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Abstract. A singular nonlinear initial value problem (IVP) with a φ-Laplacian of the
form

(p(t)φ(u′(t)))′ + p(t) f (φ(u(t))) = 0, u(0) = u0 ∈ [L0, 0), u′(0) = 0

is investigated on the half-line [0, ∞). Here, function φ is smooth and increasing on R

with φ(0) = 0, function f is locally Lipschitz continuous with three zeros φ(L0) < 0 <
φ(L), function p is smooth and increasing on (0, ∞), and the problem is singular in the
sense that p(0) = 0 and 1/p(t) may not be integrable on [0, 1]. The main result of the
paper is the existence of homoclinic solutions defined as nondecreasing solutions u of
the IVP satisfying limt→∞ u(t) = L.

Keywords: second order ODE, time singularity, φ-Laplacian, homoclinic solution, half-
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1 Introduction

We investigate solutions of the initial value problem (IVP)

(p(t)φ(u′(t)))′ + p(t) f (φ(u(t))) = 0, t ∈ (0, ∞), (1.1)

u(0) = u0, u′(0) = 0, u0 ∈ [L0, 0), (1.2)

where
φ ∈ C1(R), φ′(x) > 0 for x ∈ (R \ {0}), (1.3)

φ(R) = R, φ(0) = 0, (1.4)

L0 < 0 < L, f (φ(L0)) = f (0) = f (φ(L)) = 0, (1.5)

f ∈ Lip[φ(L0), φ(L)], x f (x) > 0 for x ∈ ((φ(L0), φ(L)) \ {0}), (1.6)

p ∈ C[0, ∞) ∩ C1(0, ∞), p′(t) > 0 for t ∈ (0, ∞), p(0) = 0. (1.7)

http://www.math.u-szeged.hu/ejqtde/
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In particular, we find additional conditions for p, φ and f which guarantee for some u0 ∈
[L0, 0) the existence of a nondecreasing solution of IVP (1.1), (1.2) converging to L for t → ∞.
Note that if we extend the function p in equation (1.1) from the half-line onto R as an even
function and assume that φ is odd, then any solution u of IVP (1.1), (1.2) with limt→∞ u(t) = L
fulfils limt→−∞ u(t) = L. Such solution u is called a homoclinic solution. This is a motivation
for Definition 1.4. Due to condition (1.7) the function 1/p(t) may not be integrable on [0, 1]
and consequently equation (1.1) has a time singularity at t = 0. Problems of this type arise
in hydrodynamics [10] or in the nonlinear field theory [7], where homoclinic solutions play
an important role in the study of behaviour of corresponding differential models. The paper
is a culmination of our previous research and results from [5] and [25], where other types of
solutions of IVP (1.1), (1.2) have been studied.

Our first attempts in this subject have been made for the equation without φ-Laplacian(
p(t)u′(t)

)′
+ q(t) f (u(t)) = 0, t ∈ (0, ∞),

with p ≡ q in [18–23] and for p 6≡ q in [4, 6, 24, 26]. Other problems without φ-Laplacian close
to (1.1), (1.2) can be found in [1–3, 8, 12–14] and those with φ-Laplacian in [9, 11, 15–17].

IVP (1.1), (1.2) can be transformed to the equivalent integral equation

u(t) = u0 +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f (φ(u(τ))) dτ

)
ds, t ∈ [0, ∞). (1.8)

Assumption (1.3) implies that φ is locally Lipschitz continuous on R, but if φ′(0) = 0, then

lim
x→0

(
φ−1

)′
(x) = ∞,

and so φ−1 does not fulfil the Lipschitz condition on intervals containing 0. If values of u are
between L0 and L, we see that

lim
s→0+

1
p(s)

∫ s

0
p(τ) f (φ(u(τ))) dτ = 0.

Therefore φ−1 in (1.8) is considered on an interval containing zero. Hence, in order to prove
the uniqueness for IVP (1.1), (1.2) if φ′(0) = 0, we need to use some new condition for φ−1

instead of the Lipschitz one. Such cases of φ have been considered in [5], where we have
proved the existence of a unique solution of IVP (1.1), (1.2) for u0 > L0 and φ′(0) = 0 under
the assuption that φ fulfils conditions

lim sup
x→0−

(
−x
(

φ−1
)′

(x)
)
< ∞, φ′ is nonincreasing on (−∞, 0), (1.9)

lim sup
x→0+

(
x
(

φ−1
)′

(x)
)
< ∞, φ′ is nondecreasing on (0, ∞). (1.10)

Example 1.1. A typical model example is the α-Laplacian φ(x) = |x|α sgn x, x ∈ R, where
α ≥ 1. Then φ′(x) = α|x|α−1 and conditions (1.3) and (1.4) are fulfilled. If α > 1, then
φ′(0) = 0, φ′ is nonincreasing on (−∞, 0) and nondecreasing on (0, ∞). Further,

φ−1(x) = |x| 1α sgn x,
(

φ−1
)′

(x) =
1
α
|x| 1α−1, lim

x→0

(
φ−1

)′
(x) = ∞,
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which yields that φ−1 is not Lipschitz continuous at 0. Since

lim
x→0

x
(

φ−1
)′

(x) =
1
α

lim
x→0

x|x| 1α−1 = 0,

we see that the α-Laplacian φ(x) = |x|α sgn x fulfils (1.9), (1.10).
If we take p(t) = tβ, t ∈ [0, ∞ ), where β > 0, then p fulfils (1.7). As an example of f

satisfying conditions (1.5) and (1.6) we can take f (x) = x (x− φ(L0)) (φ(L)− x), x ∈ R.

Definition 1.2. A function u ∈ C1[0, ∞) with φ(u′) ∈ C1 (0, ∞) which satisfies equation (1.1)
for every t ∈ (0, ∞) is called a solution of equation (1.1). If moreover u satisfies the initial
conditions (1.2), then u is called a solution of IVP (1.1), (1.2).

