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Abstract. We establish a maximum principle for the weighted (p, q)-Laplacian, which
extends the general Pucci-Serrin strong maximum principle to this quasilinear abstract
setting. The feature of our main result is that it does not require any monotonicity
assumption on the nonlinearity. The proof combines a local analysis with techniques
on nonlinear differential equations.
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1 Introduction

The maximum principle is a basic tool in the mathematical analysis of partial differential
equations. This is an extremely useful instrument when studying the qualitative behavior of
solutions of differential equations and inequalities. The roots of the maximum principle go
back to C. F. Gauss, who already knew the maximum principle for harmonic functions in
1839, in close relationship with the mean value formula.

Let us first recall some of the major steps related to the understanding of the maximum
principle.

Let Q) be a bounded domain in RY such that dQ) has the interior sphere property at any
point. The maximum principle asserts that if # : O — R is a smooth function such that

—Au >0 in (),
{ u in 1.1)

u=20 on d(),
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then u > 0 in Q.

A stronger version of the maximum principle has been deduced by E. Hopf [13,14]. The
Hopf lemma asserts that if u satisfies (1.1), then the following alternative holds: either u
vanishes identically in Q) or u is positive in () and its exterior normal derivative du/dv < 0 on
Q).

G. Stampacchia [27] showed that the strong maximum principle continues to remain true
in the case of certain linear perturbations of the Laplace operator. More precisely, let a € L*(Q))
be such that, for some a« > 0,

/Q(|Du,z +a(x)i)dx > alully o forall u € HY(0).
Stampacchia’s maximum principle asserts that if

—Au+a(x)u>0 in Q,
u=20 on 0(),

then either u = 0in Q or u > 0 in () and du/dv < 0 on d).

J.-L. Vazquez [28] observed that the maximum principle remains true for suitable nonlinear
perturbations of the Laplace operator, subject to monotonicity assumptions on the nonlinear term.
More precisely, let f : IRO+ — R, ]R(J)r = [0,00), be a continuous non-decreasing function such

that f(0) = 0 and
/O CF(1) Mt = oo, where F(f) = /O F(s)ds.

Under these assumptions, Vazquez proved that if u € C?(Q) N C(Q) satisfies

—Au—+f(u) >0 in ),
u=0 on 0Q),

then either u =0in Q or u > 0in Q.
We point out that the Keller-Osserman type growth assumption

/0+ F(t)"2dt = o (1.2)

holds true for “superlinear" nonlinearities. For instance, f(f) = t1, with t € lRar and g > 1,
satisfies the hypotheses of the Vazquez maximum principle. Condition (1.2) is also satisfied by
some nonlinearities for which f(#) /¢ is not bounded at the origin, for instance f(t) = t(logt)?,
te RT,RT = (0,00).

The necessity of (1.2) is due to P. Benilan, H. Brézis and M. Crandall [4], while for the
p-Laplacian it is due to J.-L. Vazquez [28]. In this latter case, relation (1.2) becomes

/ F(t)"VPdt = co.
ot

For other classes of differential operators, necessity is due to J. I. Diaz [8, Theorem 1.4] and
P. Pucci, J. Serrin and H. Zou [25, Corollary 1].

In a series of papers, P. Pucci and J. Serrin [20,21,23] extended the maximum principle into
several directions and under very general assumptions. For instance, P. Pucci and J. Serrin
considered the following canonical divergence structure inequality

—div {A(|Du|)Du} + f(u) >0 inQ, (1.3)

where the function A = A(s) and the nonlinearity f satisfy the following conditions:
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(A1) A € C(RY);

(A2) the mapping s — sA(s) is strictly increasing in R™ and sA(s) — 0 as s — 0;
(F1) f € C(Ry);

(F2) f(0) =0 and f is non-decreasing on some interval (0,6), 6 > 0.

Condition (A2) is a minimal requirement for ellipticity of (1.3), allowing moreover singular
and degenerate behavior of the operator A at s = 0, that is, at critical points x € Q) of u, such
that (Du)(x) = 0.

The differential operator div { A(|Du|)Du} is called the A-Laplace operator. An important
example of A-Laplace operator that fulfills hypotheses (A1) and (A2) is the (p,q)-Laplace
operator A,u + Agu, with 1 < p < g < oo, which is generated by A(s) =sP 2 +s17%, s € R™.

Let G be the potential defined by G'(s) = sA(s) for all s € R™, with G(0) = 0. Condition
(A2) implies that the mapping s — G'(s) is strictly increasing and continuous in R{, so that G
can be extended by symmetry in R and G becomes a symmetric strictly convex function in R.
In particular, for A(s) = sP~2+3s772,s € R*, we have G(s) = s /p+5s7/q,s € ]R0+.

In what follows, a classical solution of problem (1.3) is a function u € C!(Q)) which satisfies
(1.3) in the distributional sense.

