)dσ

) ωi
κi
∫ s

0
Φ(σ)ωi dσ.

(5.14)

We have the following estimate:

∫ s

0
(s− σ)κi(αi−1)e−κi βi(s−σ)dσ =

∫ s

0
ηκi(αi−1)e−κi βiηdη

=
1

(κiβi)κi(αi−1)+1

∫ κi βis

0
zκi(αi−1)e−zdz

≤ 1
(κiβi)κi(αi−1)+1

Γ(κi(αi − 1) + 1).

(5.15)

Since κi =
ωi

ωi−1 , ωi
κi

= ωi − 1, κi(αi − 1) + 1 = ωiαi−1
ωi−1 , κiβi =

ωi βi
ωi−1 , we obtain the inequality

( ∫ s

0
(s− σ)αi−1e−βi(s−σ)Φ(σ)dσ

)ωi

≤ Li

∫ s

0
Φ(σ)ωi dσ, (5.16)

where

Li =

(
ωi − 1
ωiβi

)ωiαi−1

Γ
(

ωiαi − 1
ωi − 1

)ωi−1

. (5.17)

Using this inequality we obtain from the inequality (5.13):

‖x(t)‖ ≤ Φ(t) ≤ e−ρtK‖x(0)‖+ Ke−ρt
m

∑
i=1

εi

∫ t

0
eρsΦ(s)ωi ds

+

(
Ke−ρt

∫ t

0
e−(νi−ρ)s

m

∑
i=1

ξi
Li

Γ(αi)ωi
ds
) ∫ t

0
Φ(σ)ωi dσ.

(5.18)

From this inequality it follows the following inequality for v(t) = Φ(t)eρt :

v(t) ≤ K‖x(0)‖+
m

∑
i=1

∫ t

0
Fi(s)v(s)ωi ds, (5.19)

where

Fi(t) = Ke−[ωi−ρ]t
(

εi +
Li

Γ(αi)ωi [νi − ρ]

)
, i = 1, 2, . . . , m. (5.20)

From Pinto’s inequality [14], which is a generalization of the Bihari inequality [1], it follows
an integral inequality, corresponding to several power nonlinearities, formulated and proved
in [3] (see [3, Lemma 3.1]), we obtain the inequality:

v(t) ≤ H(‖x(0)‖), (5.21)
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where

H(z) = zKD1(z)D2(z) . . . Dm(z), z ∈ Ω(r), (5.22)

D1(z) =
(

1− (ω1 − 1)(Kz)ω1−1G1

)− 1
ω1−1

Di(z) =
(

1− (ωi − 1)(Di−1)
ωi−1Gi

)− 1
ωi−1

, i = 2, 3, . . . , m,

(5.23)

where

Gi =
∫ ∞

0
Fi(s)ds =

K
ωi − ρ

(
εi +

Li

Γ(αi)ωi [νi − ρ]

)
, i = 1, 2, . . . , m (5.24)

and
r = sup{z : (ωi − 1)Di(z)ωi−1Gi < 1, i = 1, 2, . . . , m}. (5.25)

This yields the inequality

‖x(t)‖ ≤ Φ(t) = v(t)e−ρt ≤ H(‖x(0)‖)e−ρt ∀t ∈ [0, ∞) (5.26)

and since the function H(z) is continuous on Ω(r) and H(0) = 0, from the inequality (5.26) it
follows that the maximal solution x(t) is global and that if x(0) ∈ Ω(r), then limt→∞ ‖x(t)‖ =
0.

6 Example 2

Consider the system (4.1) with A(t) defined by (4.4), F(x) defined by (4.3), ε1 = 0, i.e. F is
linearly bounded),

f (t, w) = ηe−µtw + ξe−νt(w2
1, w2

2), w = (w1, w2), ξ > 0, η > 0, (6.1)

‖ f (t, w)‖ ≤ ηe−µt‖w‖+ ξe−νt‖w‖2, ∀t ≥ 0, w ∈ R2, (6.2)

m = 1, Θ = 1, α1 = α =
2
3

, β1 = β = 2, ω1 = ω = 2,

ρ = min{a1, a2} < ω = 2, µ1 = µ > ρ, ν1 = ν > ρ.
(6.3)

Assume that

G(A(·), F, f ) =
(

max{2q1, 2q2}
) 1
(min{a1, a2})2 +

γ

min{a1, a2}

+
η

2
2
3 (min{a1, a2})(µ−min{a1, a2})

< 1.
(6.4)

We have

H(z) = zKDi(z) = zK
(

1− ξ(Kz)G1

)−1

, (6.5)

where K = G(A(·), F, f )−1,

G1 =
ξKL1

(2−min{a1, a2})Γ( 2
3 )[ν−min{a1, a2}]

, (6.6)
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where

L1 = L1 =

(
ω1 − 1
ω1β1

)ω1β1[
Γ
(

ω1α1 − 1
ω1 − 1

)]ω1−1

=

(
1
4

)4

Γ
(

4
3

)
. (6.7)

The function H(z) is obviously defined for all z ∈ Ω(r) with

r = sup
{

z : |z| < 1
ξKG1

}
=

G(A(·), F, f )
ξG1

. (6.8)

If x(t) is a solution of the initial value problem (4.1), then by Theorem 5.1

‖x(t)‖ ≤ H(‖x(0)‖)e−(min{a1,a2})t ∀t ≥ 0 (6.9)

for any x(0) ∈ Ω(r).
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