Remark 1.3. Equation (1.1) has the constant solutions u(t) ≡ L, u(t) ≡ 0 and u(t) ≡ L0.

Definition 1.4. Consider a solution u of IVP (1.1), (1.2) with u0 ∈ [L0, 0) and denote

usup = sup{u(t) : t ∈ [0, ∞)}.

If usup < L, then u is called a damped solution of IVP (1.1), (1.2).
If usup = L and u is nondecreasing (i.e. limt→∞ u(t) = L), then u is called a homoclinic

solution of IVP (1.1), (1.2).
The homoclinic solution is called a regular homoclinic solution, if u(t) < L for t ∈ [0, ∞ ) and

a singular homoclinic solution, if there exists t0 > 0 such that u(t) = L for t ∈ [t0, ∞).
If usup > L, then u is called an escape solution of IVP (1.1), (1.2).

Conditions giving the existence of damped solutions are published in [5] nad those for
the existence of escape solutions can be found in [25]. Our goal is to prove the existence of
a homoclinic solution of IVP (1.1), (1.2) with some starting value u0 ∈ [L0, 0) provided some
suitable additional conditions are fulfilled. The main result of the paper is contained in the
next theorem.

Theorem 1.5 (Homoclinic solutions). Let (1.3)–(1.7) and (2.2)–(2.4) hold. Further assume that

there exists a right neighbourhood of φ(L0), where f is decreasing. (1.11)

Then there exists u∗0 ∈ [L0, B̄) such that a solution uh of IVP (1.1), (1.2) with u0 = u∗0 is homoclinic.

Examples of graphs of homoclinic solutions and of a function f satisfying the conditions
of Theorem 1.5 are in Figures 1.1–1.3.

2 Auxiliary results

Here we present an overview of results from [5] and [25] which we need to get a homoclinic
solution of IVP (1.1), (1.2). The first group consists of results about existence and uniqueness
which follow from [5, Th. 4.1, Th. 5.1, Th. 5.4, Th. 6.5] and [25, Th. 4.7].

Since values of any homoclinic solution belong to [L0, L], we can assume without loss of
generality

f (x) = 0 for x ≤ φ(L0), x ≥ φ(L) (2.1)

in our next investigation.
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Figure 1.1: Graph of a regular homoclinic solution uh

Figure 1.2: Graph of a singular homoclinic solution uh

Figure 1.3: Graph of a function f (sizes of the orange and green areas are the
same)

Theorem 2.1 (Existence of solutions). Assume (1.3)–(1.7) and (2.1). Then, for each starting value
u0 ∈ [L0, 0), there exists a solution of IVP (1.1), (1.2).

Theorem 2.2 (Damped solutions). Let (1.3)–(1.7) and (2.1) hold and let

∃B̄ ∈ (L0, 0) : F (B̄) = F(L), where F(x) =
∫ x

0
f (φ(s))ds, x ∈ R, (2.2)

and

lim
t→∞

p′(t)
p(t)

= 0. (2.3)

Then every solution of IVP (1.1), (1.2) with the starting value u0 ∈ [B̄, 0) is damped.
Assume in addition that

lim
x→0
|x|
(

φ−1
)′

(x) < ∞, (2.4)
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and that u is a damped solution of IVP (1.1), (1.2) with the starting value u0 ∈ (L0, 0). Then u is a
unique solution of this IVP.

Theorem 2.3 (Escape solutions). Let (1.3)–(1.7) and (2.1)–(2.3) hold. Then there exist infinitely
many escape solutions of IVP (1.1), (1.2) with starting values in [L0, B̄).

Assume in addition that (2.4) hold and that u is an escape solutions of IVP (1.1), (1.2) with the
starting value u0 ∈ (L0, B̄). Then u is a unique solution of this IVP.

Remark 2.4. The uniqueness of damped and escape solutions is proved in [5, Th. 5.4, Th. 6.5]
under the assumptions (1.9), (1.10). Using the arguments from the proof of Lemma 4.1, we see
that the requirement of the monotonicity of φ′ can be omitted and (1.9), (1.10) can be replaced
with (2.4).

Remark 2.5. If we assume that (1.3)–(1.7) and (2.1)–(2.3) hold and in addition that φ′(0) > 0,
then the condition

φ−1 ∈ Liploc(R), (2.5)

is fulfilled. In this case, by Theorem 2.1 and [5, Th. 4.3], for each u0 ∈ [L0, 0) there exists
a unique solution of IVP (1.1), (1.2). In particular for u0 = L0 IVP (1.1), (1.2) has a unique
(constant) solution.

Example 2.6. As an example of φ satisfying (1.3), (1.4) and φ′(0) > 0 we choose

φ(x) = sinh(x) = (ex − e−x)/2, x ∈ R.

The second group contains results about asymptotic behaviour of damped, escape and ho-
moclinic solutions and can be reached from [5, L. 2.1b), L. 2.6, L. 2.8, L. 3.2, L. 3.4, L. 6.2, L. 6.3]
and [25, L. 3.3, L. 3.4]. In particular, paper [5] mostly deals with damped solutions and proves
their possible behaviour as illustrated in Figure 2.1. Paper [25] investigates escape solutions,
proves their monotonicity and presents conditions guaranteeing their unboundedness. For
graphs of escape solutions see Figure 2.2.

