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Abstract. The existence of an Andronov-Hopf and Bautin bifurcation of a given system
of differential equations is shown. The system corresponds to a tritrophic food chain
model with Holling functional responses type IV and II for the predator and super-
predator, respectively. The linear and logistic growth is considered for the prey. In the
linear case, the existence of an equilibrium point in the positive octant is shown and
this equilibrium exhibits a limit cycle. For the logistic case, the existence of three equi-
librium points in the positive octant is proved and two of them exhibit a simultaneous
Hopf bifurcation. Moreover the Bautin bifurcation on these points are shown.
Keywords: Andronov-Hopf bifurcation, Bautin bifurcation, limit cycle, food chain
model.
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1 Introduction

In the task of understanding the complexity presented by the interactions among the differ-
ent populations living in a habitat, the mathematical modeling has been a very important
rule in ecology in the last decades. Some of the models which have been studied are the
tritrophic systems (see Ref. [3] and references therein). In particular, in this work we analyzed
a tritrophic model given by the following differential equation system,

d

o= hE) = fy,

d

d% = c1yf(x) — 8(y)z — cay, (1.1)
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where x represents the density of a prey that gets eaten by a predator of density y (mesopreda-
tor), and the species y feeds the top predator z (superpredator). The function /(x) represents
the growth rate of the prey population in absence of the predators, and the functions f(x) and
g(y) are the functional responses for the mesopredator and the superpredator, respectively.
The parameters cy, ¢, c3 and d; are positive and we are interested to find the stable solutions
in the positive octant ) = {x > 0, y > 0, z > 0}. There are different proposals of functional
responses in literature, among which are the Holling type (see Refs. [5,10,11]). In Ref. [3],
is considered the case when h(x) is a logistic map and the functional responses f and g are
Holling type II. Using the averaging theory, they proved that the system (1.1) has an equilib-
rium point which exhibits a triple Andronov-Hopf bifurcation. It implies the existence of a
stable periodic orbit contained in the domain of interest.

The local dynamics of the differential system (1.1) has been analyzed in Ref. [2], when (x)
is a linear map, and the functional responses f and g are Holling type III. They proved the
existence of two equilibrium points which exhibit simultaneously a zero-Hopf bifurcation in
Q. In Ref. [1], the authors analyzed the case when h(x) is a linear map, and the functional
responses f and g are Holling type III and Holling type II, respectively. They proved that
there is a domain in the parameter space where the system (1.1) has a stable periodic orbit
which results from an Andronov-Hopf bifurcation.

In this paper we are interested in analyzed the dynamics of the differential system (1.1)
when the functional responses f(x) and g(y) are Holling type IV and II, respectively. In par-
ticular, we are interested in stable equilibrium points or stable limit cycles inside the positive
octant (). We consider two cases, the linear case, taking /1(x) = px, and the logistic case taking
h(x) = px(1 — %) The functions f and g will be

gy) = 5

f(X) - b2+]/’

where a1, b1, a3, by are positive constants. Explicitly, we will study the differential system

ax
bl + le

dx a1xy
i ( ) ) ’
dt X<+ b1
dy  ciaiyx  ayz
it~ x2+b bty 1.2)
dz _ c3mpyz
dt by + y
Along this manuscript the terms linear or logistic case will be used to refer cases when
the prey has either linear or logistic growth rate, respectively.
The main results in this paper are contained in Sections 2 and 3.

— dzZ.

2 Linear case

In this section we consider the differential system (1.2) with a linear growth for the prey, this
means that the function h(x) = px and then the differential system becomes

. aixy

T T a2 P

o ajcxy . aryz

y=-ay+ by + x2 by + y' 21)

. azcsy
=(—d
- < 2+bz+y>z
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In next lemma we show the existence of an equilibrium point in the positive octant ()
under certain conditions on the parameters involved in the system of differential equations.

Lemma 2.1. The differential system (2.1) has only one equilibrium point py = (xo,Yo,20) € Q if
(a) axcz —dy >0,
(b) a1yo — pb1 >0,
(c) cayo — c1x00 < O.

Moreover, if ones of above condition does not hold, then the differential system (2.1) does not have any
equilibrium point in Q).
Proof. The equilibrium points of the differential system (2.1) are the solutions of
axy
B bl + x?
acxy  ayz
bh+x2 b4y

ac3y
—d =0.
< 2 bz+y>z

By multiplying the above equations by the term (b; + x?) (b2 +y), (which is always posi-
tive in ), we obtain that an equilibrium point in (2 must satisfy the system

+px, =0,

—CY +

7

p (b1 +x*) —ay =0,
(b2 +y) (c2 (b1 + x*) — arc1x) + apz (by + x*) =0, (2.2)
dz(bz + y) — axc3y = 0.

From the third equation in system (2.2), yo = % and it is positive by hypothesis (a).

Substituting v = yp in the first equation of (2.2), we obtain a unique positive solution
x = xo by hypothesis (b). Now, substituting x = xp and y = yp in the second equation
of system (2.2), we have that the unique solution z = z; of this equation is positive, if and
only if, (cz (b1 + x%) — ulclxo) < 0, but, from the first equation in system (2.2), we have that
?1)+ x3 = myo/p, then (cz (b1 + x3) — arc1x0) = % (cayo — c1x0p) , and zg > 0 by hypothesis
C).

Clearly, if ones of the conditions ayc3 —dy > 0, a1yo — pb1 > 0 or cayo — c1xpp < 0 does not
hold then the differential system (2.1) has no equilibrium points in Q. ]

In order to simplify the expression of the equilibrium point pg we introduce a new param-
eters given by the next result.

Lemma 2.2. If the parameters of the system (2.1) satisfy the conditions (a), (b) and (c) in Lemma 2.1,
then there exist ky > 0, ko > 0 and k3 > 0, such that the parameters a1, ap and by involved in the
differential system (2.1) can be written as

_ dzp —+ k% by — blk% + k% 0y — b1C2k% + Czk% + k3
cap mdy c1kiky ’

az (2.3)

and the unique equilibrium point of the system (2.1) in (), is

2, .2
o= |2 crkap (blkl ke > c1cskaksp
k' g, <b1czk12 + coko? + k3) " bicadaky® + codakika® + dokiks
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Proof. The solutions of system (2.2) are

p() _ ( \/aledz + blp(dz — 612C3) bzdz C1C3\/ El2C3 dz \/ b2C2C3d2>

p(axcs —dy) "ayes —dy’ da(azc3 — dz)

- Vaibads + bip(ds — 13c3)  byds c3 <C1 Vp(azes — dy) /By + szzd2> )
1 — - 7

o(azcs —do) “ayes —dy’ dy(azcs3 — dy)
A1 = abrdr + blp(dz — El2C3).

