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Abstract. We study the classification and evolution of bifurcation curves of positive
solutions for the one-dimensional Neumann–Robin boundary value problem{

u′′(x) + λ f (u(x)) = 0, 0 < x < 1,
u′(0) = 0 and u′(1) + αu(1) = 0,

where λ > 0 is a bifurcation parameter, α > 0 is an evolution parameter, and nonlin-
earity f satisfies f (0) ≥ 0 and f (u) > 0 for u > 0. We obtain the multiplicity of positive
solutions for α > 0 and λ > 0. Applications are given.
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1 Introduction

We study the classification and evolution of bifurcation curves of positive solutions for the
one-dimensional Neumann–Robin boundary value problem{

u′′(x) + λ f (u(x)) = 0, 0 < x < 1,

u′(0) = 0 and u′(1) + αu(1) = 0,
(1.1)

where λ > 0 is a bifurcation parameter and α > 0 is an evolution parameter. We basically
assume that nonlinearity f satisfies the following hypothesis:

(H) f (0) ≥ 0, f (u) > 0 for 0 < u < η, and f ∈ C[0, η) ∩ C2(0, η), where η ∈ (0, ∞]. In
addition, f (η) = 0 if 0 < η < ∞. (Note that we allow η to be either a finite positive
number or infinite.)
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If α = 0, (1.1) becomes a Neumann boundary value problem. In this case, for all λ > 0, it
is easy to show that u(x) ≡ η < ∞ is the unique positive solution. If α = ∞, (1.1) becomes the
Neumann–Dirichlet boundary value problem{

u′′(x) + λ f (u(x)) = 0, 0 < x < 1,

u′(0) = 0 and u(1) = 0,

which is equivalent to the Dirichlet boundary value problem{
u′′(x) + λ f (u(x)) = 0, − 1 < x < 1,

u(−1) = 0 and u(1) = 0,
(1.2)

due to symmetry of positive solutions u on (−1, 1).
We first observe that u is a positive solution of (1.1) with fixed α > 0. Since u′′(x) =

−λ f (u(x)) < 0 on (0, 1) and u′(0) = 0, hence u(x) is strictly concave and strictly decreasing
on (0, 1). This implies that

u(0) > u(1). (1.3)

We study the classification and evolution of bifurcation curves of positive solutions of (1.1)
defined by

Sα = {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1.1)} (1.4)

on the (λ, ‖u‖∞)-plane when the evolution parameter α varies from 0+ to infinity.
It should be noticed that shapes of bifurcation curves of positive solutions for one-

dimensional Dirichlet boundary value problem (1.2) defined by

S̄ = {(λ, ‖uλ‖∞) : λ > 0 and uλ is a positive solution of (1.2)} (1.5)

on the (λ, ‖u‖∞)-plane have been studied extensively, see e.g. [5,6,8–13] and references therein.
While shapes of bifurcation curves of positive solutions for one-dimensional Neumann–Robin
problem (1.1) are much less considered; see [1–4, 14]. Anuradha, Maya and Shivaji [4] first
studied the existence of positive solutions for (1.1) where the parameters α and λ satisfy
α, λ > 0, and f ∈ C2[0, ∞) is strictly convex, non-decreasing, and superlinear with the positone
( f (0) > 0) case as well as the semipositone ( f (0) < 0) case. They also showed that, for each
α > 0, Sα lies on the left hand side of S̄ on the (λ, ‖u‖∞)-plane, see [4, Figs. 2.3 and 3.4].
Afrouzi and Khaleghy Moghaddam [1–3] studied the existence and multiplicity of positive
solutions for (1.1) where the parameters α and λ satisfy α < 0 < λ, and f ∈ C2[0, ∞) is strictly
convex and increasing with the semipositone ( f (0) < 0) case. Yang and Yang [14] extended
some results in Anuradha, Maya and Shivaji [4] by replacing u′′ in (1.1) by the one-dimensional
p-Laplacian operator with p > 1.

Before going into further discussions on problems (1.1) and (1.2), we first introduce fol-
lowing terminologies, which also hold for S̄ if Sα is replaced by S̄.

Monotone increasing and strictly increasing: We say that, on the (λ, ‖u‖∞)-plane, the bifur-
cation curve Sα is monotone increasing if Sα is a continuous curve and for each pair of
points (λ1, ‖uλ1‖∞) and (λ2, ‖uλ2‖∞) of Sα, ‖uλ1‖∞ < ‖uλ2‖∞ implies λ1 ≤ λ2, and it is
strictly increasing if ‖uλ1‖∞ < ‖uλ2‖∞ implies λ1 < λ2.

Monotone decreasing and strictly decreasing: We say that, on the (λ, ‖u‖∞)-plane, the bi-
furcation curve Sα is monotone decreasing if Sα is a continuous curve and for each pair of
points (λ1, ‖uλ1‖∞) and (λ2, ‖uλ2‖∞) of Sα, ‖uλ1‖∞ < ‖uλ2‖∞ implies λ1 ≥ λ2, and it is
strictly decreasing if ‖uλ1‖∞ < ‖uλ2‖∞ implies λ1 > λ2.
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S-shaped: We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve Sα is S-shaped if Sα has
at least two turning points, say (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞), satisfying λ∗ < λ∗ and
‖uλ∗‖∞ < ‖uλ∗‖∞, and

(i) at (λ∗, ‖uλ∗‖∞) the bifurcation curve Sα turns to the left,

(ii) at (λ∗, ‖uλ∗‖∞) the bifurcation curve Sα turns to the right,

(iii) Sα initially continues to the right and eventually continues to the right.

Exactly S-shaped: We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve Sα is exactly S-
shaped if Sα is S-shaped and it has exactly two turning points; see Fig. 1.1 (I).

Reversed S-shaped: We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve Sα is reversed S-
shaped if Sα has at least two turning points, say (λ∗, ‖uλ∗‖∞) and (λ∗, ‖uλ∗‖∞), satisfying
λ∗ < λ∗ and ‖uλ∗‖∞ > ‖uλ∗‖∞, and

(i) at (λ∗, ‖uλ∗‖∞) the bifurcation curve Sα turns to the left,

(ii) at (λ∗, ‖uλ∗‖∞) the bifurcation curve Sα turns to the right,

(iii) Sα initially continues to the left and eventually continues to the left.

Exactly reversed S-shaped: We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve Sα is
exactly reversed S-shaped if Sα is reversed S-shaped and it has exactly two turning points.

⊂-shaped: We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve Sα is ⊂-shaped if Sα has
at least one turning point, say (λ∗, ‖uλ∗‖∞), satisfying

(i) at (λ∗, ‖uλ∗‖∞) the bifurcation curve Sα turns to the right,

(ii) Sα initially continues to the left and eventually continues to the right.

Exactly ⊂-shaped: We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve Sα is exactly
⊂-shaped if Sα is ⊂-shaped and it has exactly one turning point; see Fig. 1.1(II).

Reversed ⊂-shaped: We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve Sα is ⊂-shaped
if Sα has at least one turning point, say (λ∗, ‖uλ∗‖∞), satisfying

(i) at (λ∗, ‖uλ∗‖∞) the bifurcation curve Sα turns to the left,

(ii) Sα initially continues to the right and eventually continues to the left.

Exactly reversed ⊂-shaped: We say that, on the (λ, ‖u‖∞)-plane, the bifurcation curve Sα is
exactly reversed ⊂-shaped if Sα is reversed ⊂-shaped and it has exactly one turning point.

In Section 2 below, we study the classification and evolution of bifurcation curves Sα of
positive solutions for (1.1) with general nonlinearity f satisfying hypothesis (H). In addition,
as applications, we study the classification and evolution of bifurcation curves Sα of positive
solution for (1.1) with two particular nonlinearities

f (u) = exp
(

u
1 + εu

)
, ε > 0 (1.6)

and
f (u) = u (1− sin u) + up, p ≥ 1 (1.7)
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Figure 1.1: (I) Exactly S-shaped bifurcation curve Sα with exactly two turn-
ing points, which starts at (0, 0) and goes to infinity along the horizontal line
‖u‖∞ = η. (II) Exactly ⊂-shaped bifurcation curve Sα with exactly one turn-
ing point, which starts at (λ0, 0) and goes to infinity along the horizontal line
‖u‖∞ = η.

which satisfy hypothesis (H) with η = ∞.
Huang and Wang [6] studied the evolution and qualitative behaviors of bifurcation curves

S̄ of positive solutions of one-dimensional perturbed Gelfand problem (1.2), (1.6).

Theorem 1.1 ([6, Theorem 2.1 and Fig. 1]). Consider (1.2), (1.6). Then there exists a positive
ε̃ ≈ 0.2457 such that, on the (λ, ‖u‖∞)-plane, such that the following assertions (i)–(iii) holds:

(i) For 0 < ε < ε̃, the bifurcation curve S̄ is exactly S-shaped.

(ii) For ε = ε̃, the bifurcation curve S̄ is strictly increasing and (1.2), (1.6) has exactly one degenerate
positive solution.

(iii) For ε > ε̃, the bifurcation curve S̄ is strictly increasing and all positive solutions of (1.2), (1.6)
are nondegenerate.

Wang [13] studied the evolution and qualitative behaviors of bifurcation curves S̄ of posi-
tive solution of Dirichlet problem (1.2), (1.7).

Theorem 1.2 ([13, Theorem 2.1 and Figs. 1–2]). Consider (1.2), (1.7). Then, on the (λ, ‖u‖∞)-plane,
the bifurcation curve S̄ satisfies the following assertions (i)–(iv).

(i) For p = 1, the bifurcation curve S̄ starts at
(

π2

8 , 0
)

and goes to infinity oscillationally along the
vertical line λ = π2

8 , and it has infinitely many turning points.

(ii) For 1 < p < 2, the bifurcation curve S̄ starts at
(

π2

4 , 0
)

and goes to infinity along the vertical
line λ = 0, and it is reversed S-shaped.
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(iii) For p = 2, the bifurcation curve S̄ starts at
(

π2

4 , 0
)

and goes to infinity along the vertical line
λ = 0, and it is strictly decreasing.

(iv) For p > 2, the bifurcation curve S̄ starts at
(

π2

4 , 0
)

and goes to infinity along the vertical line
λ = 0, and it is exactly reversed ⊂-shaped.

The paper is organized as follows. Section 2 contains statements of main results. Section 3
contains lemmas needed to prove the main results. Finally, Section 4 contains the proofs of
the main results.