Figure 2.1: Graphs of damped solutions

Theorem 2.7 (Starting value in (L0, 0)). Let (1.3)–(1.7) and (2.1)–(2.3) hold and let u be a solution
of IVP (1.1), (1.2) with the starting value u0 ∈ (L0, 0). Then

u(t) > L0 and ∃c̃ > 0 such that |u′(t)| ≤ c̃ for t ∈ (0, ∞). (2.6)

The constant c̃ depends on L0, L1, φ and f and does not depend on p and u.
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Figure 2.2: Graphs of escape solutions

1. Assume that usup < L, i.e. u is a damped solution.

• Let θ > 0 be the first zero of u. Then there exists θ < a < b such that

u(a) ∈ (0, L), u′(t) > 0 on (0, a), u′(a) = 0, u′(t) < 0 on (a, b). (2.7)

• Let u < 0 on [0, ∞). Then

u′(t) > 0 for t ∈ (0, ∞), lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (2.8)

2. Assume that usup > L, i.e. u is an escape solution. Then

u′(t) > 0 for t ∈ (0, ∞). (2.9)

3. Assume that usup = L. Then there are two possibilities.

• u(t) < L for t ∈ [0, ∞) which yields

u′(t) > 0 for t ∈ (0, ∞), lim
t→∞

u(t) = L, lim
t→∞

u′(t) = 0, (2.10)

and u is a regular homoclinic solution.
• There exists t0 > 0 such that u(t0) = L, u′(t0) = 0 which implies

u′(t) > 0 for t ∈ (0, t0), (2.11)

and there exists a singular homoclinic solution v, where v = u on [0, t0] and v = L on
[t0, ∞).

Consider a solution u 6≡ L0 of IVP (1.1), (1.2) with u0 = L0. Since L0 < 0, there exists ε > 0
such that u(t) < 0 for t ∈ [0, ε], and by (2.1), f (φ(u(t))) ≤ 0 for t ∈ [0, ε]. Integrating (1.1) over
[0, t] we get

p(t)φ(u′(t)) = −
∫ t

0
p(s) f (φ(u(s)))ds ≥ 0, t ∈ [0, ε].

Hence u′(t) ≥ 0 and u(t) is nondecreasing on [0, ε]. Consequently, since u 6≡ L0, there exists a
maximal a0 ≥ 0 such that

u(t) = L0 on [0, a0] and u is increasing in a right neighbouhood of a0. (2.12)

The next theorem describes asymptotic behaviour of damped, homoclinic and escape solutions
starting at L0, which is the same as that of solutions with starting values greater than L0.
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Theorem 2.8 (Starting value L0). Let (1.3)–(1.7) and (2.1)–(2.3) hold and let u be a solution of IVP
(1.1), (1.2) with the starting value u0 = L0. Further, let u 6≡ L0 and let a0 ≥ 0 be from (2.12). Then

u(t) > L0 and ∃c̃ > 0 such that |u′(t)| ≤ c̃ for t ∈ (a0, ∞). (2.13)

The constant c̃ depends on L0, L1, φ and f and does not depend on p and u.

1. Assume that usup < L, i.e. u is a damped solution.

• Let θ > a0 be the first zero of u. Then there exist θ < a < b such that

u(a) = (0, L), u′(t) > 0 on (a0, a), u′(a) = 0, u′(t) < 0 on (a, b). (2.14)

• Let u < 0 on [0, ∞). Then

u′(t) > 0 on (a0, ∞), lim
t→∞

u(t) = 0, lim
t→∞

u′(t) = 0. (2.15)

2. Assume that usup > L, i.e. u is an escape solution. Then

u′(t) > 0 for t ∈ (a0, ∞). (2.16)

3. Assume that usup = L. Then there are two possibilities.

• u(t) < L for t ∈ [0, ∞) which yields

u′(t) > 0 for t ∈ (a0, ∞), lim
t→∞

u(t) = L, lim
t→∞

u′(t) = 0, (2.17)

and u is a regular homoclinic solution.

• There exists t0 > a0 such that u(t0) = L, u′(t0) = 0 which implies

u′(t) > 0 for t ∈ (a0, t0), (2.18)

and there exists a singular homoclinic solution v, where v = u on [0, t0] and v = L on
[t0, ∞).

3 Escape solution and damped solution start in (L0, 0)

In this section we derive further needed properties of escape and homoclinic solutions.
Assume (1.3)–(1.7), (2.1)–(2.4) hold and define sets

Me = {u0 ∈ (L0, 0) : u is an escape solution of IVP (1.1), (1.2)}, (3.1)

Md = {u0 ∈ (L0, 0) : u is a damped solution of IVP (1.1), (1.2)}. (3.2)

By Theorem 2.2, the set Md is nonempty. In this section we assume that the set Me is also
nonempty and prove that the sets Me and Md are open in (L0, 0). These properties of Me

andMd are used in Section 5 in the proof of Theorem 1.5.

Lemma 3.1. Let (1.3)–(1.7) and (2.1)–(2.4) hold. Assume that B ∈ [L0, 0), Bn ∈ (L0, 0) for n ∈ N

and
lim
n→∞

Bn = B.

Further, let un be a solution of IVP (1.1), (1.2) with u0 = Bn, n ∈ N, and let u be a damped solution
or an escape solution of IVP (1.1), (1.2) with u0 = B. Then for each b > 0

lim
n→∞

un(t) = u(t) uniformly on [0, b]. (3.3)
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Proof. Since each un fulfils (1.1) we get after integration

un(t) = Bn +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f (φ(un(τ)))dτ

)
ds, t ∈ [0, ∞), n ∈N. (3.4)

Choose an arbitrary b > 0. By (2.6) the sequence {un} is bounded and equicontinuous on [0, b]
and by the Arzelà–Ascoli Theorem there exists a subsequence {uk} ⊂ {un} which uniformly
converges on [0, b] to a continuous function v. Hence the limit v fulfils

v(t) = B +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f (φ(v(τ)))dτ

)
ds, t ∈ [0, b].

So, v is a solution of IVP (1.1), (1.2) with u0 = B. By Theorems 2.2 or 2.3, we get u = v on [0, b]
and (3.3) follows.

Lemma 3.2. Let (1.3)–(1.7) and (2.1)–(2.4) hold. Then the setMe from (3.1) is open in (L0, 0).