Since p1 ¢ Q, by Lemma 2.1 pg € ), and p(azc3 — dz) > 0, then there exists k; > 0 such that

= o L. Hence
farbady — biky? badap P (clkm/albzdz — biky® — b2c2d2>
Po= kl ’ k12 ’ dzklz
Moreover, a1bads — b1k > 0, then there exists k» > 0 such that by = blk +k2 , then

ky P (b1k12 + k22) c3p (kz(ﬂlclkl — ko) — blc2k12)
P arky? ' aydoky? '

brooki®+coko®+ks

Since ky(ayc1ky — coka) — bicoki? > 0, then there exists k3 > 0 such that a; = kit ,

and
2 2
po = ka Cikap (blkl +k2> cicskoksp
k' (blczklz T eoko? + k3> " bicadaky® + cadokiky® + dokiks

O]

Lemma 2.3. Under the hypothesis of Lemma 2.2 and considering that the parameters ay, ar and by
satisfy the conditions (2.3) and

9k1* + 38p?
520

121k, * 3.,
ky =V2y/biki, dp = ks =Zbiki"e, and e =cx(p) == (24)

5ks

then the equilibrium point pg is given by

V2\/b, 52[\/>C1P 65+/b1c1c3p0*
%* + 6402 " /2 (18K:* + 128K,

and the eigenvalues of the linear approximation of system (2.1) at pg are

4
= 63—9() and Ziw,
where
k 2
w? =" > 0.

4
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Proof. Taking into account the assignations of the parameters a;,4; and b; given by (2.3), the
characteristic polynomial of the linear approximation My, of differential system (2.1) at the
equilibrium point pg is P(A) = det(Al — Mp,) = A3 + A1A? + Ao + As, where,

p (2% (dap + k%) + doks)

B T ok 1) (k)

e dap? (bik® +K:2) I+ ki%p (biki? = ko) o + dokn ks (baki? + ko?)
(b1k12 + k22> : (dzp + klz) '

A= — 2d2k1 ko ksp

(blklz + k22)2 <d2p + k12> ’
hy = (b1c2k12 — coky? +k3) ,

hy = (51027(12 + caky® + k3) .
If we consider the assignments for ky, k3 and d; given by (2.4), then A;, Ay and Az reduce to

_odp

o 16k12p
39’ '

Al =
! 39

= <p(—26cz—|—l9p)+24k12> and A; =

78
The characteristic polynomial P(A) = A% + AjA% + ApA + A3 has a pair of purely imaginary
roots +iw and a real root a if and only if P(A) = (A — a)(A% + w?) = A3 — aA? + W?A — aw?.
Thus comparing coefficients, P(A) has a pair of purely imaginary roots +iw and a real root «
if and only if A > 0 and
A1A; — A3 =0, (2.5)

_ 2482
where w = /A, and &« = —A;. Since AjAs — Ay = — 1%L 52”%22]{1 +3807) solving equation
(2.5) for the parameter cp, we have that if

9k1* + 382
=—F
52p

then Ay = k}l—z > 0. Thus, we conclude that the characteristic polynomial P(A) has a pair of

purely imaginary roots +iw and a real root a, where & = 6;—9‘) and w = %1 The equilibrium
point po becomes

521/2+/bic10? 65+/b1cicapt
oo (vaye, 2Vber evhace' )
%1* +640> " /2 (18ks* + 128k, p2>

O]

In order to compute the Lyapunov coefficients and a regularity condition, from now in this
section
blzl, klzl, C1:1 and C3:1.

Remark 2.4. If the assumptions of Lemma 2.3 are satisfied, then the linear approximation of

the differential system (2.1) at pp has the eigenvalues a = 6;—9‘7 and i%, when ¢, = c(p),
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hence, by continuity on the eigenvalues, the linear approximation of the differential system at
po has a pair of complex eigenvalues,

A(po, c2,p0) = &(po, c2,p) Eiw(po, c2,p),
when ¢; is in a neighborhood of ¢ (p).

In order to compute the first Lyapunov coefficient /1, we apply the Kuznetsov formula,
(see Ref. [7]). Taking into account the assumptions of Lemma 2.3 and using the Mathemat-
ica software, we obtain the first Lyapunov coefficient of the differential system (2.1) at the
equilibrium point py.

Lemma 2.5. If the hypotheses of Lemma 2.3 hold, then the first Lyapunov coefficient of the differential
system (2.1) at the equilibrium point py is

’ _ (640249) (300741754880° +98660102400° —2504091294p* — 113110319792 —80677701 )
1(Po,c20(0), p) = 16903 (4096021 1521) (1638402 +1521) (100p* + 125207+ 81) :

Corollary 2.6. There exists a unique real number pg > 0 such that {1(po, c20(po), po) = 0.

Proof. By Lemma 2.5, ¢1(po, c20(p), p) = 0 if and only if
300741754880 + 98660102400° — 25040912940% — 1131103197p% — 80677701 = 0. (2.6)

According to the Descartes rule, there is a unique real number py > 0 such that
l1(po, c20(p0), p0) = 0. Indeed, solving numerically equation (2.6) for the parameter p, we
have that py (= 0.57721). O

Since 41(po, c20(p), p) takes positive and negative values, we will verify the transversality
conditions to have Andronov-Hopf or Bautin bifurcation. At first we state the following result
proposed as an exercise in Ref. [6], whose proof is straight forward and we omit the details.

Lemma 2.7. Let M(t) be a parameter-dependent real (n x n)-matrix which has a simple pair of
complex eigenvalues &(T) £ iw(T) such that {(10) = 0 and w(1) := wo > 0. Then, the derivative of
the real part of the complex eigenvalues at Ty is given by

T =re (5" (G () a) ),

where p, q € C" are eigenvectors satisfying the normalization conditions
M(1)q = iwo, M (1)p = —iwy, q"-q=1 and p"-q=1
We know proceed to show the regularity condition in order to obtain a Bautin bifurcation.