2 Main results

The main results in this paper are next Theorems 2.1–2.6 and 2.8. In Theorems 2.1 and 2.3
for (1.1), under (H) for nonlinearity f , for all α > 0, we present some basic properties of
bifurcation curves Sα on the (λ, ‖u‖∞)-plane. In particular, in Theorem 2.1(iii), we show that,
on the (λ, ‖u‖∞)-plane, Sα moves to right strictly as α increases and Sα tends to the ‖u‖∞-axis
as α approaches 0+ and tends to S̄ as α approaches infinity. In Theorem 2.1 (iv), we prove an
interesting comparison result, cf. Remark 2.2 stated behind. In Theorems 2.4 and 2.5, under
(H) and some suitable hypotheses on f , for α > 0, we give a classification of bifurcation curves
Sα on the (λ, ‖u‖∞)-plane. In Theorems 2.6 and 2.8, as applications of Theorems 2.1–2.5, we
study the classification and evolution of bifurcation curves Sα for problem (1.2), (1.6) and
problem (1.2), (1.7), respectively with α varying from 0+ to infinity.

We first define the number λ∗ = λ∗(α) ∈
(
0, π2

4

)
satisfying

α =
√

λ∗ tan
√

λ∗. (2.1)

Notice that λ∗ is a strictly increasing function of α > 0.

Theorem 2.1. Consider (1.1) with fixed α > 0. Assume that f satisfies (H). Then the bifurcation
curve Sα is a continuous curve on the (λ, ‖u‖∞)-plane. Moreover, on the (λ, ‖u‖∞)-plane, Sα satisfies
the following assertions (i)–(iv).

(i) If there exist s0 ≥ 0 and 0 < L0 < ∞ such that

lim
u→0+

f (u)
us0

= L0,

then Sα starts from infinity along the horizontal line ‖u‖∞ = 0 if s0 > 1, from the point
(

λ∗

2L0
, 0
)

if s0 = 1, and from the origin (0, 0) if 0 ≤ s0 < 1.

(ii) (a) If η = ∞ and there exist s∞ ≥ 0 and 0 < L∞ < ∞ such that

lim
u→∞

f (u)
us∞

= L∞, (2.2)

then Sα goes to infinity along the vertical line λ = 0 if s∞ > 1, to infinity along the vertical line
λ = λ∗

2L∞
if s∞ = 1, and to infinity as λ→ ∞ if 0 ≤ s∞ < 1.

(b) If 0 < η < ∞, f (η) = 0 and there exist sη > 0 and Lη > 0 such that

lim
u→η−

f (u)
(η − u)sη

= Lη ,

then Sα goes to infinity along the horizontal line ‖u‖∞ = η if sη ≥ 1, and ends at some point(
λη , η

)
with λη > 0 if 0 < sη < 1.
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(iii) For any two positive numbers α1 < α2, Sα2 lies strictly on the right hand side of Sα1 on the
(λ, ‖u‖∞)-plane (So Sα1 ∩ Sα2 = ∅). In addition,

(a) As α approaches 0+, Sα tends to the positive ‖u‖∞-axis if η = ∞ and Sα tends to the segment
(on the positive ‖u‖∞-axis) connecting the origin (0, 0) and the point (0, η) if 0 < η < ∞.

(b) As α approaches infinity, Sα tends to S̄.

(iv) (See Fig. 2.1.) Consider (1.1) with f = f1 and f = f2 both satisfying (H), and denote their
bifurcation curves by Sα,1 and Sα,2 respectively. If f2(u) ≥ f1(u) for 0 < u < η, then Sα,2 lies
on the left hand side of (possibly coincides with) Sα,1 on the (λ, ‖u‖∞)-plane. In particular, if
there exist two positive a < b < η such that

f2(u) = f1(u) on

{
[0, a] ∪ [b, η] if η < ∞,

[0, a] ∪ [b, η) if η = ∞,

f2(u) > f1(u) on (a, b),

(2.3)

then, on the (λ, ‖u‖∞)-plane, Sα,2 coincide with Sα,1 in the region

{(λ, ‖u‖∞) : λ > 0 and ‖u‖∞ ∈ (0, a] ∪ [(α + 1) b, η)}

if (α + 1) b < η and in the region

{(λ, ‖u‖∞) : λ > 0 and ‖u‖∞ ∈ (0, a]}

if (α + 1) b ≥ η, and Sα,2 lies strictly on the left hand side of Sα,1 in the striped region
{(λ, ‖u‖∞) : λ > 0 and ‖u‖∞ ∈ (a, b)}.

Figure 2.1: (I) Possible graphs of f1 and f2 satisfying f1(u) = f2(u) > 0 on
[0, a]∪ [b, ∞) and f2(u) > f1(u) > 0 on (a, b) with some positive a < b < η = ∞.
(II) Possible corresponding bifurcation curves Sα,1 and Sα,2 on the (λ, ‖u‖∞)-
plane.

Remark 2.2 (Cf. Theorem 2.1 (iv) for Neumann–Robin problem (1.1)). Consider Dirichlet prob-
lem (1.2) with f = f1 and f = f2 both satisfying (H) and (2.3), and denote their bifurcation
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curves by S̄1 and S̄2 respectively. Then it is well-known that, on the (λ, ‖u‖∞)-plane, S̄2 coin-
cide with S̄1 in the striped region {(λ, ‖u‖∞) : λ > 0 and ‖u‖∞ ∈ (0, a]} and S̄2 lies strictly on
the left hand side of S̄1 in the striped region {(λ, ‖u‖∞) : λ > 0 and ‖u‖∞ ∈ (a, η)}.

Theorem 2.3. Consider (1.1). Assume that f satisfies (H). If f (u)− u f ′(u) changes sign exactly k
times in an interval (a, b) ⊂ (0, η) with some positive a < b ≤ η. Then there exist k positive numbers

(0 <) αk < · · · < α2 < α1

such that, if 0 < α ≤ αi for i ∈ {1, 2, . . . , k}, then the bifurcation curve Sα has at least i turning points
on the (λ, ‖u‖∞)-plane.

For the sake of convenience, we assume the following conditions.

(C1+) f (u)− u f ′(u) ≥ ( 6≡) 0 on (0, β1) with some β1 ∈ (0, η).

(C1−) f (u)− u f ′(u) ≤ ( 6≡) 0 on (0, β1) with some β1 ∈ (0, η).

(C2+) If η = ∞, f (u) − u f ′(u) ≥ ( 6≡) 0 on (β2, η) with some β2 ∈ (0, η). If η < ∞, the
number sη defined in Theorem 2.1(ii)(b) is equal to or larger than 1.

(C2−) If η = ∞, f (u)− u f ′(u) ≤ ( 6≡) 0 on (β2, η) with some β2 ∈ (0, η).

(D1) (See Fig. 2.2 (I).) There exist two positive p∗ < p < η such that

f (u)− u f ′(u)


> 0, if 0 < u < p∗,

= 0, if u = p∗ and u = p,

< 0, if p∗ < u < p.

(D2) (See Fig. 2.2 (II).) There exist two positive p∗ < p < η such that

f (u)− u f ′(u)


< 0, if 0 < u < p∗,

= 0, if u = p∗ and u = p,

> 0, if p∗ < u < p.

Theorem 2.4. Consider (1.1). Assume that f satisfies (H). Then, on the (λ, ‖u‖∞)-plane, the bifurca-
tion curve Sα satisfies the following assertions (i)–(iv).

(i) If f (u)− u f ′(u) > 0 (resp. f (u)− u f ′(u) < 0) almost everywhere for u > 0, then Sα is strictly
increasing (resp. strictly decreasing) for all α > 0.

(ii) If f (u) satisfies (C1+), (C2+) and (D1) (resp. (C1−), (C2−) and (D2)) with positive p∗ < p < η

and
∫ p

0 s [ f (s)− s f ′(s)] ds < 0 (resp.
∫ p

0 s [ f (s)− s f ′(s)] ds > 0). Then Sα is S-shaped (resp.
reversed S-shaped) for all α > 0.

(iii) (See Fig. 2.3.) If f (u) satisfies (C1+), (C2+) and (D1) (resp. (C1−), (C2−) and (D2)) with
positive p∗ < p < η and the following conditions (3a)–(3b) hold.

(3a) The bifurcation curve S̄ of (1.2) is S-shaped (resp. reversed S-shaped),
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Figure 2.2: (I) Graph of 2F(u)− u f (u) satisfying condition (D1). (II) Graph of
2F(u)− u f (u) satisfying condition (D2).

(3b) p∗ < ‖uλ1‖∞ < p < ‖uλ2‖∞ where
(
λ1, ‖uλ1‖∞

)
and

(
λ2, ‖uλ2‖∞

)
are turning points of

S̄ such that S̄ turns to the left (resp. to the right) at
(
λ1, ‖uλ1‖∞

)
and S̄ turns to the right

(resp. to the left) at
(
λ2, ‖uλ2‖∞

)
.

Then Sα is S-shaped (resp. reversed S-shaped) for all α > 0. Furthermore, there exist two
points

(
λ3, ‖uλ3‖∞

)
and

(
λ4, ‖uλ4‖∞

)
on Sα such that ‖uλ3‖∞ ≤ ‖uλ1‖∞ < p ≤ ‖uλ4‖∞

and the portion of Sα connecting
(
λ3, ‖uλ3‖∞

)
and

(
λ4, ‖uλ4‖∞

)
is monotone decreasing (resp.

monotone increasing), where
(
λ3, ‖uλ3‖∞

)
is a turning point to the left (resp. to the right) of Sα

and
(
λ4, ‖uλ4‖∞

)
is a turning point to the right (resp. to the left) of Sα.

(iv) If f (u) satisfies (C1−) and (C2+) (resp. (C1+) and (C2−)), then Sα is ⊂-shaped (resp. reversed
⊂-shaped) for all α > 0.

Theorem 2.5. Consider (1.1). Assume that f satisfies (H). Then, on the (λ, ‖u‖∞)-plane, the bifurca-
tion curve Sα satisfies the following assertions (i)–(iii).

(i) If f (u) satisfies (C1+) and (C2+) and f ( p̃) − p̃ f ′( p̃) < 0 with some p̃ ∈ (0, η), then Sα is
S-shaped for α > 0 small enough.

(ii) If f (u) satisfies (C1−) and (C2−) and f ( p̃) − p̃ f ′( p̃) > 0 with some p̃ ∈ (0, η), then Sα is
reversed S-shaped for α > 0 small enough.

(iii) Assume that f (u) satisfies (C1+) (resp. (C1−)) with some β1 ∈ (0, η), the bifurcation curve
S̄ of (1.2) is strictly increasing (resp. strictly decreasing) on the (λ, ‖u‖∞)-plane, and (1.2)
has no degenerate solution. Then, on the (λ, ‖u‖∞)-plane, for every ρ0 ∈ (β1, η), there exists
α∗ = α∗(ρ0) > 0 such that, for α ≥ α∗, Sα is strictly increasing (resp. strictly decreasing) in the
striped region {(λ, ‖u‖∞) : λ > 0 and ‖u‖∞ ∈ (0, ρ0]}. In addition, assume that there exists a
constant ρ̄0 ∈ (β1, η) such that

0 < θ(u) < θ(ρ̄0) < θ(ū1) < θ(ū2) for 0 < u < ρ̄0 < ū1 < ū2 < η, (2.4)
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Figure 2.3: Illustration of S-shaped bifurcation curves Sα and S̄ in Theorem
2.4 (iii).