Proof. Let us choose an arbitrary B ∈ Me. Then the corresponding solution u of IVP (1.1),
(1.2) with u0 = B is an escape solution and so there exists b > 0 such that u(b) > L.

Assume that in any neighbourhood of B there exist starting values of solutions which
are not escape solutions. Then we get a sequence {Bn} ⊂ (L0, 0) converging to B and a
corresponding sequence {un} of solutions of IVP (1.1), (1.2) with u0 = Bn satisfying (3.3). In
addition un ≤ L on [0, ∞) for n ∈ N. By (3.3) we get u(b) ≤ L, a contradiction. Therefore for
each B ∈ Me there exists a neighbourhood of B belonging toMe.

Lemma 3.3. Let (1.3)–(1.7) and (2.1)–(2.4) hold. Then the setMd from (3.2) is open in (L0, 0).

Proof. Let us choose an arbitrary B ∈ Md. Then the corresponding solution u of IVP (1.1),
(1.2) with u0 = B is a damped solution.

Assume that in any neighbourhood of B there exist starting values of solutions which are
not damped solutions. By Theorem 2.7 we get a sequence {Bn} ⊂ (L0, 0) converging to B and
a corresponding sequence {un} of nondecreasing solutions of IVP (1.1), (1.2) with u0 = Bn

satisfying (3.3). Therefore u is also nondecreasing.
1. Assume that u has a zero θ > 0. By (2.7) there exist θ < a < b such that u(a) ∈ (0, L)

and u is decreasing on [a, b], a contradiction.
2. Assume that u < 0 on [0, ∞). Then (1.1) yields

φ′(u′(t))u′(t)u′′(t) +
p′(t)
p(t)

φ(u′(t))u′(t) + f (φ(u(t)))u′(t) = 0, t > 0. (3.5)

Integrating (3.5) from 0 to t > 0 and using (2.2) and (2.8) we get∫ u′(t)

0
xφ′(x)dx +

∫ t

0

p′(s)
p(s)

φ(u′(s))u′(s)ds = F(B)− F(u(t)), t > 0, (3.6)

and for t→ ∞ ∫ ∞

0

p′(s)
p(s)

φ(u′(s))u′(s)ds = F(B) ∈ (0, ∞). (3.7)

Consequently there exist b > 0 and η > 0 such that∫ ∞

b

p′(s)
p(s)

φ(u′(s))u′(s)ds < η <
F(L)

3
. (3.8)
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Hence (3.7) and (3.8) give ∫ b

0

p′(s)
p(s)

φ(u′(s))u′(s)ds > F(B)− η. (3.9)

(i) Assume for each n ∈ N, that starting value Bn can be chosen such that the corre-
sponding solution un is not a singular homoclinic solution. So, un is either escape or regular
homoclinic solution, and for n ∈N, we get similarly as in (3.6)∫ u′n(t)

0
xφ′(x)dx +

∫ t

0

p′(s)
p(s)

φ(u′n(s))u
′
n(s)ds = F(Bn)− F(un(t)), t > 0, (3.10)

and so

F(un(t)) < F(Bn)−
∫ b

0

p′(s)
p(s)

φ(u′n(s))u
′
n(s)ds, t > b. (3.11)

Using (3.9) we derive an estimation for the integral in (3.11) as follows. We have∫ b

0

p′(s)
p(s)

φ(u′n(s))u
′
n(s)ds >

∫ b

0

p′(s)
p(s)

(
φ(u′n(s))u

′
n(s)− φ(u′(s))u′(s)

)
ds + F(B)− η,

and due to (3.6) and (3.10),∫ b

0

p′(s)
p(s)

(
φ(u′n(s))u

′
n(s)− φ(u′(s))u′(s)

)
ds

= F(Bn)− F(B) + F(u(b))− F(un(b)) +
∫ u′(b)

u′n(b)
xφ′(x)dx.

Therefore, (3.11) yields

F(un(t)) < |F(u(b)− F(un(b))|+
∣∣∣∣∫ u′(b)

u′n(b)
xφ′(x)dx

∣∣∣∣+ η, t > b.

By (3.3) and (3.4),
lim
n→∞

F(un(b)) = F(u(b)), lim
n→∞

u′n(b) = u′(b),

and so if n is sufficiently large, then

F(un(t)) < 3η < F(L), t > b.

By (2.2) the function F(x) is increasing for x ∈ (0, ∞), and so if 0 < un(t) then un(t) <

F−1(3η) < L for t > b. Consequently, since un is increasing on [0, ∞) we have un < F−1(3η) <

L on [0, ∞) which contradicts the assumption that un is an escape or regular homoclinic solu-
tion.

(ii) Let Bn, n ∈ N, be such that the corresponding solutions un, n ∈ N, are singular
homoclinic solutions. According to Theorem 2.7 there exists a sequence {tn} ⊂ (0, ∞) such
that

u′n(t) > 0, t ∈ (0, tn), u′n(tn) = 0, un(t) = L, t ∈ [tn, ∞), n ∈N. (3.12)

Let there exist c ∈ (0, ∞) such that tn ≤ c, and hence un(c) = L, n ∈ N. Then (3.3) yields
u(c) = L. Since we assumed that u < 0 on [0, ∞), we get a contradiction. Therefore there
exists a subsequence {tk} ⊂ {tn} going to ∞, and for b from (3.8) we get tk > b for k ≥ k0,
with a sufficiently large k0. Similarly as in (3.10) and (3.11) we derive∫ u′k(t)

0
xφ′(x)dx +

∫ t

0

p′(s)
p(s)

φ(u′k(s))u
′
k(s))ds = F(Bk)− F(uk(t)), t ∈ (0, tk), k ≥ k0,
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F(uk(t)) < F(Bk)−
∫ b

0

p′(s)
p(s)

φ(u′k(s))u
′
k(s)ds, t ∈ (b, tk), k ≥ k0. (3.13)

We derive the estimation of the integral in (3.13) as in (i) and get for a sufficiently large k the
estimate uk(tk) ≤ F−1(3η) < L contrary to (3.12).