Lemma 2.8 (Bautin regularity condition). If the parameters ay,az, by, ky, k3 and dy satisfy the hy-
pothesis of Lemma 2.3, then the map (c2,p) — (&(po, c2,p0),¢1(po, c2,p0)) is regular at (co, po), where
&(po, c2,p) is given in Remark 2.4 and co := c0(po)-

Proof. By hypothesis, the linear approximation of the differential system (2.1) at pp depends
only on the parameters ¢, and p, let Mpo(cz, p) be this linear approximation. By Lemma 2.5,
the complex numbers +5 are eigenvalues of My, (co, o), hence, the real part of the complex
eigenvalues of M (co, po), are

g(PO/ Co, PO) = O/ (27)
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let p and q be eigenvectors of My, (co, po) for the corresponding eigenvalues —% and %, respec-
tively, such that

q"-q=1 and p"-q=1 (2.8)
By (2.7) and (2.8), we can apply Lemrér)ll\% 2(7 t? the linear approximation My, (c2, p), then taking
into account the values of p, q, and ”gsz which we compute with the Mathematica soft-
ware, we have that the partial derivative of the real part of the eigenvalues (¢, p) £ iw(c2, p)

of Mp,(c2,p), with respect to the parameter c,, at the point (co, po), takes the value

o _—ir (@M (c0,p0) 166405
, . = — . 2.9
ac, C0P0) =P ( acz 1638402 + 1521 @9)
Applying Lemma 2.7 one more time, and taking into account the values of p, q and aM(gz £)
it follows that

85 —tr <8MPO (Co, PO) ) 32 (38p% — 9)
% (co00) = 0P o) = , 2.10
3p (C0rP0) =P 9p 1638403 + 1521 (2.10)

From the Kuznetsov formula (see Ref. [4]), the first Lyapunov coefficient at the equilibrium

point py is given by

Re Ci(c2,p)
w(cz,p)

where Cq(cp,p) is a function that takes complex values as a differentiable function in the
variables (cp, p). Notice that, from Corollary 2.6, (2.7), (2.11) and since w(cp, po) = 1/2,

Im C] (CZI ,0)
w?(c2,p)

—¢(c2,p) (2.11)

l1(po,c2,p) =

Re C1 (Co, PO) =0. (2.12)

Hence, from (2.11), (2.7) and (2.12), the partial derivative of ¢1(c, p) with respect to c; at the
point (co, po) is given by

ol 1 0Cy B 9
% (co,po) = (0,00 (w(CO,po)Re <ac2(co’p°)> ImCl(CO/PO)aC (CO/PO)>

and the partial derivative of /1 (c2, p) with respect to p at the point (co, po) is given by

ol 1 0Cy 3 9¢
3 ——(co,p0) = c0.p0) (W(CO,PO)Re <ap(COIP0)> ImCl(CO/PO)aP(COIPO)> ,

thus, the determinant of interest reduces to

det 25 (co, po) 35(60,90)
ac, \€0, Po 0, 00

Q)
S

'Q

35 (co, po)Re <T1<COI Po)) 55 (co, po)Re ( (COIPO))
w(co, Po) '

Numerically, one has that Re (aq (co,00)) =~ —0.9053 and Re ( o L(co,po)) ~ 2.48325, and by
Corollary 2.6, pg ~ 0.57721. Then by (2.9), (2.10) and (2.13)

e %
det 32( o) aa,;l( 0 00) ) 018205,
56 (c0,00) 55 (o, o

(2.13)

Hence, the map (c2,p) — (&(po, c2,p0), ¢1(po, c2,p0)) is regular at (co, po)- ]
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Theorem 2.9. If the parameters a1, az, by, ko, ks and d; satisfy the hypothesis given in Lemma 2.3, then

the differential system (2.1) exhibits an Andronov-Hopf bifurcation at py = (V/2, “Zi;{fg T SZZ ) )

with respect to the parameter c; and its bifurcation value is cyo(p), where p > 0 and p # po. Moreover,
if p > po the bifurcation is subcritical and if p < po the bifurcation is supercritical.

Proof. From Lemma 2.3, the linearization M (c2,p) of differential system (2.1) at pg has a
positive real eigenvalue and a conjugate pair of pure imaginary eigenvalues if c; = c2(p).
From Lemma 2.8, the derivative of the real part of the complex eigenvalues is

oz B 16640
9c, (0(P):0) = ~qggrr a1

which is negative for p # 0, and hence the transversality condition holds. The Lemma 2.5
and Corollary 2.6 give a negative first Lyapunov coefficient if p < pp, and a positive first
Lyapunov coefficient if p > po. Then the hypotheses of Andronov-Hopf bifurcation Theorem
(see Refs. [7-9]) hold and we conclude the proof. O

Lemma 2.10 (Second Lyapunov coefficient). If we have the assumptions given in Lemma 2.3, then
the second Lyapunov coefficient of the differential system (2.1) at the equilibrium point py is given by

2(po, c20(p), p)

2 2
_ (640° +9)"51(p) (14

6580454409 (409602 + 1521)° (1638402 + 1521)° (1638402 + 13689) 52 ()2

where

s1(p) = 16840883183715777818700442083618979840°° —
121593524253162357277123149589790064640%4 +
844510001357516308062963231487908904960°% +-
883707702372522211163610663608458936320%° —
1096187767147018347479406414333015490560'8 —
1943701583272810733849076799850623795200"° —
1131123899478591223623401502008121753600'* —
331896113104957376711495416826478428160'% —
51372215280281896214948195716796405760° —
30599875788551890754596438876606303205 +
304403103959597358467280473675648970°+
70313662985661202804401321367760880" +
4929327082244952423283726256955840% +
12343578321586192504727388915456,

s2(p) = 100p* + 1252p% + 81.

Moreover, if p = po, then €2(po, c20(p), p) # 0, where pg is given in the Corollary 2.6.
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Proof. In order to compute the second Lyapunov coefficient ¢, we apply the Kuznetsov for-
mula, (see Ref. [4]). Taking into account the assumptions of this Lemma and using the Math-
ematica software, we obtain that the second Lyapunov coefficient ¢>(po, c20(p), p), of the dif-
ferential system (2.1) at the equilibrium point py is given by (2.14) and ¢ (po, c20(p0), Po) ~
7.40065. O

Corollary 2.6, Lemma 2.8 and Lemma 2.10 provide the validity of the necessary and suf-
ficient conditions to apply the Bautin bifurcation theorem (see Ref. [4]). In summary we have
the following result.

Theorem 2.11 (Bautin bifurcation in linear growth). If the parameters a1, az, by, ko, k3 and d; satisfy
the hypothesis given in Lemma 2.3, then the differential system (2.1) exhibits a Bautin bifurcation at
po, with respect to the parameters c, and p and its critical bifurcation value is (c20(00), Po)-

3 Logistic case

In this section we consider the differential system (1.2) with a logistic growth for the prey, this
means that the function /1(x) = px (1 — %) and we will analyze the differential system

- XN mxy
t=pr(-g) e
ajcxy . aryz

"ot bty W 61)

. iV
Z_Z<b2—|—y d2>.

In order to make ecological sense we assume that all parameters of the system (3.1) are
positive.

Lemma 3.1. If the parameters a1, az, b1, c1 and R, satisfy

al:p(l+xo)( xo)/ azzw, R = ko + xo,
Rvo C3Y0
o — cacsyolka + xo) + k3, b1 = koxo + ka, 62)
cskopxo

then the unique equilibrium points of the differential system (3.1) in the region ) are

B <x 2ks )
P1= 0,0, dg(k7 + kg + 6X()) !