(resp.
0 > θ(u) > θ(ρ̄0) > θ(ū1) > θ(ū2) for 0 < u < ρ̄0 < ū1 < ū2 < η), (2.5)

where θ(x) ≡ 2
∫ x

0 f (s)ds − x f (x). Then, for α ≥ α∗, Sα is strictly increasing (resp. strictly
decreasing) on the (λ, ‖u‖∞)-plane.

Theorem 2.6 (See Fig. 2.4.). Consider (1.1), (1.6). Suppose that

ε∗ ≡
1

4.25
(≈ 0.235) < ε̃ < ε∗ ≡ 1

4
= 0.25,

where the number ε̃ ≈ 0.2457 exists in Theorem 1.1. Then, on the (λ, ‖u‖∞)-plane, the bifurcation
curve Sα satisfies the following assertions (i)–(iii).

(i) For 0 < ε < ε̃, Sα is S-shaped for all α > 0.

(ii) (a) For ε̃ ≤ ε < ε∗, Sα is S-shaped for 0 < α ≤ α∗(ε) ≡ p2
p1
− 1 where

p1 =
1− 2ε−

√
1− 4ε

2ε2 < p2 =
1− 2ε +

√
1− 4ε

2ε2 ,

are two positive zeros of quadratic polynomial ε2u2 + (2ε− 1)u + 1. The term α∗(ε) =
p2
p1
− 1 =

2
√

1−4ε
1−2ε−

√
1−4ε

is a strictly decreasing function of ε ∈ (ε̃, ε∗) and satisfies

lim
ε→(ε̃)+

α∗(ε) ≈ 1.690 and lim
ε→(ε∗)−

α∗(ε) = 0. (2.6)

(b) For ε̃ < ε < ε∗, Sα is strictly increasing for α ≥ α∗(ε) with some α∗(ε) > 0.

(iii) For ε ≥ ε∗, Sα is strictly increasing for all α > 0.
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Figure 2.4: Classification of bifurcation curves Sα on the first quadrant of (ε, α)-
plane for Theorem 2.6.

Conjecture 2.7. We conjecture that, in Theorem 2.6 (ii) for (1.1), (1.6), when ε = ε̃ ≈ 0.2457, on the
(λ, ‖u‖∞)-plane, the bifurcation curve Sα is S-shaped for all α > 0. Further investigation is needed.

Theorem 2.8 (Cf. Theorem 1.2 for (1.2), (1.7)). Consider (1.1), (1.7). Then, on the (λ, ‖u‖∞)-plane,
the bifurcation curves Sα satisfies the following assertions (i)–(iv).

(i) For p = 1, Sα has infinitely many turning points for all α > 0.

(ii) For 1 < p < 2, for any positive integer k, there exist k positive numbers

(0 <) αk < · · · < α2 < α1

such that Sα has at least i turning points for 0 < α ≤ αi for i ∈ {1, 2, . . . , k}.

(iii) For p = 2, Sα is strictly decreasing for all α > 0.

(iv) For p > 2, Sα is ⊂-shaped for all α > 0.

Remark 2.9. For 1.9 ≤ p ≤ 2, numerical simulations show that the bifurcation curve S̄ for
Dirichlet problem (1.2), (1.7) is strictly decreasing on the (λ, ‖u‖∞)-plane, cf. [13, Fig. 2].
However, by Theorem 2.8 (ii), on the (λ, ‖u‖∞)-plane, the bifurcation curve Sα for Neumann–
Robin problem (1.1), (1.7) can have arbitrarily many turning points as desired for α > 0 small
enough.

3 Lemmas

To prove our main results for one-dimensional Neumann–Robin problem (1.1), we develop
some new time-map techniques which time-map technique was used in Anuradha, Maya,
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and Shivaji [4]. We first define the following functions

F(u) =
∫ u

0
f (s)ds, G(m, ρ) =

∫ ρ

m
α

ds√
F(ρ)− F(s)

, H(m, ρ) =
m√

F(ρ)− F(m
α )

, (3.1)

where ρ ≡ u(0) = ‖u‖∞ > 0 and m ≡ −u′(1) = αu(1) ∈ (0, αu(0)) = (0, αρ), see [4, pp.
95–97]. We have the following properties for functions G and H in the next lemma.

Lemma 3.1 ([4, Section 2 and Theorem 2.1]). Consider (1.1). Assume that f satisfies (H). Then the
following assertions (i)–(iii) hold.

(i) For fixed ρ > 0, G(m, ρ) is a strictly decreasing function of m on (0, αρ). Furthermore

lim
m→0+

G(m, ρ) =
∫ ρ

0

ds√
F(ρ)− F(s)

> 0 and lim
m→(αρ)−

G(m, ρ) = 0.

(ii) For fixed ρ > 0, H(m, ρ) is a strictly increasing function of m on (0, αρ). Furthermore

lim
m→0+

H(m, ρ) = 0 and lim
m→(αρ)−

H(m, ρ) = ∞.

(iii) For any ρ > 0, there exits a unique m = mρ = mα,ρ ∈ (0, αρ) such that G(mρ, ρ) = H(mρ, ρ).
(Later, for simplicity, we usually write mρ instead of mα,ρ unless necessary.)

By Lemma 3.1 (iii), we see that, if u(0) = ‖u‖∞ = ρ > 0, then (1.1) has a unique positive
solution u. Since u′(1) + αu(1) = 0, we have that u′(1) = −mρ < 0 and u(1) =

mρ

α > 0; see
[4, p. 96]. Furthermore, we define the time-map function for one-dimensional Neumann–Robin
problem (1.1)

T(ρ) =
∫ ρ

mρ
α

ds√
F(ρ)− F(s)

=
mρ√

F(ρ)− F(mρ

α )
. (3.2)

Then by [4, Theorem 2.1],

T(ρ) =
√

2λ(ρ), (3.3)

and hence by (1.4), we have the bifurcation curve of positive solutions for (1.1)

Sα =

{(
1
2
[T(ρ)]2 , ρ

)
: ρ ∈ (0, η)

}
. (3.4)

We also define the time-map function for one-dimensional Dirichlet problem (1.2)

T̄(ρ) =
∫ ρ

0

ds√
F(ρ)− F(s)

, (3.5)

and we have similar results that
T̄(ρ) =

√
2λ(ρ)

and by (1.5) the bifurcation curve of positive solutions for (1.2)

S̄ =

{(
1
2
[T̄(ρ)]2 , ρ

)
: ρ ∈ (0, η)

}
; (3.6)

see e.g. [6, Eq. (11)].
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Lemma 3.2. Consider (1.1). Fix ρ (= u(0)) > 0 and consider mρ

α (= u(1)) as a function of α > 0.
Then the following assertions (i)–(iii) hold.

(i) mρ

α is strictly decreasing on (0, ∞), limα→0+
mρ

α = ρ, and limα→∞
mρ

α = 0.

(ii) For each α > 0 and ρ ∈ (0, η),

ρ

α + 1
<

mρ

α
< ρ (that is,

u(0)
α + 1

< u(1) < u(0)). (3.7)

(iii) For s0 ≥ 0 defined in Theorem 2.1 (i) and s∞ ≥ 0 defined in Theorem 2.1 (ii) (a) with η = ∞,

lim
ρ→0+

mρ

αρ
< 1 (3.8)

and
lim
ρ→∞

mρ

αρ
< 1. (3.9)

Proof. (I) First, we rewrite functions H and G in (3.1) as functions of α, m
α

(
=

mρ

α =
mα,ρ

α

)
= k

and ρ, and we obtain that

G = G(α, k, ρ) ≡
∫ ρ

k

ds√
F(ρ)− F(s)

,

H = H(α, k, ρ) ≡ m√
F(ρ)− F(m

α )
=

k√
F(ρ)− F(k)

× α.

We see that, for fixed k, G(α, k, ρ) is constant in α, but H(α, k, ρ) is linear in α. If α = α0, we let
k0 ≡

mα0,ρ

α0
and

G(α0, k0, ρ) =
∫ ρ

k0

ds√
F(ρ)− F(s)

= H(α0, k0, ρ) =
k0√

F(ρ)− F(k0)
× α0.

Taking α > α0, we have that

G(α, k0, ρ) =
∫ ρ

k0

ds√
F(ρ)− F(s)

= G(α0, k0, ρ) < H(α, k0, ρ) =
k0√

F(ρ)− F(k0)
× α.

Then by Lemma 3.1 (i)–(ii), for α > α0, we obtain that mα,ρ
α = kρ < k0 =

mα0,ρ

α0
. So mρ

α is strictly
decreasing on (0, ∞).

Secondly, given any ε > 0, we have that

G(α, ρ− ε, ρ) =
∫ ρ

ρ−ε

ds√
F(ρ)− F(s)

> 0 and H(α, ρ− ε, ρ) =
ρ− ε√

F(ρ)− F(ρ− ε)
× α > 0.

For

0 < α < δ ≡

∫ ρ
ρ−ε

ds√
F(ρ)−F(s)

ρ−ε√
F(ρ)−F(ρ−ε)

,

we have that

H(α, ρ− ε, ρ) =
ρ− ε√

F(ρ)− F(ρ− ε)
× α <

∫ ρ

ρ−ε

ds√
F(ρ)− F(s)

= G(α, ρ− ε, ρ).
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By Lemma 3.1 (i)–(ii), for 0 < α < δ, we see that ρ − ε <
mρ

α = k < ρ, which proves that
limα→0+

mρ

α = ρ. Similarly, we can prove that limα→∞
mρ

α = 0. The proof of part (i) is complete.
(II) By Lemma 3.1 (iii), we have that (0 <)

mρ

α < ρ, which also follows from (1.3). Thus we
are left to prove that ρ

α+1 <
mρ

α . By (3.2), we have that

mρ =
∫ ρ

mρ
α

√
F(ρ)− F(mρ

α )√
F(ρ)− F(s)

ds >
∫ ρ

mρ
α

ds = ρ−
mρ

α
,

which is equivalent to ρ
α+1 <

mρ

α . So part (ii) holds.
(III) The proof of part (iii) is easy but tedious and hence we put it in Appendix A.
The proof of Lemma 3.2 is complete.