We have proved that for each B ∈ Md there exists a neighbourhood of B belonging to
Md.

4 Escape solution and damped solution start at L0

If we have not an escape solution of IVP (1.1), (1.2) starting at u0 > L0, we need some further
properties of escape and damped solutions starting at L0.

Assume (1.3)–(1.7), (1.11) and (2.1)–(2.4) hold and denote by S the set of all damped,
escape and homoclinic solutions of IVP (1.1), (1.2) with the starting value u0 = L0. Let ue be
an escape solution and ud 6≡ L0 be a damped solution of IVP (1.1), (1.2). In this section we
assume that

ue, ud ∈ S . (4.1)

According to (1.11) there exists C ∈ (L0, 0) such that f is decreasing on [φ(L0), φ(C)]. By
Theorem 2.8 there exist minimal γd > 0 and minimal γe > 0 such that ud(γd) = C and
ue(γe) = C. Let us put

γ0 = min{γe, γd}. (4.2)

Lemma 4.1. Let (1.3)–(1.7), (1.11) and (2.1)–(2.4) hold. Then for each γ ≥ γ0 there exists a unique
solution uγ ∈ S satisfying uγ(γ) = C. Further there exists aγ ∈ [0, γ) such that

uγ(t) = L0 on [0, aγ], uγ(t) ∈ (L0, C) on (aγ, γ). (4.3)

Proof. The existence follows from Lemma 4.6 in [25] where it is proved by the lower and upper
functions method. Theorem 2.8 yields (4.3). It remains to prove the uniqueness.

Step 1. Let us show that
γ0 ≤ γ1 < γ2 =⇒ aγ1 ≤ aγ2 . (4.4)

Assume on the contrary that aγ1 > aγ2 , so the graphs of uγ1 and uγ2 intersect and there exists
ξ ∈ (aγ1 , γ1) such that

uγ1(t) = uγ2(t) = L0 on [0, aγ2 ], uγ1(t) < uγ2(t) on (aγ2 , ξ), uγ1(ξ) = uγ2(ξ) ∈ (L0, C).

Consequently,
u′γ1

(ξ) ≥ u′γ2
(ξ). (4.5)

On the other hand, since f is decreasing on [φ(L0), φ(C)] we get due to (1.3) − f (φ(uγ2(t))) >
− f (φ(uγ1(t))) for t ∈ (aγ2 , ξ). Since uγi satisfy (1.1), we get by integration over [0, ξ]

φ
(
u′γi

(ξ)
)
= − 1

p(ξ)

∫ ξ

0
p(s) f (φ(uγi(s))) ds, i = 1, 2,

so φ
(
u′γ2

(ξ)
)
> φ

(
u′γ1

(ξ)
)

and u′γ2
(ξ) > u′γ1

(ξ), contrary to (4.5).

Step 2. Now, assume that for some γ ≥ γ0 there exist two different solution u1, u2 ∈ S such
that u1(γ) = u2(γ) = C. Similarly as in Step 1 we get that the graphs of u1 and u2 cannot
intersect. Therefore there exists an interval (τ0, τ1) ⊂ (0, γ) such that u1 > u2 on (τ0, τ1) and
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u1(τ0) = u2(τ0), u′1(τ0) = u′2(τ0), u1(τ1) = u2(τ1). Then u′1(τ1) ≤ u′2(τ1). Since u1, u2 are
solutions of (1.1), it holds

(p(t)φ(u′i(t)))
′ + p(t) f (φ(ui(t))) = 0, t ∈ (0, ∞), i = 1, 2. (4.6)

Integrating (4.6) over [τ0, τ1] we have

p(τ1)φ
(
u′i(τ1)

)
= p(τ0)φ

(
u′i(τ0)

)
−
∫ τ1

τ0

p(s) f (φ(ui(s))) ds, i = 1, 2,

which implies u′2(τ1) < u′1(τ1), a contradiction. We have proved that

u1(t) = u2(t) for t ∈ [0, γ]. (4.7)

Step 3. Integrating (4.6) over [γ, t] we get for t > γ

φ(u′i(t)) =
p(γ)
p(t)

φ(u′i(γ))−
1

p(t)

∫ t

γ
p(s) f (φ(ui(s)))ds =: Ai(t), i = 1, 2,

and so

u′i(t) = φ−1(Ai(t)), ui(t) = C +
∫ t

γ
φ−1(Ai(s))ds, i = 1, 2.

By Theorem 2.8 there exist β > γ and c0, c̃ such that

0 < c0 ≤ u′i(t) ≤ c̃, ui(t) ∈ (L0, L), t ∈ [γ, β], i = 1, 2. (4.8)

Then 0 < φ(c0) < Ai(t) ≤ φ(c̃) for t ∈ [γ, β], i = 1, 2. Therefore, due to (1.3), there exists a
Lipschitz constant Λφ−1 of the function φ−1 on the interval [φ(c0), φ(c̃)] such that

|u′1(t)−u′2(t)| ≤Λφ−1 |A1(t)−A2(t)|, |u1(t)−u2(t)| ≤ Λφ−1

∫ t

γ
|A1(s)−A2(s)|ds, t ∈ [γ, β].

In addition, by (1.3) and (1.6) we can find Lipschitz constants Λφ and Λ f of the functions φ

and f on the intervals [L0, L] and [φ(L0), φ(L)], respectively. Hence, by (1.7), (4.7) and (4.8),

|A1(t)− A2(t)| ≤
1

p(t)

∫ t

γ
p(s) | f (φ(u2(s)))− f (φ(u1(s)))| ds

≤ Λ f Λφ

∫ t

γ
|u2(s)− u1(s)|ds, t ∈ [γ, β].