By the strong maximum principle for problem (1.3) we mean the statement that if u is a non-
negative classical solution of problem (1.3), with u(xp) = 0 at some point xg € (), then u = 0
in Q).

In order to describe the Pucci-Serrin strong maximum principle for the inequality (1.3), we
need a further definition. Put ®(s) = sA(s) for s € R and ®(0) = 0. Then, the function

S
H(s) = s®(s) — / ®(1)dt foralls € R}
0

is the pre-Legendre transform of G, since H(s) = sG'(s) — G(s) for all s € R].

Under hypotheses (A1), (A2), (F1) and (F2), the Pucci-Serrin maximum principle [21, The-
orem 1.1], see also [24, Theorem 1.1.1], establishes that the strong maximum principle holds
for problem (1.3) if and only if either f(s) = 0 for s € [0,u), with u > 0, or f(s) > 0 for
s € (0,6) and

¢ ds
b ey =
For further details on the maximum principle we refer to the monographs by L. E. Fraenkel
[11], D. Gilbarg and N. S. Trudinger [12], and M. H. Protter and H. F. Weinberger [19].

2 Strong maximum principle for the (p, q)-Laplacian

The global monotonicity assumption on the nonlinearity f plays a central role in the statement
of the Vazquez maximum principle. This hypothesis is replaced with the local monotonicity
condition (F2) in the strong maximum principle of Pucci and Serrin, namely f is assumed to
be non-decreasing on some interval (0, J).

Our purpose in this paper is to prove that the monotonicity constraint on f can be removed
and that only the growth of the nonlinearity near zero guarantees the maximum principle.
This will be done for the (p, q)-Laplace operator Ayu + Aju, with 1 < p < q < co, which plays
an important role in mathematical physics. We refer to V. Benci, P. D’Avenia, D. Fortunato
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and L. Pisani [3] for applications in quantum physics and to L. Cherfils and Y. Ilyasov [5]
for models in plasma physics. As pointed out in the previous section, the weighted (p,q)-
Laplace operator A,u + Aju satisfies the hypotheses of the Pucci-Serrin maximum principle.
This abstract result for the (p,q)-Laplacian has been used in several recent works, see e.g.
N. Papageorgiou, V. Rddulescu and D. Repovs [17,18].

We assume from now on, without further mentioning, that p, g are real numbers, with
1 < p < g, and that Q) is a bounded domain in RY.

Consider the following nonlinear problem

{—A,,u —Au+f(u)=0 inQ, 21)
u=0 on 0Q).

The main result of this paper is stated in the following theorem.

Theorem 2.1. Let f : R{ — R be a continuous function such that f(0) =0, f > 0 in R" and
/ F(£)~9dt = oo, 2.2)
0+

where F(t) = fotf(s)ds.

(i) Let u € CY(Q) be a positive solution of problem (2.1) and assume that u(xo) = 0 for some
xo € oQ). If 0Q) satisfies the interior sphere condition at xo, then the normal derivative of u at xg
is negative.

(ii) Let u € C1(Q) be a non-negative solution of problem (2.1). Then the following alternative holds:
either u vanishes identically in Q) or u is positive in ().

The proof is based on some local estimates and uses some ideas found in the papers by
S. Dumont, L. Dupaigne, O. Goubet and V. Rddulescu [9] and L. Dupaigne [10]. A central role
in our arguments is played by the comparison of u# with the minimal solution of a suitable
nonlinear second order differential equation in a small ring.

Theorem 2.1 establishes that the maximum principle associated to problem (2.1) holds even
for nonlinearities which are not monotone in any interval (0,5). A class of functions of this
type is given by f(t) = t*(1 + cost™!) for all t € RT, where a > g — 1.

The interest for the study of non-negative solutions in problem (2.1) is due to reaction-
diffusion models. In these prototypes u is viewed as the density of a reactant and the region
where u = 0 is called the dead core, that is where no reaction takes place. We refer to P. Pucci
and J. Serrin [22] for a thorough analysis of dead core phenomena in the setting of quasilinear
elliptic equations.

2.1 An associated (p, q)-Dirichlet problem on a small ring

Let u € C}(Q) be a positive solution of problem (2.1). Assume that there exists xo € Q) such
that u(xp) = 0. Since 0Q) has the interior sphere property at x, there exists small » > 0 and a
ball B, of radius r such that B, C Q) and 9B, N 0Q) = {x(}. Passing eventually to a translation,
we can assume that B, is centered at the origin.

Let R = B, \ B,/, and put

m = min{u(x) : x € 9B, )1 }.
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Since u is positive, it follows that m > 0.
Consider the following nonlinear boundary value problem

A=A+ f(v) =0 in R,
v=0 on 0B, (2.3)

v=m on 9B, ;.