Lemma 3.3. Consider (1.1) and assume that f satisfies (H). Then, for fixed α > 0, mρ is a C3 function
for ρ > 0 and

m′ρ ≡
∂

∂ρ
mρ =

(
2 mρ

αρ + P
)

D(
mρ

α ) + mρ f (ρ)

2
( 1

α + 1
)

D(
mρ

α ) +
mρ

α f (mρ

α )
, (3.10)

where

θ(x) ≡ 2F(x)− x f (x), D(x) ≡ F(ρ)− F(x), P ≡ 1
ρ

∫ ρ

mρ
α

√
D(

mρ

α )

D
3
2 (s)

[θ(ρ)− θ(s)]ds. (3.11)

In addition,

T′(ρ) ≡ ∂

∂ρ
T(ρ) =

∆(ρ)
Φ(ρ)

, (3.12)

where
∆(ρ) = P

[
D
(mρ

α

)
+

mρ

2α
f
(mρ

α

)]
+

mρ

αρ

[
θ(ρ)− θ

(mρ

α

)]
, (3.13)

Φ(ρ) =

√
D
(mρ

α

) [
2
(

1
α
+ 1
)

D
(mρ

α

)
+

mρ

α
f
(mρ

α

)]
> 0. (3.14)

The proof of Lemma 3.3 is easy but tedious and hence we put it in Appendix B.
By (3.12)–(3.14) and (3.2), we see that, if θ(ρ)− θ(s) does not change sign for s ∈

(mρ

α , ρ
)
,

then we can determine the sign of T′(ρ). Furthermore, by Lemma 3.2 (ii), it suffices to consider
the interval

( ρ
α+1 , ρ

)
since ρ

α+1 <
mρ

α . We state this result in the following lemma.

Lemma 3.4. Consider (1.1) and assume that f satisfies (H). Then, for fixed α > 0 and for u ∈
( ρ

α+1 , ρ
)

and ρ ∈ (0, η),

T′(ρ)

{
> 0, if θ(ρ)− θ(u) ≥ ( 6≡) 0,

< 0, if θ(ρ)− θ(u) ≤ ( 6≡) 0.

Remark 3.5. Letting α→ ∞ in (3.12), by Lemma 3.2 (i), the time-map T̄(ρ) for (1.2) satisfies

T̄′(ρ) ≡ ∂

∂ρ
T̄(ρ) =

1
2ρ

∫ ρ

0

θ(ρ)− θ(s)

[D(s)]3/2 ds.

And similarly, for u ∈ (0, ρ),

T̄′(ρ)

{
> 0, if θ(ρ)− θ(u) > 0,

< 0, if θ(ρ)− θ(u) < 0.



14 C.-C. Tsai, S.-H. Wang and S.-Y. Huang

Lemma 3.6. Consider (1.1) with fixed α > 0. For f (u) = ub with b ≥ 0, T(ρ) satisfies the following
assertions (i)–(iii).

(i) If b > 1, then limρ→0+ T(ρ) = ∞, limρ→∞ T(ρ) = 0, and T′(ρ) < 0 for ρ ∈ (0, ∞) .

(ii) If b = 1, then T(ρ) ≡
√

λ∗ on (0, ∞), where λ∗ ∈ (0, π2

4 ) is defined in (2.1).

(iii) If 0 ≤ b < 1, then limρ→0+ T(ρ) = 0, limρ→∞ T(ρ) = ∞, and T′(ρ) > 0 for ρ ∈ (0, ∞).

Proof. (I) First, for f (u) = ub with b ≥ 0, we calculate that

F(u) =
1

b + 1
ub+1,

D(u) = F(ρ)− F(u) =
1

b + 1
ρb+1 − 1

b + 1
ub+1,

θ(u) = 2F(u)− u f (u) =
1− b
b + 1

ub+1,

θ(ρ)− θ(u) =
1− b
b + 1

ρb+1 − 1− b
b + 1

ub+1 = (1− b) D(u).

We observe that

D(u) =
1

b + 1
(ρb+1 − ub+1) ∈

[
ub

b + 1
(ρ− u) ,

ρb+1

b + 1

)
for ρ > u, (3.15)

P =
1
ρ

∫ ρ

mρ
α

√
D(

mρ

α )

D
3
2 (s)

[θ(ρ)− θ(s)] ds

=
1
ρ

∫ ρ

mρ
α

√
D(

mρ

α )

D
3
2 (s)

(1− b) D(s)ds =
1
ρ
(1− b)

√
D(

mρ

α
)T(ρ).

For b ≥ 0, by (3.15), we have that

T(ρ) =
∫ ρ

mρ
α

ds√
D(s)

≥
√

b + 1

ρ
b+1

2
ρ

(
1−

mρ

αρ

)
=

√
b + 1

ρ
b−1

2

(
1−

mρ

αρ

)
. (3.16)

On the other hand, by (3.15), we have that

T(ρ) =
∫ ρ

mρ
α

ds√
D(s)

≤
√

b + 1(
mρ

α

) b
2

∫ ρ

mρ
α

ds√
ρ− s

≤ 2
√

b + 1(
mρ

α

) b
2

√
ρ−

mρ

α
≤ 2
√

b + 1 (α + 1)
b
2

√√√√1− mρ

αρ

ρb−1 . (3.17)
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Then, since b > 1 and by Lemma 3.2 (iii), we have that limρ→0+ T(ρ) = ∞ and limρ→∞ T(ρ) =
0. In addition, by (3.12)–(3.14), the numerator of T′(ρ) is

∆(ρ) =
1
2

[mρ

α
f
(mρ

α

)
+ 2D

(mρ

α

)]
P +

mρ

αρ

[
θ(ρ)− θ

(mρ

α

)]
=

1
2

[(mρ

α

)b+1
+ 2D

(mρ

α

)] 1− b
ρ

√
D
(mρ

α

)
T(ρ) +

mρ

αρ
(1− b) D

(mρ

α

)
= (1− b)

{
1

2ρ

[(mρ

α

)b+1
+ 2D

(mρ

α

)]√
D
(mρ

α

)
T(ρ) +

mρ

αρ
D
(mρ

α

)}
(3.18)

< 0

since b > 1. Thus T′(ρ) < 0 for ρ ∈ (0, ∞). So part (i) holds.
(II) We prove part (ii). For f (u) = u, we compute T(ρ) in (3.2) and we have that

T(ρ) =
∫ ρ

mρ
α

ds√
1
2 ρ2 − 1

2 s2
=

mρ√
1
2 ρ2 − 1

2

(
mρ

α

)2
. (3.19)

So we obtain that

arccos
(

mρ

αρ

)
=

mρ

αρ√
1−

(
mρ

αρ

)2
× α, (3.20)

which holds for every ρ > 0, with positive α fixed. Thus mρ

αρ is constant in ρ. By (3.3), if we

consider
√

λ ∈ (0, π
2 ) as an angle of a triangle and mρ

αρ as its cosine value in the triangle, then

tan
√

λ =

√
1−

(
mρ

αρ

)2

mρ

αρ

and
√

λ tan
√

λ = α by (3.19)–(3.20). So T(ρ) ≡
√

λ∗, where λ∗ ∈ (0, π2

4 ) is defined in (2.1). So
part (ii) holds.

(III) Part (iii) for f (u) = ub with 0 ≤ b < 1 follows easily by applying (3.16)–(3.18).
The proof of Lemma 3.6 is complete.

Lemma 3.7. Consider (1.1) with s0, s∞, L0, and L∞ defined in Theorem 2.1 (i)–(ii). Then the following
assertions (i) and (ii) hold:

(i) There exists a function R0(ρ) such that

T(ρ) =
∫ ρ

mρ
α

[1 + R0(ρ)] ds√
L0

s0+1 ρs0+1 − L0
s0+1 ss0+1

,

where limρ→0+ R0(ρ) = 0.
(ii) There exists a function R∞(ρ) such that

T(ρ) =
∫ ρ

mρ
α

[1 + R∞(ρ)] ds√
L∞

s∞+1 ρs∞+1 − L∞
s∞+1 ss∞+1

,

where limρ→∞ R∞(ρ) = 0.
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Proof. We simply prove part (ii). The proof of part (i) is similar. We compute that

T(ρ) =
∫ ρ

mρ
α

ds√
F(ρ)− F(s)

= ρ
∫ 1

mρ
αρ

{
L∞

s∞ + 1

[
ρs∞+1 − (ρs)s∞+1

]
+
∫ ρ

ρs
f (u)− L∞us∞ du

}−1/2

ds

= ρ
∫ 1

mρ
αρ

{
L∞

s∞ + 1

[
ρs∞+1 − (ρs)s∞+1

]}−1/2
[

1−
√

1 + φ(ρ, s)− 1√
1 + φ(ρ, s)

]
ds,

where

φ(ρ, s) =

∫ ρ
ρs f (u)− L∞us∞ du

L∞
s∞+1 [ρ

s∞+1 − (ρs)s∞+1]
.

Since s ≥ mρ

αρ > 1
α+1 , we have that

0 ≤ |φ(ρ, s)| =
∣∣∣∣∣
∫ ρ

ρs f (u)− L∞us∞ du
L∞

s∞+1 [ρ
s∞+1 − (ρs)s∞+1]

∣∣∣∣∣
≤

∫ ρ
ρs us∞ du

L∞
s∞+1 [ρ

s∞+1 − (ρs)s∞+1]
sup

t∈( ρ
α+1 ,ρ)

∣∣∣∣ f (t)
ts∞
− L∞

∣∣∣∣ = 1
L∞

sup
t∈( ρ

α+1 ,ρ)

∣∣∣∣ f (u)
ts∞
− L∞

∣∣∣∣ .

We see that φ(ρ, s) approaches zero as ρ→ ∞, uniformly in s. So

R∞(ρ) ≡ −
√

1 + φ(ρ, s)− 1√
1 + φ(ρ, s)

→ 0 as ρ→ ∞,

and hence part (ii) holds.
The proof of Lemma 3.7 is complete.

Lemma 3.8. Consider (1.1) with s0, s∞, L0, and L∞ defined in Theorem 2.1 (i)–(ii) and λ∗ defined in
(2.1). Then

lim
ρ→0+

T(ρ) =


∞, if s0 > 1,√

λ∗
L0

, if s0 = 1,

0, if 0 ≤ s0 < 1,

(3.21)

lim
ρ→∞

T(ρ) =


0, if s∞ > 1,√

λ∗
L∞

, if s∞ = 1,

∞, if 0 ≤ s∞ < 1.

(3.22)

Proof. If s0 ≥ 0 and s0 6= 1, Eq. (3.21) follows by Lemmas 3.6 and 3.7. If s0 = 1, we rewrite
(1.1) as

−u′′(x) = λ f (u(x)) = [L0λ]

[
f (u(x))

L0

]
= λ̃ f̃ (u(x)),

with λ̃ ≡ L0λ and f̃ (u) ≡ f (u)
L0

. Then limu→0+
f̃ (u)

u = limu→0+
f (u)
uL0

= 1, and we can apply

Lemmas 3.6 and 3.7 to get limρ→0+ T(ρ) =
√

λ∗
L0

. The proof of Eq. (3.21) is complete. Eq. (3.22)
can be proved similarly. We omit it here.

The proof of Lemma 3.8 is complete.
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Lemma 3.9. Consider (1.1) and assume that f satisfies (H) with f (η) = 0 for some finite η > 0. Let
sη > 0 and Lη > 0 be defined in Theorem 2.1 (ii) (b). Then

lim
ρ→η−

T(ρ)

{
= ∞ if sη ≥ 1,

∈ (0, ∞) if 0 < sη < 1.

The proof of Lemma 3.9 is easy but tedious and hence we put it in Appendix C.