_ <k7 Ly cacskzyo (ks + ZX()) (k7 + kg + 6XQ) + 2k3 (k7 + ZXO) (kg + 4XO)>
P2 2 0,0, 2dyxo (k7 + kg + 4x0) (k7 + kg + 6x0) !
< 8 62C3k8y0(k7 + 23(,‘0) <k7 + kg 4+ 6x9) + 2k3(k7 + 43(,‘0) (kg + 2X0) )
p3 = | - + Xo,Yo, .
2 2dyx0(k7 + ks + 4xo) (k7 + ks + 6x0)

Where, xg > 0, yo > 0, k3 >0, k7 >0, kg > 0 and

- 4x0 + k7 + kg

1
ko > , ky = 1k5k6, ks = 2x0 + ky, ke = 2x0 + ks. (3.3)
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Proof. The equilibrium points of the differential system (3.1) are the solutions of the system,

X\ mxy
px (1 R) b1~|—x2 0,
acxy Yz
by +x2 ba+y

axcsy
—dy | =0.
- <bz Ty 2>
Multiplying the above equations by (b; + x?) (b, + ), (which is always positive in the
region (1), we obtain that the equilibrium point must satisfy (3.4). Correspondingly each
solution of (3.4) must be an equilibrium point of the differential system (3.1).
@Ry —p (b1 +x*) (R —x) =0,
(bz + y) (Cz (b1 + xz) — a1c1x) + arz (bl + xz) =0, (3.4)
d2(b2 + y) — axC3y = 0.

—cy =0,

A point (x9,y0,20) € Q) is an equilibrium point of the differential system (3.1) if

a1Ryo — p (b1 + x%) (R—xp) =0,
(bz + yo) (Cz (b1 + x%) — a1c1x0) + a»zgp (bl —+ x%) =0, (3.5)
dz(bz + ]/0) —axcesyo = 0.

We suppose xop > 0, yo > 0 and zg > 0. Note that the first equation of the system (3.5) is a
linear equation in terms of a1, and it has the unique solution,
[Y (bl + XQZ) (R — X())
a; = .
Ryo
Since a1 > 0, R — xo must be positive, so there exists ko > 0 such that R = xg + k. A similar
argument using the third equation of system (3.5), we obtain that:

_da(ba+ o)
a = ——=—2-2,
C3Yo
Using the values of a1,4; and R, and solving the second equation of system (3.5) for zp, we
have that
c1c3kopxg — caczyo(k2 + xo)

da (ko + x0)
Since zp > 0, there must exists k3 > 0, such that ciczkopxo — cac3yo(ka + xo) = k3. Then

zZp =

o — €230 (kz + X()) + k3
Cgkszo '

Therefore, if a1,a, R and ¢ satisfy (3.2), then (xo,1o,20) is a solution of system (3.4) in Q),
where zp = m. Moreover, the system (3.4) takes the form
kapy (b1 + x0%)

Yo

(br+y) (c2 (b1 +x%) —Q

—p(b1+x2) (ko —x+x09) =0,

) n drz (bl + x2) (by + yo)
c3Yo
bada(yo—y) _
Yo

=0, (3.6)
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2
x(b]+XOC3>x(OCy2§(3£20J(Fk;;)~Xo)+k3) . Solving the third equation of system (3.6) for y, we have

that y = yo. Moreover, the first equation of system (3.6) reduce to:

where Q =

p(x — x0) (x* — kox + by — kaxg) = 0.

Hence, the solutions of this equation are

1 1
X0, X1 = 5 <k2 — \/kz(kz —|—4X0) —4b1> , Xp 1= 5 <k2 + \/kz(kg +4XO) — 4b1> .

Thus, a necessary condition to have at least two solutions of system (3.6) in () is that k»(k, +
4xg) —4b; > 0. On the other hand, x; > 0 if and only if 0 < k3 — (ka(kz + 4xp) — 4by) =
4(b1 — kaxp), then, x; > 0 if and only if there exists ks > 0 such that b; = kaxo + ks, which is
a hypothesis in (3.2). Let k5 = ko — \/ko? — 4ky > 0, then ks = %k5k6, where kg = 2k, — ks > 0.
Hence, x; = % and xp, = %

Substituting by, k4, ks, k», ¥ = yo and x = x; in the second equation of system (3.6) and
solving this equation for z, we have that

o — C2C3k6y0(k5 - ZXO) (k5 + k¢ + 2x0) + 2ksks (k(, + 2x0)
! 2d>x0 (k5 + k6) (k5 + kg + ZXO)

Moreover, if ks — 2xg > 0, then z; > 0. In the same way, replacing ¥y = yp and x = x, in
(3.6), we obtain

_ C2C3k5y0<k6 — ZXO) (k5 + k¢ + ZX()) + 2k3k6(k5 + 2X0>
2d>xg (k5 + k6) (k5 + k¢ + 2X0)

Also, if kg — 2x¢ > 0, then z, > 0.
Let ky = ks — 2xg and kg = kg — 2xg, then x1 = % + X9, Xp = 7‘2—8 + x9, and z1, zo becomes

_ 02C3k7y0 (kg + 2X0) (k7 + kg + 6XQ) + 2k3 (k7 + 2JC0) (kg + 4XO)
2dyx0(ky + kg + 4x0) (k7 + kg + 6x0)
) )

21

7

2 — C2C3k8y0 (k7 + 2xq (k7 + kg + 6x9) + 2k3 (k7 + 4XO) (kg + ZXQ)
2 2dyx (k7 + kg + 4x0) (k7 + kg + 6x¢)

Therefore, the unique equilibrium points of the differential system (3.1) in the region (), are:

p1 = (x0,¥0,20), p2=(x1,¥0,z1) and p3 = (x2,Y0,22),
which completes the proof. O
Remark 3.2. Choosing the values k7, ks adequately, we obtain one, two or three equillibria.

1. If ky = ks = 0, then p1 = p2 = p3 = (x0, Yo, 3dk2—3xO), is the unique equilibrium point of the
differential system (3.1) in .

2. If k; =0,and kg > 0 then p; = p» = (xo,yo, %), and
_ (8 Ly cac3kgyo (ks + 6x0) + 4k3 (ks + 2x) >
Ps 2 0. Y0, ds (kg + 4x0) (kg + 6X0) !

hence, there are two equilibrium points of the differential system (3.1) in Q).
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3. If ky >0, kg > 0 and k; # kg then

—<x 2k3 >
Pre MY gk ks + 6x0) )

(k7 C2C3k7]/0(k8 + 2x0) <k7 + kg + 6X()) + 2ks3 (k7 + 2x0) (kg + 4X0) )
p2 = | = + Xo, Yo, ,
2 2dyx0(k7 + ks + 4xo) (k7 + ks + 6x0)

_ <k8 4y C2C3kgy0 (k7 + 2x0) (k7 + kg + 6x9) + 2k3 (k7 + 4XO) (kg + ZXO) )
Ps 2 0-Yor 2d>x0 (k7 + kg + 4xo) (k7 + kg + 6XQ)

are three different equilibrium points of system (3.1) in Q).