This implies

|u1(t)− u2(t)| ≤ Λφ−1 Λ f Λφ(β− γ)
∫ t

γ
|u1(s)− u2(s)|ds, t ∈ [γ, β],

and the Gronwall lemma yields

u1(t) = u2(t) for t ∈ [γ, β]. (4.9)

Let β∗ be a supremum of all such β satisfying (4.8). Let us denote ρ(t) := u1(t)− u2(t). Then
by (4.7) and (4.9)

ρ(t) = 0 for t ∈ [0, β∗). (4.10)

If β∗ = ∞, then u1 = u2 on [0, ∞) and the uniqueness is proved.
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Step 4. Let β∗ < ∞. Since ρ ∈ C1[0, ∞), it holds ρ(β∗) = 0, ρ′(β∗) = 0 due to (4.10), and u1, u2

reach L at β∗ or u′1, u′2 reach 0 at β∗.
(i) Let u1(β∗) = u2(β∗) = L and u′1(β∗) = u′2(β∗) > 0. Then u1 and u2 are escape solutions,

and by (2.1), we obtain by integration of (4.6) over [β∗, t]

φ(u′1(t)) =
p(β∗)

p(t)
φ(u′1(β∗)) = φ(u′2(t)), t ≥ β∗.

Therefore u′1 = u′2 on [β∗, ∞) and

u1(t) = L +
∫ t

β∗
φ−1

(
p(β∗)

p(s)
φ(u′1(β∗))

)
ds = u2(t), t ≥ β∗. (4.11)

(ii) Let u1(β∗) = u2(β∗) = L and u′1(β∗) = u′2(β∗) = 0. Then u1 and u2 are singular
homoclinic solutions, and

u1(t) = L = u2(t), t ≥ β∗. (4.12)

To summarize, in the both cases (i) and (ii) the uniqueness is proved.
(iii) Let u1(β∗) = u2(β∗) < L and u′1(β∗) = u′2(β∗) = 0. Then u1 and u2 are damped

solutions and by Theorem 2.8 there exists b > β∗ such that u1, u2 are decreasing and positive
on [β∗, b]. Therefore

min{ f (φ(ui(t))) : t ∈ [β∗, b]} =: Kmin > 0, max{ f (φ(ui(t))) : t ∈ [β∗, b]} =: Kmax < ∞.

Integrating (4.6) over [β∗, t], we get for t > β∗

φ
(
u′i(t)

)
= − 1

p(t)

∫ t

β∗
p(s) f (φ(ui(s))) ds =: A∗i (t), i = 1, 2,

and hence

− Kmax

∫ t

β∗

p(s)
p(t)

ds ≤ A∗i (t) ≤ −Kmin

∫ t

β∗

p(s)
p(t)

ds, t ∈ (β∗, b]. (4.13)

Consequently, there exists a function K with

Kmin ≤ K(t) ≤ Kmax for t ∈ (β∗, b],

such that

|φ−1 (A∗1(t))− φ−1 (A∗2(t)) | ≤
(

φ−1
)′ (
−K(t)

∫ t

β∗

p(s)
p(t)

ds
)
|A∗1(t)− A∗2(t)|, t ∈ (β∗, b].

Due to (2.4), there exists Kφ > 0 such that

0 < |x|
(

φ−1
)′

(x) ≤ Kφ, x ∈ [−1, 0), (4.14)

and since K is bounded, there exists δ ∈ (β∗, b) such that

−1 ≤ −K(t)
∫ t

β∗

p(s)
p(t)

ds < 0, t ∈ (β∗, δ].

Clearly, for x = −K(t)
∫ t

β∗
p(s)
p(t) ds in (4.14), we obtain

0 < K(t)
∫ t

β∗

p(s)
p(t)

ds
(

φ−1
)′ (
−K(t)

∫ t

β∗

p(s)
p(t)

ds
)
≤ Kφ, t ∈ (β∗, δ]. (4.15)



Homoclinic solutions 13

Denote
ρ(t) := max{|u1(s)− u2(s)| : s ∈ [β∗, t]}, t ∈ [β∗, δ]}.

Since

ui(t) = ui(β∗) +
∫ t

β∗
φ−1 (A∗i (s)) ds, i = 1, 2,

and

|A∗1(t)− A∗2(t)| ≤
1

p(t)

∫ t

β∗
p(s)| f (φ(u2(s))− f (φ(u1))|ds ≤ ρ(t)Λ f Λφ

∫ t

β∗

p(s)
p(t)

ds,

we get by (4.15)

ρ(t) ≤
Kφ

Kmin
Λ f Λφ

∫ t

β∗
ρ(s)ds, t ∈ [β∗, δ].

The Gronwall lemma yields

u1(t) = u2(t) for t ∈ [β∗, δ]. (4.16)

Modifying and repeating the arguments from Steps 3–5 we get the uniqueness in case (iii).

Define sets

Γe = {γ ∈ [γ0, ∞) : uγ ∈ S is an escape solution and uγ(γ) = C}, (4.17)

Γd = {γ ∈ [γ0, ∞) : uγ ∈ S is a damped solution and uγ(γ) = C}. (4.18)

According to (4.1) the sets Γe, Γd are nonempty. We prove that these sets are open in [γ0, ∞),
which we need in the proof in Section 5.

Lemma 4.2. Let (1.3)–(1.7), (1.11) and (2.1)–(2.4) hold. For n ∈ N consider γn ∈ (γ0, ∞) and
uγn ∈ S with uγn(γn) = C. Assume that

lim
n→∞

γn = γ ∈ [γ0, ∞).

Then for each b > γ

lim
n→∞

uγn(t) = uγ(t) uniformly on [0, b], uγ ∈ S and uγ(γ) = C. (4.19)

Proof. Since each uγn fulfils (1.1) we get after integration

uγn(t) = L0 +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f (φ(uγn(τ)))dτ

)
ds, t ∈ [0, ∞), n ∈N. (4.20)

Choose an arbitrary b > γ. By (2.13) the sequence {uγn} is bounded and equicontinuous
on [0, b] and by the Arzelà-Ascoli Theorem there exists a subsequence {uγk} ⊂ {uγn} which
uniformly converges on [0, b] to a continuous function v. Hence the limit v fulfils v(γ) = C
and

v(t) = L0 +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f (φ(v(τ)))dτ

)
ds, t ∈ [0, b].