Lemma 3.10. Consider (1.1). Then the following assertions (i) and (ii) hold:

(i) Assume that f satisfies (D1) with positive p∗ < p < η and
∫ p

0 s [ f (s)− s f ′(s)] ds < 0. Then
T′(p) < 0 for all α > 0.

(ii) Assume that f satisfies (D2) with positive p∗ < p < η and
∫ p

0 s [ f (s)− s f ′(s)] ds > 0. Then
T′(p) > 0 for all α > 0.

The proof of Lemma 3.10 is easy but tedious and hence we put it in Appendix D.

Lemma 3.11. Consider (1.1). Let k = m
α ,

B(k) ≡ m
α

f
(m

α

)
+ 2D

(m
α

)
= k f (k) + 2D(k), (3.23)

and

∆(ρ) = ∆(ρ, k, α) = P
[

D(k) +
k
2

f (k)
]
+

k
ρ
[θ(ρ)− θ(k)]

be the function ∆ defined in Lemma 3.3. Then the following assertions (i) and (ii) hold.

(i) If f satisfies (D1) with positive p∗ < p < η, then

∂∆(ρ, k, α)

∂k
+

2
B(k)

[
f (k)

4D(k)
B(k) +

1
2

θ′(k)
]

∆(ρ, k, α) < 0 for ρ = p > p∗ > k > 0.

(ii) If f satisfies (D2) with positive p∗ < p < η, then

∂∆(ρ, k, α)

∂k
+

2
B(k)

[
f (k)

4D(k)
B(k) +

1
2

θ′(k)
]

∆(ρ, k, α) > 0 for ρ = p > p∗ > k > 0.

The proof of Lemma 3.11 is easy but tedious and hence we put it in Appendix E.

Lemma 3.12. Consider (1.1). Then, for all α > 0, on the (λ, ‖u‖∞)-plane, the bifurcation curve Sα

satisfies the following assertions (i)–(iv):

(i) If f satisfies (C1+), then Sα continues to the right initially.

(ii) If f satisfies (C1−), then Sα continues to the left initially.

(iii) If f satisfies (C2+), then Sα continues to the right eventually.

(iv) If f satisfies (C2−), then Sα continues to the left eventually.
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Proof. (I) If f satisfies (C1+) with some β1 ∈ (0, η), then since θ′(u) = f (u)− u f ′(u) and by
Lemma 3.4, T′(ρ) > 0 for 0 < ρ < β1. Thus, by (3.3), the bifurcation curve Sα continues to the
right initially for each α > 0. This proves part (i). Similarly, part (ii) can be proved. We omit
it here.

(II) For η = ∞, if f satisfies (C2+) with some β2 ∈ (0, ∞), then for each α > 0, by
Lemma 3.4, T′(ρ) > 0 for ρ > (α + 1) β2. Thus the bifurcation curve Sα continues to the right
eventually for each α > 0. For η < ∞, by Lemma 3.9, sη ≥ 1 implies that limρ→η− T(ρ) = ∞ for
all α > 0. If Sα continues to the left eventually, by continuity, we have that limρ→η− T(ρ) < ∞,
which is a contradiction. Hence Sα continues to the right eventually for all α > 0. This proves
part (iii). Similarly, part (iv) can be proved. We omit it here.

The proof of Lemma 3.12 is complete.

4 Proofs of main results

Proof of Theorem 2.1. By (3.2), (3.4) and Lemma 3.3, the bifurcation curve Sα is a continuous
curve on the (λ, ‖u‖∞)-plane for all fixed α > 0. Moreover, parts (i) and (ii)(a) follow by
(3.4) and Lemma 3.8. Part (ii) (b) follows by (3.4) and Lemma 3.9. Part (iii) follows by (3.2),
(3.4)–(3.6) and Lemma 3.2 (i).

We next prove part (iv). To prove that Sα,2 lies on the left hand side of (possibly coincides
with) Sα,1 on the (λ, ‖u‖∞)-plane, by (3.3)–(3.4), it suffices to prove that λ1(ρ) ≥ λ2(ρ) for
0 < ρ < η, where λ1(ρ) and λ2(ρ) are defined in (3.3) for (1.1) with f = f1 and f = f2

respectively. We prove this by contradiction. For a fixed ρ ∈ (0, η), suppose on the contrary
that λ1(ρ) < λ2(ρ) and denote positive solutions u1(x) and u2(x) of (1.1) with f = f1 and
f = f2 respectively. Since u1(0) = ρ = u2(0), u′1(0) = u′2(0) = 0 and u′′1 (0) = −λ1(ρ) f1(ρ) >

−λ2(ρ) f2(ρ) = u′′2 (0), there exists x0 ∈ (0, 1) such that u1(x) > u2(x) and u′1(x) > u′2(x)
for 0 < x < x0. We claim that u1(x) > u2(x) and u′1(x) > u′2(x) on [0, 1]. If not, there
exists x1 ∈ (x0, 1) such that u′1(x1) = u′2(x1) and u1(x1) > u2(x1). Multiplying both side of
u′′i (x) + λi fi(ui(x)) = 0 by u′i(x), i = 1, 2, and integrating from 0 to x, we obtain that∫ x

0
u′′i (t)u

′
i(t)dt = −

∫ x

0
λi fi(ui(t))u′i(t)dt, i = 1, 2.

Since u′1(0) = u′2(0) = 0, we obtain that

[u′i(x)]2

2
= −λi

∫ ui(x)

ui(0)
fi(u)du = λi

∫ ρ

ui(x)
fi(u)du, i = 1, 2.

Then, since u′1(x1) = u′2(x1), we see that

λ1

∫ ρ

u1(x1)
f1(u)du = λ2

∫ ρ

u2(x1)
f2(u)du.

So we observe that∫ ρ

u2(x1)
f2(u)du =

λ1

λ2

∫ ρ

u1(x1)
f1(u)du

<
∫ ρ

u1(x1)
f1(u)du (since λ1(ρ) < λ2(ρ))

≤
∫ ρ

u1(x1)
f2(u)du (since f1(u) ≤ f2(u) on (0, η))

≤
∫ ρ

u2(x1)
f2(u)du (since u1(x1) > u2(x1) and f2(u) > 0 on (0, η)),
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which is a contradiction. So u1(x) > u2(x) and u′1(x) > u′2(x) on [0, 1]. Finally by the
boundary condition at x = 1 in (1.1), we see that

u′1(1) = −αu1(1) < −αu2(1) = u′2(1),

which is again a contradiction. Thus λ1(ρ) ≥ λ2(ρ) for 0 < ρ < η. This proves that Sα,2 lies
on the left hand side of Sα,1 on the (λ, ‖u‖∞)-plane. The rest of part (iv) follows by Lemma
3.2 (ii).

The proof of Theorem 2.1 is complete.

Proof of Theorem 2.3. Suppose that θ′(u) = f (u)− u f ′(u) changes sign exactly k times in the
interval (a, b) ⊂ (0, η), where 0 < a = p−1 < p0 < p1 < p2 < · · · < pk = b ≤ η such that θ′(u)
has the same sign in the interval (pi−1, pi), i = 0, 1, 2, ..., k, and has different signs in every pair
of adjacent intervals. Then, by Lemma 3.4, there exist positive numbers β0, β1, . . . , βk small
enough, such that T′(pi) > 0 if θ′(u) has a local maximum at pi (or T′(pi) < 0 if θ′(u) has a
local minimum at pi) for 0 < α < βi, i = 0, 1, 2, . . . , k. Define αi = min{β0, β1, . . . , βi}. So if
0 < α ≤ αi for i ∈ {1, 2, . . . , k}, then T(α) has at least i critical points on (0, η). Then, by (3.4)
and the Intermediate Value Theorem, the bifurcation curve Sα has at least i turning points on
the (λ, ‖u‖∞)-plane for 0 < α ≤ αi, i = 0, 1, 2, . . . , k.

The proof of Theorem 2.3 is complete.

Proof of Theorem 2.4. (I) Assume that θ′(u) = f (u)− u f ′(u) > 0 almost everywhere for u > 0.
We see that, for every α,ρ > 0, θ′(u) > 0 almost everywhere in the interval ( ρ

α+1 , ρ). Then
by Lemma 3.4, we have that T′(ρ) > 0 for every α,ρ > 0. Then by (3.3)–(3.4), we obtain that
the bifurcation curve Sα is strictly increasing on the (λ, ‖u‖∞)-plane for all α > 0. Similarly,
assuming that θ′(u) = f (u) − u f ′(u) < 0 almost everywhere for u > 0, we can prove that
the bifurcation curve Sα is strictly decreasing on the (λ, ‖u‖∞)-plane for all α > 0. So part (i)
holds.

(II) Assume that f satisfies (C1+), (C2+) and (D1) with positive p∗ < p < η and∫ p

0
s
[

f (s)− s f ′(s)
]

ds < 0.

Since f satisfies (C1+) and (C2+) and by Lemma 3.12 (i), (iii), the bifurcation curve Sα continues
to the right both initially and eventually on the (λ, ‖u‖∞)-plane. So, to prove that Sα is
S-shaped on the (λ, ‖u‖∞)-plane, it is sufficient to prove that Sα has at least two turning
points on the (λ, ‖u‖∞)-plane. First, conditions (C1+) and (C2+) imply that θ′(u) > 0 for
u > 0 small enough and u large enough. These and Lemma 3.4 imply that T′(ρ) > 0 for
ρ > 0 small enough and ρ large enough. Since f satisfies (D1) with positive p∗ < p < η

and
∫ p

0 s [ f (s)− s f ′(s)] ds < 0 and by Lemma 3.10, we have that T′(p) < 0. Thus T′(ρ)
changes sign at least twice on (0, ∞). So by (3.4), Sα has at least two turning points on the
(λ, ‖u‖∞)-plane and the bifurcation curve Sα is S-shaped on the (λ, ‖u‖∞)-plane for all α > 0.
Similarly, assuming that f satisfies (C1−), (C2−) and (D2) with positive p∗ < p < η and∫ p

0 s [ f (s)− s f ′(s)] ds < 0, we can prove that the bifurcation curve Sα is reversed S-shaped on
the (λ, ‖u‖∞)-plane for all α > 0. So part (ii) holds.

(III) Assume that f satisfies (C1+), (C2+), (D1) with positive p∗ < p < η, the bifurcation
curve S̄ of (1.2) is S-shaped on the (λ, ‖u‖∞)-plane and 0 < p∗ < ‖uλ1‖∞ < p < ‖uλ2‖∞; see
Fig. 2.3. Again, since f satisfies (C1+) and (C2+) and by Lemma 3.12 (i), (iii), the bifurcation
curve Sα continues to the right both initially and eventually on the (λ, ‖u‖∞)-plane. So, to
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prove that the bifurcation curve Sα is S-shaped on the (λ, ‖u‖∞)-plane for all α > 0, it is
sufficient to prove that Sα has at least two turning points on the (λ, ‖u‖∞)-plane for all α > 0.
Since f satisfies (D1) and by Lemma 3.11 (i), letting kρ ≡

mρ

α , we have that

∂∆(ρ, k, α)

∂k

∣∣∣∣
k=kρ

+
2

B(kρ)

[
f (kρ)

4D(kρ)
B(kρ) +

1
2

θ′(kρ)

]
∆(ρ, kρ, α) < 0

for ρ = p > p∗ > k = kρ > 0.