3.1 One equilibrium point of the differential system

In this subsection, we assume that the parameters a1, a3, b1, c1, R, ky, ks, ks and ks satisty
the conditions (3.2) and (3.3) of Lemma 3.1, and k; = kg = 0. Then according to Remark 3.2,
p1 = (x0,y0, 3‘;‘2—3360) is the unique equilibrium point of the differential system (3.1) in Q.

Proposition 3.3. The equilibrium point py is not hyperbolic and it has a local unstable manifold of
dimension 2.

Proof. Under the hypothesis of this subsection, the characteristic polynomial of the linear
approximation M, of differential system (3.1) at p; is

k3 (p(bz + yo) (3C2C3X0y0 + k3) + 3b2d2k3)
P(A) =—-A%+ A% — A.
( ) 3byc3xg + 3C3x0y0 9C3X0y0(b2 + yo)

The eigenvalues of M, are

M =0,
ksyo — \/]/0 (4C3x0(b2 +y0) (—p(b2 + yo) (3cacaxoyo + k3) — 3badks) + k32y0>
Ay = 6¢3x0Y0(b2 + vo) ’
and
A ksyo + \/yO (4C3xo(bz +y0)(—p(b2 + yo) (3cacsxoyo + ks) — 3badoks) + k32y0>
N :

6C3X0y0(b2 + yo)

Since A1 = 0, the equilibrium point p; of differential system (3.1) is not hyperbolic. Moreover,
if A and A3 are complex then

B B ksyo
Re(A2) = Re(A3) = 6¢3x0Y0(b2 + o) -0

It is not difficult to see that if A, and A3 are real, then A, > 0 and A3 > 0. Therefore the
equilibrium point p; of differential system (3.1) has a local unstable manifold of dimension 2.
U

Corollary 3.4. The differential system (3.1) does not exhibit an Andronov-Hopf bifurcation at the
equilibrium point p1 = (xo, Yo, 3;2—33(0)



Andronov—Hopf and Bautin bifurcation 13

3.2 Two equilibrium points of the differential system

From now on this subsection, we assume that the parameters a;, a3, b1, c1, R, ky, ks, ks

and k¢ satisfy the conditions (3.2) and (3.3) of Lemma 3.1, k; = 0 and kg > 0. By Remark

. 2ks o k78 C2€3k8y0(k8+6Xg)+4k3(k8+2xO) .
3.2, p1 = (x0,y0, RSt e ), and p = (%5 + xo,yo, A (PR ) are the unique two

equilibrium points of differential system (3.1) in Q.

Proposition 3.5. The equilibrium point py is not hyperbolic and it has a local unstable manifold of
dimension 2.

Proof. Considering the assignations for the parameters a;, a2, b1, c1, R, ky, ks, ks, k¢ and
k7 given in this subsection, the characteristic polynomial of the linear approximation M, of
differential system (3.1) at p; is

2k3 2
C3(b2 + y()) (kg + 6x0)
(p(b2 + yo) (ks + 2x0) (cac3yo (ks + 6x0) + 2k3) + 2badaks (kg + 6x0) )

_ A,
c3yo(b2 + yo) (ks + 6x0)?

P(A) = — A%+

and the eigenvalues of M), are

A =0,

Ay = k3 . Ql
27 ¢3(by + yo) (ks + 6x0) c32yo (b2 + yo)? (ks + 6x0)2”

k3 Q1
Az = + ,
c3(b2 + yo) (ks + 6x0) c32yo(b2 + yo)? (ks + 6x0)?

Q1 = — 2by*cadyks (ks + 6xg) — c30(ba + yo0)? (ks + 2x0) (cacayo (ks + 6x0) + 2k3)
+ k3yo (ks — 2bacada (ks + 6x0)).
Then the equilibrium point p; of differential system (3.1) is not hyperbolic. Moreover, if A
and A3 are complex then
ks
c3(ba + yo) (ks + 6x0)
And it can be verify that if A, and A3 are real then A, > 0 and A3 > 0. Therefore the

equilibrium point p; of differential system (3.1) is not hyperbolic and has a local unstable
manifold of dimension 2. O

Re(/\Q) = Re(/\3) = > 0.

Corollary 3.6. The differential system (3.1) does not exhibit an Andronov—Hopf bifurcation at the
equilibrium point p1 = (xo, Yo, Wkgdm)).
Whereas the equilibrium point p; does not have an Andronov-Hopf bifurcation, we will

show that the equilibrium point p, can have a pair of purely imaginary eigenvalues and
consequently it can exhibit an Andronov-Hopf bifurcation.

Lemma 3.7. If the parameters kg, by, k3, c2, p and dy satisfy the conditions

C3X 35¢y + p) + 60k 581875 — 587702
ks = xo, by =— 0¥o(35¢2 +p) > ks = CpC3XoYo, C2 = 143640p P ,

3c3pxp
_ /581875 dy = dao(p) = 320060160p°
5877~ 72T P20\ 16375 — 87302) (581875 — 587702)
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then the equilibrium point p, of differential system (3.1) is given by

(3 o5 (581875 — 5877p2)” (116375 — 873p2) o
p2=\ %o 846879183360000"

and the eigenvalues of the linear approximation of system (3.1) at p, are

25920° .
— +i,
“= 475 (97 +a0625) M

Proof. Let M, be the Jacobian matrix of the differential system (3.1) evaluated at the equilib-
rium point p, then the characteristic polynomial P(A) = det(Al — Mp,) = A3+ AjA2 + Ao +
Az, where

A2 ( (kg +4x0) (cacsksyo (ks +6x0)+4ks (ks+2x0)) —csksp(ba+yo) (ks+2x0) )
c3(b2+y0) (ks +4x0)? (ks +6x0) !

A= —

Ay — —byda (ks+6x0) (ks +4x0)* (cacsksyo (ks +6x0) +4k3(ks+2x0)) — By
2 C3y0(b2+yo)(ks+4xQ)3(k8+6xO)2

. oYo (kg+23€0) (kg+4x0) (C2C3y0 (k5+6x0) (kg2+4k8x0 — 16X[)2) +4k; (kg +4x0 ) (kg —2X¢ ) )
Cg,yg(b2+y0)(k8+4x0)3(k8+6x0)2 4

A _ bzdzkgzp(ks +2xg ) (C2C3k8]/0 (ks+6X0) +4k3 (kg+27€0))
3 C3y0(b2+yo)(k8+4xO)3(k8+6X0)2 4

By = 8bypxp (kg + ZXO) (SXOZ — kgz) (Cngyo (ks + 6XQ) + 2k3).