The energy functional £ : W7(R) — R associated to problem (2.3) is

£(v) = 1/ |Dv|”dx+1/ Dofidx+ [ F(o)dx.
P IR qJR R
The manifold
M={ve WYI(R):v>0inR, v=0ondB, v=mondB,,},

and the minimization problem
inf{€(v) : ve M}

associated to (2.3), are well defined.

Since £ is coercive, it follows that any minimizing sequence (v,), C M of £ is bounded.
By reflexivity, up to a subsequence, not relabelled, we deduce that there exists vg € M such
that

v, — vy in WYI(R).

Moreover, £(vp) < liminf, .« E(v,) by the weakly lower semicontinuity of £. Hence vy
minimizes £ over M. Consequently,

—Apvo - Aqvo —l—f(vg) =0 in R,

v9 = 0 on 0B, and vy = m on dB, ;. These arguments also show that v is a minimal solution of
problem (2.3).

The same conclusion can be obtained after observing that the functions 0 (resp., u) are
subsolution (resp. supersolution) of problem (2.3) and then using the same approach as in the
proof of Proposition 2.1 and Corollary 2.2 in [9]. We point out that the minimality principle
stated in [9, Corollary 2.2] holds true with no monotonicity assumption on the nonlinear
term f. Details on the method of lower and upper solutions for the (p, q)-Laplace operator
can be found in A. Araya and A. Mohammed [2, Lemma 2.3], see also [2, Example 1.1 (ii)].

In view of the invariance of R and of the (p, q)-Laplace operator, the function vg o R is still
a non-negative solution of problem (2.3), for any rotation R of the Euclidean space. Moreover,
the minimality of vy implies that

vo(x) < vo(R(x)) forallx € R.
Applying this inequality at y = R~!(x), we deduce that vy is a radial function. Therefore, (2.3)

along vy can be written in the equivalent form as

{<lervarP2va>’ + (M) ¢ f(e) =0 foralls € (/2m),

vo(r) =0, vo(r/2) = m.
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2.2 Boundary behavior of the comparison function vy

In what follows we shall prove that the derivative of vy at both r/2 and r is negative. First
note that
vp(r) <0

since v is non-negative in (r/2,r) and vy(r) = 0. Our aim is to show that
vp(r/2) <0 and oy(r) <O.

Multiplying by sN~! the equation (2.4) and integrating on [s, 7], where r/2 < s < r, we get

N ()P 20 (s) + N ep(5) 120 (6) + [ N f(en(t)de = 0. @5
Taking s = r/2 in (2.5), we deduce that
vy(r/2) <0

since f is positive on R* and vy(r/2) = m > 0.
Using this fact in combination with v{(r) < 0, we claim that v((r) < 0. Indeed, arguing by
contradiction, let
vy(r) = 0. (2.6)

Since v(r/2) < 0, there exists a € (r/2,r] such that
vp(a) = 0 and vj(s) < 0 forall s € [r/2,a).

Taking s = a in relation (2.5) we deduce that vy vanishes identically in [a,7].
Since vy, < 0 in [r/2,a), by Corollary 2.4 of [1] the equation in (2.4) is equivalent in
[r/2,a) to

N-1
v(s)|P?vg(s)

[06(s)1" 205 (s) + f(vo(s)) = 0. (27)

= (p = Doo(s)[P 205 (s) — (9 = Doo(s)[ 70 (s)

N-1
s

Fix s € (r/2,a). Multiplying equation (2.7) by v}, and integrating on [s, a], we get

Lissor+ b - (v-1) [ g vy [ o) —o, 29
since vg(a) = 0. On the other hand, since f > 0, relation (2.5) shows that the mapping
[1/2,1] 5 £ N7 ([0 (1) 72 + [0} (1) 72) (1)
is negative and non-decreasing. This shows that the mapping
[r/2,1] 3 £ N7 (Jop (1) P~ + [op (1) 1)

is decreasing. Since [r/2,r] > t — N~ is an increasing function, we deduce that

[r/2,7] >t = |0 ()P~ + |vp(t)]7!  is decreasing.
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Now, using the fact that both the real numbers p — 1 and g — 1 are positive, we conclude that
|vg| is decreasing in [r/2,r]. Hence,

r/2,r] St |oh(D)|P + |vh(£)]|7 is decreasing.
0 0 g
Now s € (r/2,a), so that

" (b1 + b))

[ SOV LO 1t < (joj(s)17 + o (s)1) S

as s — a—. Therefore

/“ Ivé(t)|Pdt+/“ LIQI
I s t s t _
m =

N S O 29

Returning now to (2.8), we deduce the following basic estimate

;,!vé(sﬂ” + ;wa(sw = ([oh(s)]P + [oh(s)[7) (1) + F(on(s)) as's —a.