By Lemma 3.2 (i), kρ is a strictly decreasing function of α > 0. So we have that ∂α
∂kρ

=
( ∂kρ

∂α

)−1 ≤
0. In the next equation

∂α

∂kρ

∂∆(ρ, k, α)

∂α

∣∣∣∣
k=kρ

+
2

B(kρ)

[
f (kρ)

4D(kρ)
B(kρ) +

1
2

θ′(kρ)

]
∆(ρ, kρ, α) < 0

for ρ = p > p∗ > k = kρ > 0,

the coefficient of ∂∆(ρ,k,α)
∂α

∣∣
ρ=p,k=kρ

is nonpositive, and the coefficient of ∆(ρ, kρ, α)
∣∣
ρ=p is positive

for 0 < k = kρ < p∗ since f (kρ)

4D(kρ)
B(kρ) > 0 and θ′(kρ) > 0 for 0 < k = kρ < p∗, see Fig. 2.2.

Thus ∆(ρ = p, kρ, α) can only change sign once from “−” to “+” for α increasing from 0+ to
∞. Since S̄ is S-shaped on the (λ, ‖u‖∞)-plane and f satisfies (D1) with ‖uλ2‖∞ > p > ‖uλ1‖∞
and by (3.6) and Remark 3.5, we have that T̄′(p) < 0, and θ′(p) = 0 and θ(p) is a local
minimum. Then by continuity, we have that T′(p) < 0 for α large enough. In addition, by
Lemma 3.4, we have that T′(p) < 0 for α > 0 small enough. Thus T′(p) (= ∆(ρ=p)

Φ(ρ=p) ) < 0 holds
for all α > 0, otherwise it contradicts that ∆(ρ = p, kρ, α) can only change sign once from
“−” to “+” for α increasing from 0+ to ∞. Together with conditions (C1+) and (C2+), we see
that T′(ρ) changes sign at least twice on (0, ∞) for all α > 0. So by (3.4), Sα is S-shaped on
the (λ, ‖u‖∞)-plane for all α > 0. The rest of part (iii) in this case follow easily. Similarly,
assuming that f satisfies (C1−), (C2−), (D2) with positive p∗ < p < η, S̄ is reversed S-shaped
on the (λ, ‖u‖∞)-plane and ‖uλ2‖∞ > p > ‖uλ1‖∞ > p∗, we obtain that Sα is reversed S-
shaped on the (λ, ‖u‖∞)-plane for all α > 0. The rest of part (iii) in this case follow easily. So
part (iii) holds.

(IV) Assume that f satisfies (C1−) and (C2+). Since f satisfies (C1−) and (C2+) and by
Lemma 3.4, for all α > 0, we have that T′(ρ) < 0 for small ρ > 0 and T′(ρ) > 0 for ρ

large enough. Thus T′(ρ) changes sign at least once on (0, ∞) for all α > 0. Then by (3.4), the
bifurcation curve Sα is ⊂-shaped on the (λ, ‖u‖∞)-plane for all α > 0. Similarly, assuming that
f satisfies (C1+) and (C2−), we can prove that the bifurcation curve Sα is reversed ⊂-shaped
on the (λ, ‖u‖∞)-plane for all α > 0. So part (iv) holds.

The proof of Theorem 2.4 is complete.

Proof of Theorem 2.5. (I) Since f satisfies (C1+) and (C2+) and by Lemma 3.4, we have that
T′(ρ) > 0 for ρ > 0 small enough and ρ large enough. Since θ′( p̃) = f ( p̃)− p̃ f ′( p̃) < 0, by
Lemma 3.4, we have that T′( p̃) < 0 for α > 0 small enough. Hence, by (3.4), the bifurcation
curve Sα is S-shaped on the (λ, ‖u‖∞)-plane for α > 0 small enough. So part (i) holds.

(II) Since f satisfies (C1−) and (C2−) and by Lemma 3.4 we have that T′(ρ) < 0 for ρ > 0
small enough and ρ large enough. Since θ′( p̃) = f ( p̃)− p̃ f ′( p̃) > 0, by Lemma 3.4, we have
that T′( p̃) > 0 for α > 0 small enough. Hence, by (3.4), the bifurcation curve Sα is reversed
S-shaped on the (λ, ‖u‖∞)-plane for α > 0 small enough. So part (ii) holds.
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(III) Assume that the bifurcation curve S̄ of (1.2) is strictly increasing on the (λ, ‖u‖∞)-
plane and (1.2) has no degenerate solutions. Then by (3.6), we have that T̄′(ρ) > 0 for all
ρ > 0. In addition, assume that f satisfies (C1+) with some β1 ∈ (0, ρ0) ⊂ (0, η). Then
since θ′(u) = f (u)− u f ′(u) and by Lemma 3.4, T′(ρ) > 0 on (0, β1). For every ρ0 ∈ (β1, η),
since T′(ρ) is continuous in both α and ρ and limα→∞ T′(ρ) = T̄′(ρ) for fixed ρ ∈ [β1, ρ0] by
applying (3.12)–(3.14) and Remark 3.5, and since [β1, ρ0] is a compact set, we obtain that there
exists α∗ = α∗(ρ0) > 0 such that, for α ≥ α∗, T′(ρ) > 0 on [β1, ρ0]; the detail of the proof is
omitted here. Thus, for α ≥ α∗, T′(ρ) > 0 on (0, ρ0]. So by (3.4), on the (λ, ‖u‖∞)-plane, for
α ≥ α∗, Sα is strictly increasing in the striped region {(λ, ‖u‖∞) : λ > 0 and ‖u‖∞ ∈ (0, ρ0]} .
In addition, assume that there exists a constant ρ̄0 ∈ (β1, η) such that (2.4) holds. Then by
Lemma 3.4, T′(ρ) > 0 on [ρ̄0, η). So by (3.4), on the (λ, ‖u‖∞)-plane, for all α > 0, Sα is strictly
increasing in the striped region {(λ, ‖u‖∞) : λ > 0 and ‖u‖∞ ∈ [ρ̄0, η)} . By previous results
and choosing ρ0 = ρ̄0 ∈ (β1, η), we have that, for α ≥ α∗ = α∗(ρ̄0), Sα is strictly increasing on
the (λ, ‖u‖∞)-plane.

Assume that f (u) satisfies (C1−) with some β1 ∈ (0, η), the bifurcation curve S̄ of (1.2) is
strictly decreasing on the (λ, ‖u‖∞)-plane, (1.2) has no degenerate solution, and there exists
a constant ρ̄0 ∈ (β1, η) such that (2.5) holds. Then, applying similar arguments in above,
we can prove that, there exists α∗ > 0 such that, for α ≥ α∗, Sα is strictly decreasing on the
(λ, ‖u‖∞)-plane.

The proof of Theorem 2.5 is complete.

Proof of Theorem 2.6. (I) Consider that f (u) = exp
( u

1+εu

)
and 0 < ε < ε̃ ≈ 0.2457. We obtain

that the bifurcation curve S̄ of (1.2), (1.6) is exactly S-shaped on the (λ, ‖u‖∞)-plane by The-
orem 1.1. In addition, f satisfies (C1+) and (C2+). Then by Theorem 2.4 (iii), to complete the
proof of part (i) that the bifurcation curve Sα is S-shaped on the (λ, ‖u‖∞)-plane for all α > 0,
it is sufficient to prove that f satisfies (D1) and S̄ satisfies condition (3b). We compute that

θ′(u) = f (u)− u f ′(u) =
ε2u2 + (2ε− 1)u + 1

(εu + 1)2 f (u) (4.1)

which has two positive zeros p1 = 1−2ε−
√

1−4ε
2ε2 < p2 = 1−2ε+

√
1−4ε

2ε2 for 0 < ε < ε∗ = 1/4 = 0.25.
We have that

θ′(u)


> 0 for u ∈ (0, p1) ∪ (p2, ∞) ,

= 0 for u = p1 and u = p2,

< 0 for u ∈ (p1, p2) .

So f satisfies (D1) with p∗ ≡ p1 < p ≡ p2. In addition, by [7, Theorem 1.2 and Figure 1.2], we
obtain that S̄ satisfies condition (3b). This completes the proof of part (i).

(II) First, for 0.2457 ≈ ε̃ ≤ ε < ε∗ = 1/4 = 0.25, the assertion that Sα is S-shaped for
0 < α ≤ α∗(ε) follows by Theorem 2.5 (i). To find the function α∗(ε) explicitly, we note that
θ′(u) < 0 for u ∈ (p1, p2). Then by Lemma 3.4, we have that T′(ρ) < 0 if

( ρ
α+1 , ρ

)
⊆ (p1, p2).

Letting ρ
α+1 = p1 and ρ = p2, and solving for α, we obtain that

α∗(ε) ≡
p2

p1
− 1 =

2
√

1− 4ε

1− 2ε−
√

1− 4ε
> 0,

and it is a strictly decreasing function of ε ∈ (ε̃, ε∗) and satisfies (2.6) by simple computations.
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Figure 4.1: Graph of θ(p3)− θ(p1) for 0.2457 ≈ ε̃ < ε < ε∗ = 1/4 = 0.25.

Secondly, for 0.2457 ≈ ε̃ < ε ≤ ε∗ = 1/4 = 0.25, we choose p3 ≡ 3p1 = 3(1−2ε−
√

1−4ε)
2ε2 and

we obtain that
θ(p3) = θ(3p1) > θ(p1) > 0,

see Fig. 4.1. Thus

0 < θ(u) < θ(p3) < θ(ū1) < θ(ū2) for 0 < u < p3 < ū1 < ū2 < ∞,

see Fig. 2.2 (I). Hence, for all α > 0, T′(ρ) > 0 on [p3(ε∗), ∞) = [12, , ∞) ⊂ [p3(ε), ∞) by
Lemma 3.4 and since p3(ε) is strictly increasing on (ε̃, ε∗]. So on the (λ, ‖u‖∞)-plane, the
bifurcation curve Sα is strictly increasing and (1.2), (1.6) has no degenerate solution in the
striped region {(λ, ‖u‖∞) : λ > 0 and ‖u‖∞ ∈ [12, ∞)}. For 0.2457 ≈ ε̃ < ε < ε∗ = 1/4 = 0.25,
on the (λ, ‖u‖∞)-plane, by Theorem 1.1 (iii), the bifurcation curve S̄ of (1.2), (1.6) is strictly
increasing on the (λ, ‖u‖∞)-plane, and (1.2), (1.6) has no degenerate solution. So by Theorem
2.5 (iii), for ρ0 ≡ p3(ε∗) = 12, there exists α∗ = α∗(ρ0, ε) = α∗(12, ε) > 0 such that, for α ≥ α∗,
Sα is strictly increasing in the striped region {(λ, ‖u‖∞) : λ > 0 and ‖u‖∞ ∈ (0, ρ0] = (0, 12]}.
By above, we obtain that, for 0.2457 ≈ ε̃ < ε < ε∗ = 1/4 = 0.25, Sα is strictly increasing on the
(λ, ‖u‖∞)-plane for α ≥ α∗(12, ε).