Taking kg, b, and k3 satisfying (3.7), then A, A; and Az are reduced to

A 120° A, _ €2(665c2(475d; +216p) + p(3325d2 + 5877p))
1 175(95¢, + 4p)’ 2T 6125(95¢; + 4p) ’
57C2d2p(95€2 + p)
Az = .
6125(95¢; + 4p)

Following the proof of Lemma 2.3, the characteristic polynomial P(A) has a pair of purely
imaginary roots +iw and a real root « if and only if A, > 0 and

A1A; — Ay =0, (3.8)

where w = /Ay and o« = —A;.
. 320 (30008125¢52d> +665¢2p(475d, —8640) —2350803
Since AjAy — Ay = — 22 2P +665cap (4750, 864p) ~ 23505

, solving equation (3.8) for

1071875(95¢;+4p)?
the parameter d,, we have that
g - 360%(15960c; + 653p)
27 315875¢,(95¢, + p)
Taking into account this assignment for d,, the coefficient A, = W > 0, which is
__ 581875—5877p?

. Moreover, ¢, > 0, if

< /581875
5877 °

equal to 1, when ¢ = =505
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Therefore, the characteristic polynomial P(A) has a pair of purely imaginary roots +i and a
25920

real root o = T 475(9p2+30625)

. The equilibrium point p; of system (3.1) becomes

(3% c3(581875 — 5877p%)° (116375 — 87302) yo
2=\ 846879183360000" ‘

O

Remark 3.8. If the assumptions of Lemma 3.7 are satisfied, then the linear approximation of
the differential system (3.1) at p, has two eigenvalues purely imaginary when d, = dao(p).
Hence, by continuity on the eigenvalues, the linear approximation of the differential system
at po has a pair of complex eigenvalues,

Mp2, d2,p) = ¢(p2,da, p) T icw(p2,da, p),
when d is in a neighborhood of dy(p).

In order to compute the first Lyapunov coefficient /1, we make the following assignations.
c3=1, yo=1 and xp=1

Applying the Kuznetsov formula, (see Ref. [7]) and using the Mathematica software, we obtain
the first Lyapunov coefficient ¢1(p2, d2o(p), ), of the differential system (3.1) at the equilibrium
point ps.

Lemma 3.9. If we have the assumptions given in Lemma 3.7, then the eigenvalues of the linear ap-
proximation of system (3.1) at the equilibrium point p, are & = —% and =i, and the first
Lyapunov coefficient

377913600° (9p* + 30625) s3(p)

(587702 — 581875) s4(p)ss(p)ss(p)”

tip2,dn(p).p) = 45
where

s3(p) = 667911733488169984885774464p'*
+ 617401358762851620995638930875012
— 4417446758799213089587643934375000'°
+ 2332879346419733295386537989746093750°
+ 1772759067051245402084239819335937500000° (3.9)
— 84149358184504925595752439022064208984375p*
+ 10783804142077921019941784620285034179687500>
— 433192260734995606409440033137798309326171875

and

sa(p) = 211611572265625 + 9p? (13819531250 + 20306250 + 186624p%),
s5(p) = 211611572265625 + 9p* (13819531250 + 203062507 + 746496p%),
se(p) = 4585416449713134765625 + 9p? (87419516846757812500
+ 2702 (2877811231676281250 + 7924973916783000> + 108326221587p%)).
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Corollary 3.10. If we have the assumptions given in Lemma 3.7, then there exists a unique real number

0<po < \/@, such that the first Lyapunov coefficient ¢1(p2,d20(00), o) = 0.

Proof. By Lemma 3.9 and equation (3.9), the first Lyapunov coefficient ¢1(p2,dao(p),p) = 0 if
and only if s3(p) = 0. By Descartes rule of signs, there are 1, 3 or 5 positive real numbers p
such that s3(p) = 0. Indeed, numerically this equation has three positive solutions, but only

po (~ 9.76907) is less than /381575, .

Lemma 3.11 (Bautin regularity condition). If the parameters kg, by, k3, co and p satisfy the relations
(3.7) of Lemma 3.7, then the map (da, p) — (&(p2,d2,0),01(p2,d2(p),p)) is reqular at (dy, po), where
&(pa, do, p) is given in Remark 3.8 and dy := dao(po).

Proof. By hypothesis, the linear approximation of the differential system (3.1) at p, depends
only on the parameters d; and p, let My, (d2, p) be this linear approximation. By Lemma 3.7,
the real part of the complex eigenvalues of My, (do, o) are

¢(p2,do, po) = 0. (3.10)

Let p and q be eigenvectors of My, (dy, po) for the corresponding eigenvalues —i and i, respec-
tively, such that
q"-q=1 and p"-q=1 (3.11)

By (3.10) and (3.11), we can apply Lemma 2.7 to the linear approximation M,,(d>,p).

. . — oMy, (da, . .
Taking into account the values of q, p and %, and using the Mathematica software, we

obtain the partial derivative of the real part of the eigenvalues §(d2, p) L iw(dz, p) of My, (d2,0),

oz 5 (581875 — 5877p2)” (116375 — 873p3)
=——(do, po) = ,
adz QZ

(3.12)

Q, = 49392 (9 (746496p‘5 + 203062503 + 13819531250) 02+ 211611572265625) .

Applying Lemma 2.7 one more time, it follows from the values of q, p and aM”Zaisz’p) that

) 9720002 (17102072 + 39730425002 — 67715703125
ag(do,po) =— fi Po % Fo ), (3.13)

Qs = (873p3 — 116375) (9 (746496p3 + 203062503 + 13819531250) 0% + 211611572265625) .

Using the Wolfram Mathematica software, we have that Re (%%(do,po)) ~ —0.22637 and
Re (aa% (do, po)) ~ 158.86065, where, C;(dy, p) is the function given in the proof of Lemma 2.8,
and by Corollary 3.10, pg =~ 9.76907. Then by (3.12), (3.13) and the analogous of formula (2.13)

given in the proof of Lemma 2.8, we have that

det (%(dww :

gl
351

(dOI PO)
5 (do,po) G (do, po)

Qv
NS

> ~ —0.00291456.

Hence, the map (dz, p) — (&(p2,da, p), 41(p2,da, p)) is regular at (dy, o). O
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Theorem 3.12. If the parameters kg, by, ks, cp and p satisfy the relations (3.7) of Lemma 3.7, then
the differential system (3.1) exhibits an Andronov—Hopf bifurcation at

_ (3, (581875 — 5877p2)* (116375 — 873p?)
2= 2™ 8468791833600 /

with respect to the parameter dy and its critical bifurcation value is dao(p), where p € (0, 5251;%5 ) and
p # po. Moreover, if p < pg the bifurcation is subcritical and if p > po the bifurcation is supercritical.