Consequently,

| —

(1o (s)]P + |o(s)]7) (1+0(1)) < F(vo(s)) ass—a . (2.10)

=

Since vy(s) -+ 0ass — a~ and 1 < p < g, it follows that the left-hand side of (2.10) goes to
zero like |vj(s)|7 as s — a~. Therefore

;/ lo6(s)]7(1 4+ 0(1)) < F(vo(s)) ass—a .

Fix € > 0. Then, by (2.10) and for all s < a sufficiently close to a, we obtain

1NV —ofn
— ———dt < (1 —s).
() [ e < 0vea=s
Since v; is negative in (s, a), the change of variable s = vy(t) yields
1\ o) ds
<q,> /0 W<(1+6)(a—5)<00,
which contradicts the assumption (2.2). Consequently, (2.6) is false and the claim vj(r) < 0 is

completely proved.

2.3 Conclusion of the proof of Theorem 2.1

(i) By the construction of vy, we have u > vy in R. Therefore,

i A= Hx0) o vo((L 1)) /
v t—0+ t tlg(IJ1+ t (r) >0,

WV

since we supposed, without loss of generality, in the construction above that B; is centered at
the origin.
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(ii) Arguing by contradiction, we assume that u vanishes somewhere in (), but u does not
vanish identically. Hence,

Q. ={xeQ:ux)>0}#0.
Fix a point z € O, which is closer to d(); than to d() and take the largest ball B C O,
centered at z. Then, u(xy) = 0 for some xo € dB, while u > 0 in B. Clearly, Du(xp) = 0, since

X is an interior minimum point of u in ().
On the other hand, (i) applied in B gives

du
ov
Hence Du(xp) # 0. This contradicts the fact that x( is an interior minimum point of u. The
proof of Theorem 2.1 is now complete. O

(XO) < 0.

Perspectives and open problems

(i) The main result of this paper establishes that the strong maximum principle for the (p,q)-
Laplace operator holds without any monotonicity assumption on the nonlinearity f. Accord-
ingly, the maximum principle holds as soon as the nonlinear term satisfies a suitable divergent
integrability condition near the origin. A related property has been previously established in
[9], in the framework of logistic equations with blow-up boundary. In this latter case, no
monotonicity hypothesis is necessary and the existence of such singular solutions depends
only on a convergent Keller-Osserman integrability condition at infinity. Inspired by [9, The-
orem 1.1], we raise the following

Open problem. Is condition [, F (t)~1/dt = co used in Theorem 2.1 equivalent with the

following assumption
4

limsuplim [ [F(a) — F(t)]"V9dt = 0 ?
a0+ €70 Je
We do not have any information concerning the relevance of this growth condition in relation-

ship with the maximum principle.

(ii) A very interesting open problem is to establish a version of Theorem 2.1 in the case
where the (p,q)-Laplace operator is replaced by the differential operator div { A(|Du|)Du},
when A satisfies assumptions (Al) and (A2).

(iii) We do not know at this stage whether the compact support principle stated in [24, Theo-
rem 1.1.2] still remains true if the local monotonicity assumption (F2) is removed and only the
integrability condition (1.1.7) of [24] is assumed. We raise the same open problem for the dead
core principle stated in [24, Theorem 8.4.1] and we expect that this basic result still remains true
without the assumption that the nonlinear term f is non-decreasing on the whole real axis.

(iv) The study of (p,q)-Laplace differential operators had a growing interest after the
pioneering papers of P. Marcellini [15,16] on (p, q)-growth conditions. These problems involve
integral functionals of the type

WH(Q) 5 u— / G(x, Du)dx,
0

where ) C RY is an open set. The integrand G : Q) x RN — R satisfied unbalanced polynomial
growth conditions of the type

CIP S G(x Q) SIEIT+1, withl<p<g,
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for every x € Q and ¢ € RV,
An interesting double phase type operator considered in the papers of M. Colombo and
G. Mingione [6,7], addresses functionals of the type

uH/QQDu\ua(x)\Dumdx, 2.11)

where a(x) > 0. The meaning of this functional is also to give a sharper version of the
following energy

un—>/ |Du|P®)dx,
0

thereby describing sharper phase transitions.

Composite materials with locally different hardening exponents p and g can be described
using the energy defined in (2.11). Problems of this type are also motivated by applications
to elasticity, homogenization, modelling of strongly anisotropic materials, Lavrentiev phe-
nomenon, etc.

Accordingly, a new double phase model can be given by

1S17 +a(x)[S7 if [¢]
g1 +a(x)[g[™if [g]

1,

) (x,&) € Qx RN, (2.12)

<
Pa(x, [5]) = N
>

with a(x) > 0 in Q.
We consider that a very interesting research direction corresponds to the study of a strong

maximum principle for anisotropic differential operators associated to the functional defined
in (2.12).
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