The proof of part (ii) is complete.
(III) We see that, for ε ≥ ε∗ = 1/4 = 0.25, the function θ′(u) = f (u)− u f ′(u) in (4.1) is

positive almost everywhere on (0, ∞). Hence by Theorem 2.4 (i), on the (λ, ‖u‖∞)-plane, the
bifurcation curve Sα is strictly increasing for all α > 0. So part (iii) holds.

The proof of Theorem 2.6 is complete.

Proof of Theorem 2.8. (I) For f (u) = u(1− sin u) + up with p ≥ 1, we compute that

θ(u) = 2F(u)− u f (u) =
1− p
p + 1

up+1 + 2u cos u + (u2 − 2) sin u, (4.2)

θ′(u) = u2 [cos u− (p− 1)up−2] .

If p = 1, for any n ∈N, then by (4.2), we have that

θ(u) = 2u cos u + (u2 − 2) sin u

> θ( 3+4n
2 π) for u ∈

(
0, 3+4n

2 π
)

,

< θ( 1+4n
2 π) for u ∈

(
0, 1+4n

2 π
)

.
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So by Lemma 3.4, we have that T′( 3+4n
2 π) < 0 and T′( 1+4n

2 π) > 0 for each α > 0. So T(ρ) has
infinitely many critical points on (0, ∞) for all α > 0. Thus, by (3.4), the bifurcation curve Sα

has infinitely many turning points on the (λ, ‖u‖∞)-plane for all α > 0. So part (i) holds.
(II) If 1 < p < 2, θ(u) has infinitely many local maxima and infinitely many local minima

on (0, ∞). So part (ii) holds by applying Theorem 2.3.
(III) If p = 2, θ′(u) = u2 [cos u− 1] is negative almost everywhere on (0, ∞). So by

Theorem 2.4 (i), Sα is strictly decreasing on the (λ, ‖u‖∞)-plane for all α > 0.
(IV) If p > 2, θ′(u) = u2 [cos u− (p− 1)up−2] is positive for small u > 0 and is negative for

u large enough. Thus f (u) satisfies (C1−) and (C2+). So by Theorem 2.4 (iv), Sα is ⊂-shaped
on the (λ, ‖u‖∞)-plane for all α > 0.

The proof of Theorem 2.8 is complete.

Appendix A

Proof of Lemma 3.2 (iii). We simply prove (3.9). The proof of (3.8) is similar. By Lemma 3.2 (ii),
we obtain that limρ→∞ mρ = ∞ and

α

α + 1
≤ lim

ρ→∞

mρ

ρ
≤ α.

By (2.2), for two arbitrary positive numbers γ1 < γ2, we compute that

lim
ρ→∞

f (γ1ρ)

f ( γ2ρ
α+1 )

= lim
ρ→∞

f (γ1ρ)
(γ1ρ)s∞

f ( γ2ρ
α+1 )

(
γ2ρ
α+1 )

s∞

(γ1ρ)s∞

( γ2ρ
α+1 )

s∞
=

limρ→∞
f (γ1ρ)
(γ1ρ)s∞

limρ→∞
f ( γ2ρ

α+1 )

(
γ2ρ
α+1 )

s∞

(
γ1

γ2

)s∞

(α + 1)s∞

=
L∞

L∞

(
γ1

γ2

)s∞

(α + 1)s∞ =

(
γ1

γ2

)s∞

(α + 1)s∞ . (A.1)

By (2.2) again, letting R∞(u) ≡ f (u)
L∞us∞ − 1, we can rewrite f (u) as f (u) = L∞us∞ [1 + R∞(u)], in

which limu→∞ R∞(u) = 0. So given ε > 0 such that 1− ε < 2s∞(1+ ε), there exists M > 0 such
that |R∞(u)| < ε for u ≥ M. Now we consider ρ ≥ 2 (α + 1) M. We have that mρ

α ≥
ρ

α+1 ≥ 2M.
In addition, if u ∈ (

mρ

α , ρ), then

M ≤ ρ

2(α + 1)
<

u
2
< u < 2u < 2ρ.

Hence, for u ∈
(mρ

α , ρ
)
,

f (
ρ

2(α + 1)
) = L∞

[
ρ

2(α + 1)

]s∞
[

1 + R∞(
ρ

2(α + 1)
)

]
≤ L∞

(u
2

)s∞
(1 + ε)

≤ L∞us∞(1− ε) ≤ f (u) = L∞us∞ [1 + R∞(u)] ≤ L∞us∞(1 + ε)

≤ L∞(2u)s∞(1− ε) ≤ L∞(2ρ)s∞ [1 + R∞(2ρ)] = f (2ρ).

By the Mean Value Theorem and (A.1) with γ1 = 1/2 < 2 = γ2, there exist ρ1 ∈
(mρ

α , ρ
)

and
ρ2 ∈ (u, ρ), such that

lim
ρ→∞

F(ρ)− F
(

mρ

α

)
F(ρ)− F(u)

= lim
ρ→∞

f (ρ1)
(

ρ− mρ

α

)
f (ρ2) (ρ− u)

≤ lim
ρ→∞

f (2ρ)
(

ρ− mρ

α

)
f
(

ρ
2(α+1)

)
(ρ− u)

≤ 4s∞ (α + 1)s∞ lim
ρ→∞

ρ− mρ

α

ρ− u
.
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So we observe that

lim
ρ→∞

mρ

ρ
= lim

ρ→∞

∫ ρ

mρ
α

√
F(ρ)− F

(
mρ

α

)
ρ
√

F(ρ)− F(u)
du (by (3.2))

≤ 2s∞ (α + 1)
s∞
2 lim

ρ→∞


√

ρ− mρ

α

ρ

∫ ρ

mρ
α

√
1

ρ− u
du


= 2s∞+1 (α + 1)

s∞
2 lim

ρ→∞

ρ− mρ

α

ρ

= 2s∞+1 (α + 1)
s∞
2 lim

ρ→∞

(
1−

mρ

αρ

)
.

It follows that

lim
ρ→∞

mρ

ρ
≤ α

1 + α

2s∞+1(α+1)
s∞
2

< α.

So (3.9) holds.
The proof of Lemma 3.2 (iii) is complete.

Appendix B

Proof of Lemma 3.3. For fixed α > 0, since mρ is defined by the equation H(mρ, ρ) = G(mρ, ρ),
by the Implicit Function Theorem, mρ is a Ck function in ρ if H(m, ρ)−G(m, ρ) is a Ck function
in ρ. Since f ∈ C2(0, η) and by (3.1), we have that H(m, ρ)− G(m, ρ) is C3 in ρ and thus mρ

is C3 in ρ as well. We consider mρ as a function of α and ρ, and denote ∂
∂ρ mρ by m′ρ. We then

rewrite (3.2) as

T(ρ) = ρ
∫ 1

mρ
αρ

ds√
F(ρ)− F(sρ)

=
mρ√

F(ρ)− F(mρ

α )
.

Differentiating the above equation with respect to ρ, we have that

T′(ρ) =
∫ 1

mρ
αρ

ds√
F(ρ)− F(sρ)

− ρ

2

∫ 1

mρ
αρ

f (ρ)− s f (sρ)

[F(ρ)− F(sρ)]
3
2

ds− ρ

m′ρ
αρ −

mρ

αρ2√
F(ρ)− F

(
mρ

α

)
=

m′ρ√
F(ρ)− F

(
mρ

α

) − mρ

2

f (ρ)− m′ρ
α f
(

mρ

α

)
[

F(ρ)− F
(

mρ

α

)] 3
2

.

Using notations in (3.11), we obtain that

T′(ρ) =
1
2

∫ 1

mρ
αρ

θ(ρ)− θ(sρ)

D
3
2 (sρ)

ds +
mρ

αρ −
m′ρ
α√

D
(

mρ

α

) =
m′ρ√

D
(

mρ

α

) − mρ

2

f (ρ)− m′ρ
α f
(

mρ

α

)
D

3
2

(
mρ

α

) . (B.1)
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Multiplying both sides of above RHS equation by
√

D(
mρ

α ) and gathering terms containing
m′ρ, we obtain that

1
2

P +
mρ

αρ
+

mρ f (ρ)

2D
(

mρ

α

) =

1 +
1
α
+

mρ

α f
(

mρ

α

)
2D
(

mρ

α

)
m′ρ.

Clearly, the coefficient of m′ρ is always positive. Dividing both sides by the coefficient of m′ρ,
we obtain (3.10).

In (B.1), plugging in (3.10), we obtain that

T′(ρ) =
1√

D
(

mρ

α

)
1

2
P +

mρ

αρ
− 1

α

(
2 mρ

αρ + P
)

D
(

mρ

α

)
+ mρ f (ρ)

2
( 1

α + 1
)

D
(

mρ

α

)
+

mρ

α f
(

mρ

α

)


=
1√

D
(

mρ

α

) [
2
( 1

α + 1
)

D
(

mρ

α

)
+

mρ

α f
(

mρ

α

)]
×
{(

1
2

P +
mρ

αρ

) [
2
(

1
α
+ 1
)

D
(mρ

α

)
+

mρ

α
f
(mρ

α

)]
−1

α

[(
2

mρ

αρ
+ P

)
D
(mρ

α

)
+ mρ f (ρ)

]}
.

The denominator is exactly equal to Φ(ρ) as defined in (3.14), and the numerator

∆(ρ) =
(

1
2

P +
mρ

αρ

) [
2D
(mρ

α

)
+

mρ

α
f
(mρ

α

)]
+

2
α

D
(mρ

α

)(1
2

P +
mρ

αρ

)
− 1

α

[(
2

mρ

αρ
+ P

)
D
(mρ

α

)
+ mρ f (ρ)

]
=

(
1
2

P +
mρ

αρ

) [
2D
(mρ

α

)
+

mρ

α
f
(mρ

α

)]
−

mρ

α
f (ρ)

= P
[

D
(mρ

α

)
+

mρ

2α
f
(mρ

α

)]
+

mρ

αρ

[
2F(ρ)− 2F

(mρ

α

)
+

mρ

α
f
(mρ

α

)
− ρ f (ρ)

]
= P

[
D
(mρ

α

)
+

mρ

2α
f
(mρ

α

)]
+

mρ

αρ

[
θ(ρ)− θ

(mρ

α

)]
is exactly equal to (3.13) as well.

The proof of Lemma 3.3 is complete.