So, v ∈ S . By Lemma 4.1 we get v = uγ on [0, b], and (4.19) follows.
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Remark 4.3. Consider uγ and the sequence {uγn} from Lemma 4.2. Since uγ(γ) = C and
uγn(γn) = C, we have uγ 6≡ L0 and uγn 6≡ L0, n ∈ N. So, according to (2.12) and (4.19), there
exist maximal a0 ∈ [0, γ) and an ∈ [0, γn) such that

uγ(t) = L0 for t ∈ [0, a0], uγn(t) = L0 for t ∈ [0, an], n ∈N, lim
n→∞

an = a0. (4.21)

Lemma 4.4. Let (1.3)–(1.7), (1.11) and (2.1)–(2.4) hold. Then the set Γe from (4.17) is open in [γ0, ∞).

Proof. Let us choose an arbitrary γ ∈ Γe. Then the corresponding solution uγ ∈ S with
uγ(γ) = C is an escape solution and so there exists b > γ such that uγ(b) > L.

Assume that there exist a sequence {γn} ⊂ (γ0, ∞) converging to γ and a corresponding
sequence of non-escape solutions {uγn} ⊂ S with uγn(γn) = C. By Lemma 4.2, the sequence
{uγn} uniformly converges to uγ on [0, b]. Since uγn(b) ≤ L, we get uγ ≤ L, a contradiction.
Therefore for each γ ∈ Γe there exists a neighbourhood of γ in [γ0, ∞) belonging to Γe.

Lemma 4.5. Let (1.3)–(1.7), (1.11) and (2.1)–(2.4) hold. Then the set Γd from (4.18) is open in [γ0, ∞).

Proof. Let us choose an arbitrary γ ∈ Γd. Then the corresponding solution uγ ∈ S with
uγ(γ) = C is a damped solution.

Assume that there exist a sequence {γn} ⊂ (γ0, ∞) converging to γ and a corresponding
sequence of non-damped solutions {uγn} ⊂ S with uγn(γn) = C. Due to Remark 4.3, the
conditions (4.21) hold. By Theorem 2.8, each uγn is nondecreasing on [0, ∞). By Lemma 4.2
the sequence {uγn} uniformly converges to uγ on [0, b] for any b > γ. Therefore uγ is nonde-
creasing on [0, ∞).

1. Assume that uγ has a zero θ > a0. By (2.14) there exist θ < a < b such that uγ(a) ∈ (0, L)
and uγ is decreasing on [a, b], a contradiction.

2. Assume that uγ < 0 on [0, ∞). Then (1.1) yields

φ′(u′γ(t))u
′
γ(t)u

′′
γ(t) +

p′(t)
p(t)

φ(u′γ(t))u
′
γ(t) + f (φ(uγ(t)))u′γ(t) = 0, t > a0. (4.22)

Integrating (4.22) from a0 to t > a0, using (2.2), (2.15) and arguing as in the proof of Lemma 3.3,
we get

∫ u′γ(t)

0
xφ′(x)dx +

∫ t

a0

p′(s)
p(s)

φ(u′γ(s))u
′
γ(s)ds = F(L0)− F(uγ(t)), t > a0, (4.23)

and for t→ ∞ ∫ ∞

a0

p′(s)
p(s)

φ(u′γ(s))u
′
γ(s)ds = F(L0) ∈ (0, ∞). (4.24)

Consequently there exist b > a0, b > an, n ∈N, and η > 0 such that

∫ ∞

b

p′(s)
p(s)

φ(u′γ(s))u
′
γ(s)ds < η <

F(L)
3

. (4.25)

Hence (4.24) and (4.25) give

∫ b

a0

p′(s)
p(s)

φ(u′γ(s))u
′
γ(s)ds > F(L0)− η. (4.26)
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(i) Assume for each n ∈N, that γn ∈ (γ0, ∞) can be chosen such that the corresponding so-
lution uγn is not a singular homoclinic solution. So, uγn is either escape or regular homoclinic
solution, and for n ∈N, we get similarly as in (4.23)

∫ u′γn (t)

0
xφ′(x)dx +

∫ t

an

p′(s)
p(s)

φ(u′γn
(s))u′γn

(s)ds = F(L0)− F(uγn(t)), t > an, (4.27)

and so

F(uγn(t)) < F(L0)−
∫ b

an

p′(s)
p(s)

φ(u′γn
(s))u′γn

(s)ds, t > b. (4.28)

Using (4.26) we derive an estimation for the integral in (4.28) as follows. We have

∫ b

an

p′(s)
p(s)

φ(u′γn
(s))u′γn

(s)ds

>
∫ b

an

p′(s)
p(s)

φ(u′γn
(s))u′γn

(s)ds−
∫ b

a0

p′(s)
p(s)

φ(u′γ(s))u
′
γ(s)ds + F(L0)− η,

and due to (4.23) and (4.27),

∫ b

an

p′(s)
p(s)

φ(u′γn
(s))u′γn

(s)ds−
∫ b

a0

p′(s)
p(s)

φ(u′γ(s))u
′
γ(s)ds

= F(uγ(b))− F(uγn(b)) +
∫ u′γ(b)

u′γn (b)
xφ′(x)dx.

Therefore, (4.28) yields

F(uγn(t)) < |F(uγ(b)− F(uγn(b))|+
∣∣∣∣∣
∫ u′γ(b)

u′γn (b)
xφ′(x)dx

∣∣∣∣∣+ η, t > b.