Proof. From Lemma 3.7, the linear approximation M, (dz, p) of differential system (3.1) at p,
has a negative real eigenvalue and a pair of purely imaginary eigenvalues if dy = dyy(p). From
Lemma 3.11, the derivative of the real part of the complex eigenvalues

oF 5 (581875 — 5877p2) (116375 — 873p%)
—(d(p),p) = ,
8d2 Q4

Qs = 49392 (9 (7464960* + 203062502 + 13819531250 | p* + 211611572265625 ) ,
Y % %

which is positive if p € (0, 5%575;5 ), and hence the transversality condition holds. By Corol-

lary 3.10 the first Lyapunov coefficient is negative if p > pg, and is positive if p < po. Then
the hypotheses of Andronov-Hopf bifurcation Theorem hold and we conclude the proof (see
Refs. [7-9]). O

Lemma 3.13 (Second Lyapunov coefficient). If we have the assumptions given in Lemma 3.7 and
p = po, then the second Lyapunov coefficient of differential system (3.1) at the equilibrium point p,,

(2, d20(p0), 00) # 0.

Proof. In order to compute the second Lyapunov coefficient ¢, we apply the Kuznetsov for-
mula, (see Ref. [4]). Taking into account the assumptions of this Lemma and using the Math-
ematica software, we obtain that the second Lyapunov coefficient ¢»(p2, d2o(p), p), of the dif-
ferential system (3.1) at the equilibrium point p; takes the value ¢»(p2, d20(p0), p0) ~ 8894.15,

if p = po. O

Corollary 3.10, Lemma 3.11 and Lemma 3.13 provide the validity of the necessary and
sufficient conditions to apply the Bautin bifurcation theorem (see Ref. [4]). Then we have
obtained the following.

Theorem 3.14. If the parameters kg, by, k3, cp and p satisfy the relations (3.7) of Lemma 3.7, then
the differential system (3.1) exhibits a Bautin bifurcation at p,, with respect to the parameters d and p
and its critical bifurcation value is (da(po), po)-

3.3 Three equilibrium points of the differential system

From now on in this subsection, we assume that the parameters a;, a2, by, c1, R, k2, k4, ks and
ke satisfy the conditions (3.2) and (3.3) of Lemma 3.1, ky > 0, kg > 0 and k7 # ks.
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Then by Remark 3.2,

—(x 2k3 )
P\ ks + 6%0) )

_ (](7 4 C2C3k7y0 (kg + 2x0)(k7 + kg + 6X0) + 2k3 (k7 + ZXO)(kg + 4.X()) )
P2 2 0.0, 2d>x0 (k7 + kg + 4X()) (k7 + kg + 6x0) !

_ (kg Ly cacsksyo (k7 + ZXO)(k7 + kg + 6XQ) + 2k3 (k7 + 4XO)(kg + ZXO) >
Ps 2 040, 2dyx (k7 + kg + 4x0) (k7 + kg + 6x0)

are the unique three equilibrium points of differential system (3.1) in Q).

3.3.1 Local dynamics and bifurcation at p;

Lemma 3.15. If the parameters ky, kg, ba, k3, ca and p satisfy the conditions

B B _ 27ks B _ 4597 —10358p°
ky = 2xo, @—mﬁ,brnwm+m,h—Q%Wm 27 71400490

459 12349380771p°
p< , dy=dy(p) = ,
/10358 2 (4592 — 5171p?) (4592 — 1035802)

(3.14)

then the equilibrium point

B 8cs (4592 — 1035802)% (4592 — 517102) yo
L=\ o Yor 294018132691622430"

and the eigenvalues of the linear approximation at py are

138320° .
_ i +i
8T Toaa807 32034193 M T

Proof. The characteristic polynomial of the linear approximation M, of differential system
(3.1), at the equilibrium point p; is P(A) = det(Al — M,,) = A3 4+ A1A% + ApA + As, where,

ks o k7kspx
2 <C3(szry0) (k7+4;0)8(k30+4xO) )
B3 !
A, = PYO (c2c3y0B3By + 2k3(k7 + 4x¢) (ks + 4x0) (k7 + kg + 2xp))
c3yo (b2 +yo) (k7 + 4x0) (ks + 4x0) (B3)?
i bzsz(Cng,yoBg, -+ 2k3) + 2bydoks (k7 + 4x0) (kg + 4X0)B3
cayo(b2 +yo) (k7 + 4x0) (ks + 4x0) (B3)? '
4b2d2k3k7k8pr
c3yo(b2 + yo) (k7 + 4x0) (ks + 4x0) (B3)?”
By = (ky + ks + 4xq) (4x0(k7 + kg) + k7ks + 8x0?) ,
B3 = kv + kg + 6xy.

A= —

As =



Andronov—Hopf and Bautin bifurcation 19

By hypothesis k7, kg, b, and k3 satisfy (3.14), then Ay, A> and Az reduce to

4 — 80> A — c2(81ca(612d, + 1729p) + 20(918d, + 5179p))
' 459(27¢, 4 2p) 2T 7803(27¢c, + 2p) '
16C2d2p (2762 + p)
Az = :
7803(27¢c3 + 2p)

As in the proof of Lemma 2.3, the characteristic polynomial P(A) has a pair of purely imagi-
nary roots +iw and a real root « if and only if A, > 0 and

A1Ar, — A3 =0, (3.15)
where w = /A, and &« = —A;. In this case,

8cop (—669222c5%d, + 81c20(1729p — 306d;) + 10358p°)

AAy — Az =
142 — A3 3581577 (27c; + 20)2

Solving the equation (3.15) for the parameter d,, we have that

iy = p?(140049¢, + 10358p)
24786¢5(27¢c2 + p)
Taking ¢, = %, we have A; = 1. Since ¢; > 0, then the parameter p must satisfy
< 459

SV TEE)
Therefore, the characteristic polynomial P(A) has a pair of purely imaginary roots +i and a
real root &« = —mgpl;’i%. If k7,ks, by, k3,c2,p and d, satisfy the relations given by (3.7),
then

B 8cs (459% — 10358p2)2 (4597 — 5171p?) yo
L=\ o-Yor 294018132691622430° '

O]

Remark 3.16. If the assumptions of Lemma 3.15 are satisfied, then the linear approximation
of the differential system (3.1) at p; has two purely imaginary eigenvalues when d> = dao(p),
hence, by continuity on the eigenvalues, the linear approximation of the differential system at
p1 has a pair of complex eigenvalues,

A(p1,da2,p) = §(p1,d2,p) £ iw(p1,d2, p),
when d; is in a neighborhood of dx(p).