Appendix C

Proof of Lemma 3.9. (I) Suppose that sη ≥ 1. We first claim that limρ→η−
mρ

α = η. Then the
denominator of RHS of (3.2) is zero and limρ→η− T(ρ) = ∞. We could suppose for a contra-
diction that lim infρ→η−

mρ

α = M < η. By definitions of sη and Lη , there exists δ ∈ (0, η −M)

such that, for η − δ < u < η,
f (u)
|u− η|sη

<
3
2

Lη
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and

F(η)− F(s) =
∫ η

s
f (t)dt <

∫ η

s

3
2

Lη |t− η|sη dt =
∫ η

s

3
2

Lη(η − t)sη dt =
3

2(sη + 1)
Lη(η − s)sη+1.

Then, taking limit inferior to both sides of (3.2), we have that

lim inf
ρ→η−

LHS = lim inf
ρ→η−

∫ ρ

mρ
α

ds√
F(ρ)− F(s)

≥ lim inf
ρ→η−

∫ ρ

η−δ

ds√
F(η)− F(s)

(since F(η) ≥ F(ρ) and η − δ ≥
mρ

α
)

≥ lim inf
ρ→η−

∫ ρ

η−δ

ds√
3

2(sη+1) Lη(η − s)sη+1
=

√
2(sη + 1)

3Lη
lim inf

ρ→η−

∫ ρ

η−δ
(η − s)−

sη+1
2 ds

=

√
2(sη + 1)

3Lη

∫ η

η−δ
(η − s)−

sη+1
2 ds,

which diverges to infinity since sη ≥ 1. But

lim inf
ρ→η−

RHS = lim inf
ρ→η−

mρ√
F(η)− F(mρ

α )
=

αM√
F(η)− F(M)

=
αM√∫ η

M f (t)dt

is finite, which is a contradiction. So lim infρ→η−
mρ

α = η. By Lemma 3.2 (ii), it implies
limρ→η−

mρ

α = η and hence limρ→η− T(ρ) = ∞.
(II) Suppose that 0 < sη < 1. Since 1√

F(η)−F(s)
> 0 for 0 < s < η and

G(m, η) =
∫ η

m
α

ds√
F(η)− F(s)

≤
∫ η

0

ds√
F(η)− F(s)

=
∫ η−δ

0

ds√
F(η)− F(s)

+
∫ η

η−δ

ds√
F(η)− F(s)

,

where δ is chosen such that f (u)
|u−η|sη > 1

2 Lη for η − δ < u < η. The integral
∫ η−δ

0
ds√

F(η)−F(s)
is a

finite number and ∫ η

η−δ

ds√
F(η)− F(s)

≤
√

2
Lη

∫ η

η−δ
(η − s)−

sη+1
2 ds

is also finite for 0 < sη < 1. So we have that G(m, η) is well-defined for 0 < sη < 1. Then by
Lemma 3.1, mη can be uniquely defined and hence limρ→η− T(ρ) = G(mη , η) is a finite positive
number.

The proof of Lemma 3.9 is complete.

Appendix D

Proof of Lemma 3.10. Assuming that f satisfies condition (D1) with positive p∗ < p < η and∫ p
0 s [ f (s)− s f ′(s)] ds < 0, we show that, in (3.12), T′(p) = ∆(p)

Φ(p) < 0 for ρ = p and for
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all α > 0 by showing that ∆(p) < 0 since Φ(p) > 0. Since f satisfies (D1), there exists
p̄ ∈ (0, p∗) ⊂ (0, p) such that θ(p) = θ( p̄); see Fig. 2.2 (I). Clearly, we have that

θ(p)− θ(u)


> 0 for 0 < u < p̄,

= 0 for u = p̄,

< 0 for p̄ < u < p.

(D.1)

First, assume that 0 <
mp
α < p̄. We first observe that

∫ p

mp
α

[θ(p)− θ(s)] ds

= −
mp

α

[
θ(p)− θ

(mp

α

)]
+
∫ p

mp
α

sθ′(s)ds (by integration by parts)

< −
mp

α

[
θ(p)− θ

(mp

α

)]
+
∫ p

0
sθ′(s)ds (since θ′(s) = f (s)− s f ′(s) > 0 on (0, mp

α ))

= −
mp

α

[
θ(p)− θ

(mp

α

)]
+
∫ p

0
s
[

f (s)− s f ′(s)
]

ds < 0. (D.2)

In addition, we observe that

∫ p

mp
α

√
D(

mp
α )

D
3
2 (s)

[θ(p)− θ(s)] ds

=
∫ p̄

mp
α

√
D(

mp
α )

D
3
2 (s)

[θ(p)− θ(s)] ds +
∫ p

p̄

√
D(

mp
α )

D
3
2 (s)

[θ(p)− θ(s)] ds

<

√
D(

mp
α )

D
3
2 ( p̄)

∫ p̄

mp
α

[θ(p)− θ(s)] ds +

√
D(

mp
α )

D
3
2 ( p̄)

∫ p

p̄
[θ(p)− θ(s)] ds

(by (D.1) and since D(u) is strictly decreasing in u)

<

√
D(

mp
α )

D
3
2 (

mp
α )

∫ p

mp
α

[θ(p)− θ(s)] ds (since D(u) is strictly decreasing in u)

=
1

D(
mp
α )

∫ p

mp
α

[θ(p)− θ(s)] ds < 0. (D.3)

By (3.13) and (3.11), we further observe that

∆(p) =
1

2p

[mp

α
f
(mp

α

)
+ 2D

(mp

α

)]
∫ p

mp
α

√
D(

mp
α )

D
3
2 (s)

[θ(p)− θ(s)] ds

+
mp

αp

[
θ(p)− θ

(mp

α

)]

<
1

2p
2D(

mp
α )

D(
mp
α )

{∫ p

mp
α

[θ(p)− θ(s)] ds
}
+

mp

αp

[
θ(p)− θ

(mp

α

)]
(by (D.3) and (D.2) and since mp

α f (mp
α ) > 0)

=
1
p

∫ p

mp
α

[θ(p)− θ(s)] ds +
mp

αp

[
θ(p)− θ

(mp

α

)]
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= −
mp

αp

[
θ(p)− θ

(mp

α

)]
+

1
p

∫ p

mp
α

sθ′(s)ds +
mp

αp

[
θ(p)− θ

(mp

α

)]
(by integration by parts)

=
1
p

∫ p

mp
α

sθ′(s)ds =
1
p

∫ p

mp
α

s
[

f (s)− s f ′(s)
]

ds <
1
p

∫ p

0
s
[

f (s)− s f ′(s)
]

ds < 0

by (D.1) and since
∫ p

0 s [ f (s)− s f ′(s)] ds < 0. So, for 0 <
mp
α < p̄, we have ∆(p) < 0 for all

α > 0. Secondly, assume that p̄ ≤ mp
α < p. Since θ(p)− θ(s) < 0 for mp

α < s < p by (D.1), and
by (3.13), we obtain ∆(p) < 0 for all α > 0. The proof of part (i) is complete. Similarly, part
(ii) can be proved. We omit it here.

The proof of Lemma 3.10 is complete.

Appendix E

Proof of Lemma 3.11. We compute the numerator of T′(ρ) in (3.12)

∆(ρ) = ∆(ρ, k, α) = P
[

D(k) +
k
2

f (k)
]
+

k
ρ
[θ(ρ)− θ(k)] (by (3.13))

=

(
k
ρ
+

1
2

P
)
[k f (k) + 2D(k)]− k f (ρ) (by (3.11))

=

(
k
ρ
+

1
2

P
)

B(k)− k f (ρ),

where

P =
1
ρ

∫ ρ

k

√
D(k)

D
3
2 (s)

[θ(ρ)− θ(s)] ds.

We observe that
∂

∂k
D(k) =

∂

∂k
[F(ρ)− F(k)] = − f (k),

∂B(k)
∂k

= f (k) + k f ′(k)− 2 f (k) = k f ′(k)− f (k) = −θ′(k), (E.1)

and

∂P
∂k

= −1
ρ

√
D(k)

D
3
2 (k)

[θ(ρ)− θ(k)] +
1
ρ

∂
∂k D(k)

2
√

D(k)

∫ ρ

k

1

D
3
2 (s)

[θ(ρ)− θ(s)] ds

= − θ(ρ)− θ(k)
ρD(k)

− f (k)
2D(k)

P. (E.2)

Differentiating the above expression of ∆(ρ, k, α) with respect to k (= m
α ), we then compute

that

∂∆(ρ, k, α)

∂k

=

(
1
ρ
+

1
2

∂P
∂k

)
B(k) +

(
k
ρ
+

1
2

P
)

∂B(k)
∂k
− f (ρ)

=

[
1
ρ
− 1

2
θ(ρ)− θ(k)

ρD(k)
− f (k)

4D(k)
P
]

B(k)−
(

k
ρ
+

1
2

P
)

θ′(k)− f (ρ) (by (E.1) and (E.2))

=

[
− f (k)

4D(k)
B(k)− 1

2
θ′(k)

]
P +

[
1
ρ
− 1

2
θ(ρ)− θ(k)

ρD(k)

]
B(k)− k

ρ
θ′(k)− f (ρ). (E.3)
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Adding the term 2
B(k)

[
f (k)

4D(k)B(k) + 1
2 θ′(k)

]
∆(ρ, k, α) to (E.3) to eliminate P, we have that

∂∆(ρ, k, α)

∂k
+

2
B(k)

[
f (k)

4D(k)
B(k) +

1
2

θ′(k)
]

∆(ρ, k, α)

=

(
1
ρ
− θ(ρ)− θ(k)

2ρD(k)

)
B(k)− k

ρ
θ′(k)− f (ρ) +

2
B(k)

[
f (k)

4D(k)
B(k) +

1
2

θ′(k)
][

k
ρ

B(k)− k f (ρ)
]

= − θ(ρ)− θ(k)
2ρD(k)

B(k)− k
ρ

θ′(k) +
θ(ρ)− θ(k)

ρ
+

1
B(k)

[
f (k)

2D(k)
B(k) + θ′(k)

]
k
ρ
[θ(ρ)− θ(k)]

=
1
ρ

[
− B(k)

2D(k)
+ 1 +

k f (k)
2D(k)

]
[θ(ρ)− θ(k)] +

{
− k

ρ
+

1
B(k)

k
ρ
[θ(ρ)− θ(k)]

}
θ′(k)

=
k
ρ

[
θ(ρ)− θ(k)

B(k)
− 1
]

θ′(k) (since − B(k)
2D(k) + 1 + k f (k)

2D(k) = 0 by (3.23))

= − k f (ρ)
B(k)

θ′(k)

{
< 0 for ρ = p > p∗ > k > 0, if f satisfies (D1) with p∗ < p < η,

> 0 for ρ = p > p∗ > k > 0, if f satisfies (D2) with p∗ < p < η,

see Fig. 2.2 (I)–(II).
The proof of Lemma 3.11 is complete.
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