By (4.19) and (4.20),

lim
n→∞

F(uγn(b)) = F(uγ(b)), lim
n→∞

u′γn
(b) = u′γ(b),

and so if n is sufficiently large, then

F(uγn(t)) < 3η < F(L), t > b.

We get a contradiction as in part (i) of the proof of Theorem 3.3.
(ii) Let γn, n ∈ N, be such that the corresponding solutions uγn , n ∈ N, are singular

homoclinic solutions. According to Theorem 2.8, for n ∈ N, there exists a tn ∈ (an, ∞) such
that

u′γn
(t) > 0, t ∈ (an, tn), u′γn

(tn) = 0, uγn(t) = L, t ∈ [tn, ∞), n ∈N.

Then we argue similarly as in part (ii) of the proof of Theorem 3.3 (working on (ak, tk) instead
of (0, tk)) and derive a contradiction.

We have proved that for each γ ∈ Γd there exists a neighbourhood of γ in [γ0, ∞) belonging
to Γd.
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5 Proof of Theorem 1.5

Having the results from Section 3 and Section 4 we are ready to prove Theorem 1.5.

Proof. First, assume (2.1).
Step 1. Consider the sets Me and Md from (3.1) and (3.2), respectively, and assume that Me

is nonempty. By Theorem 2.2 the set Md is also nonempty. Further, by Lemmas 3.2 and 3.3
the sets Me and Md are open in (L0, 0). Therefore the set Mh := (L0, 0) \ {Me ∪Md} is
nonempty. Consequently, there exists at least one starting value u∗0 ∈ (L0, 0) which does not
belong toMe ∪Md and hence a solution uh of IVP (1.1), (1.2) with u0 = u∗0 satisfies

sup{uh(t) : t ∈ [0, ∞)} = L.

According to Definition 1.4, uh is a homoclinic solution. By Theorem 2.2, every solution of
IVP (1.1), (1.2) with a starting value u0 ∈ [B̄, 0) is a damped solution, and hence u∗0 ∈ (L0, B̄).
See Figure 5.1.

Step 2. If Me is empty, then no escape solution of IVP (1.1), (1.2) has its starting value u0

greater than L0. In this case we consider the set S of all damped, escape and homoclinic
solutions of IVP (1.1), (1.2) with the starting value u0 = L0. Theorem 2.3 guarantee the
existence of infinitely many escape solutions in S . Choose one of them and denote it by ue.

Consider a sequence {Bn} ⊂ (0, L0) converging to L0 and a sequence {un} of solutions of
IVP (1.1), (1.2) with starting values Bn. By (2.13), for each b > 0, the sequence {un} is bounded
and equicontinuous on [0, b], and by the Arzelà–Ascoli theorem there exists a subsequence
{uk} ⊂ {un} uniformly converging on [0, b] to a continuous function v. Since un fulfils (3.4), v
satisfies

v(t) = L0 +
∫ t

0
φ−1

(
− 1

p(s)

∫ s

0
p(τ) f (φ(v(τ)))dτ

)
ds, t ∈ [0, b].

By (2.1), f is bounded and hence v can be extended to [0, ∞) as a solution of equation (1.1).
Consequently v ∈ S .

If v is an escape solution, then similarly as in the proof of Lemma 3.2 we deduce for a
sufficiently large k that uk is also an escape solution. But uk 6∈ S because Bk > L0, and so we
have a contradiction. Therefore v cannot be an escape solution.

If v ≡ L0, we get as in the proof of Theorem 4.7 in [25] that there exist escape solutions in
the sequence {un}, which yields a contradiction as before.

Assume that v 6≡ L0 is a damped solution and denote it by ud. Then (4.1) holds and we
consider the nonempty sets Γe and Γd from (4.17) and (4.18), respectively. By Lemmas 4.4
and 4.5 the sets Γe and Γd are open in [γ0, ∞). Therefore the set Γh := [γ0, ∞) \ {Γe ∪ Γd} is
nonempty. Consequently, there exists at least one value γh ∈ (γ0, ∞) which does not belong
to Γe ∪ Γd and hence a solution uh ∈ S with uh(γh) = C satisfies

sup{uh(t) : t ∈ [0, ∞)} = L.

According to Definition 1.4, uh is a homoclinic solution.
Finally, if v is not a damped solution, it has to be a homoclinic solution and we can put

v = uh. See Figure 5.2.

Step 3. To summarize, we have proved that IVP (1.1), (1.2) has a homoclinic solution uh for
some u0 = u∗0 ∈ (L0, B̄) - in Step 1 or for u0 = L0 - in Step 2. This was proved under
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assumption (2.1). So, it remains to show that assumption (2.1) can be omitted. It is clear that
if (2.1) is not fulfilled, we can define an auxiliary function f̃

f̃ (x) =

{
f (x) for x ∈ [φ(L0), φ(L)],

0 for x < φ(L0), x > φ(L),
(5.1)

and consider an auxiliary equation which has the form

(p(t)φ(u′(t)))′ + p(t) f̃ (φ(u(t))) = 0, t ∈ (0, ∞). (5.2)

Since f̃ satisfies (1.5), (1.6) and (2.1), we know, according to Steps 1 and 2, that IVP (5.2), (1.2)
has a homoclinic solution uh for some u0 ∈ [L0, B̄). By Definition 1.4, it holds L0 ≤ uh(t) ≤ L
for t ∈ [0, ∞). Consequently f̃ (φ(uh(t))) = f (φ(uh(t))) for t ∈ [0, ∞), and hence uh is a
homoclinic solution of IVP (1.1), (1.2).

Figure 5.1: Graphs of damped, homoclinic and escape solutions ud, uh, ue

Figure 5.2: Graphs of damped, homoclinic and escape solutions ud, uh, ue

Remark 5.1. By Remark 2.5, if φ in Theorem 1.5 fulfils in addition φ′(0) > 0, then each
homoclinic solution of IVP (1.1), (1.2) has its starting value greater than L0.
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