In order to compute the first and second Lyapunov coefficients we make the following
assignations
cz =1, yo=1 and xy=1

Applying the Kuznetsov formula and using the Mathematica software, we obtain the next
result.
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Lemma 3.17. If the assumptions given in Lemma 3.15 hold, then the eigenvalues of the linear approx-

3
imation of the differential system (3.1) at the equilibrium point py are & = —% and +i.
The first Lyapunov coefficient is

312947271p° (16p* + 459%) s3(p)
4 (10358p> — 459) s4(p)s5(p)ss(p)”

l1(p1,d2(p),p) =
where

s3(p) = 170742882058653810693863735296p'*
+ 4922629722966755284361616596302080 '
— 1081614546367206122000558628504866880™°
— 211670758978607800175029461991756871226,0°
— 94859998583027198299667729487282712215060°
+ 896598052910977475547752891941073773123200*
+ 144413928419369452297486380349046162026018020>
— 184062861428630673823768217741646402096430491,
s4(p) = 459008651782963840° + 55675243889896695840°
+ 147414277124069435267049p* + 246951858447854967628881 07
+ 31522559050648267281936,

s5(p) ::16(2989441p44—374544p24—9863663058),F-+1039043198361249,

s6(p) =32 (5978882p44—187272p24-4931831529) p? +1039043198361249.

Corollary 3.18. If the assumptions given in Lemma 3.15 hold, then there exists a unique real number

0<po< \/% such that the first Lyapunov coefficient ¢1(p1,d20(00), o) = 0.

Proof. By Lemma 3.17, the first Lyapunov coefficient ¢1 (p1,d20(p), p) = 0 if and only if s3(p) =
0. According to Descartes rule of signs, there are 1 or 3 positive real numbers p such that
s3(p) = 0. Indeed, numerically this equation has three positive solutions, but only pg (~

(&71999)islessthan,¢%%%§. O

Lemma 3.19 (Bautin regularity condition). If the parameters k3, ky, ks, by, co and p satisfy the re-
lations (3.14) of Lemma 3.15, then the map (da,p) — (&(p1,d2,p0),¢1(p1,d2(p),p)) is reqular at
(do, po), where &(p1,da, p) is given in Remark 3.16 and dy := dao(p00)-

Proof. By hypothesis, the linear approximation of the differential system (3.1) at p; depends
only on the parameters d» and p. Let M, (d2, p) be this linear approximation. By Lemma 3.15,
the complex numbers +i are eigenvalues of My, (do,00). Hence, the real part of the complex
eigenvalues of My, (do, po) is

¢(p1,do, po) = 0.
Let p and q be eigenvectors of My, (do, po) for the corresponding eigenvalues —i and i, respec-
tively, such that
q9"-q=1 and p"-q=1.
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. . _ 0M,, (d, oM, (dy, .
By Lemma 2.7 and taking into account the values of q, p, —- 3 ézz p) and —* 182 20) , we obtain

E) 8 (4592 — 1035802)° (4592 — 517102
i(dOrp()) — ( pO) ( pO)/ (316)
ody 46683Qs
Qs =32 (5978882,0‘5 + 18727205 + 4931831529) p§ + 1039043198361249,
o¢ 105814803 (5356121807 + 327166524903 — 133159451283)
7<d0/ PO) - - 2 ’ (317)
dp (5171p3 — 210681) Q7

Q= (32 (5978882p3 + 18727203 + 4931831529) 02+ 1039043198361249) .

Numerically, taking po ~ 9.76907, we have that Re (3%((10, po)) ~ —0.60234 and

Re (aa—cpl(dg, o)) ~ 14.78256, where Cy(dy, p) is as in the proof of Lemma 2.8. Then by (3.16),
(3.17) and the analogous formula of (2.13) given in Lemma 2.8,

o5 (do,p0) % (do, po)
det | 57 5
oz (do, p0) 55 (do, po)

Hence, the map (dz, p) — (&(p1,d2,p0),¢1(p1,d2,p0)) is regular at (do, po)- O

)

S

) ~ —0.00291.

Theorem 3.20. If the parameters k3, k7, kg, by, c2 and p satisfy the relations (3.14) of Lemma 3.15, then
the differential system (3.1) exhibits an Andronov—Hopf bifurcation at

(8459 - 1035802) (4592 — 5171p?)
= 29401813269162243p* ’

with respect to the parameter dy and its critical bifurcation value is dpo(p), where p € (0,459/+/10358)
and p # po. Moreover, if p < po the bifurcation is subcritical and if p > po the bifurcation is
supercritical.

Proof. From Lemma 3.15, the linearization M, (d2,p) of differential system (3.1) at p; has a
negative real eigenvalue and a pair of purely imaginary eigenvalues if dy = da(p). From
Lemma 3.19, the derivative of the real part of the complex eigenvalues

% o) = (4592 — 10358p%)? (4592 — 5171p?)
ddy NP ) = 4668305 ’
Qs = 32 (5978882p4 + 18727202 + 4931831529) 02 + 1039043198361249,

which is positive if p € (0,459/1/10358), and hence the transversality condition holds. Lemma
3.17 and Corollary 3.18 imply that the first Lyapunov coefficient is negative if p > pp, and
is positive if p < po, (see Figure 3.1). Then the hypotheses of Andronov-Hopf bifurcation
theorem hold and we conclude the proof. O

In order to show the Bautin bifurcation, we compute the second Lyapunov coefficient /5.
Applying the Kuznetsov formula, and using the Mathematica software, we obtain that the
second Lyapunov coefficient ¢>(p1, d2o(p), ), of the differential system (3.1) at the equilibrium
point p; takes the value ¢ (p1,d20(p0), p0) =~ —26718.1.
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Lemma 3.21 (Second Lyapunov coefficient). If we have the assumptions given in Lemma 3.15, then
the second Lyapunov coefficient of differential system (3.1) at the equilibrium point p1,

2(p1,d20(p0), p0) # O.

From Corollary 3.18, Lemma 3.19 and Lemma 3.21 we have the necessary and sufficient
conditions to apply the Bautin bifurcation theorem. Therefore we obtain the following.

Theorem 3.22. If the parameters ks, k7, kg, by, ¢ and p satisfy the relations (3.14) of Lemma 3.15, then
the differential system (3.1) exhibits a Bautin bifurcation at p1, with respect to the parameters dy and p
and its critical bifurcation value is (dao(po), po)-

From Theorems 3.20 and 3.22 we have shown the existence of limit cycles in Q) to differ-
ential system (3.1) near to p;. Now, we will analyze the local dynamics at equilibrium point

p2-

3.3.2 Local dynamics and bifurcation at p,

In this subsection we assume that the parameters k3, k7, ks, by, c» and p satisfy the relations
(3.14) of Lemma 3.15, and xp = yg = c3 = 1. In the same way of the previous subsection, we
obtain the next results relative to p».

Lemma 3.23. If

o oy (p) o 120 (39818709 — 152092¢%) (16296624 + 12430179)
2= P = TR 7409 (4592 — 5171p2) (4592 — 1035802)

then the equilibrium point py of the differential system (3.1) is given by

(51 3869893 (4592 — 1035802)” (4592 — 5171p?)
P2 = \ = 588205802 (39818709 — 15209202) (162966202 + 12430179)

and the eigenvalues of the linear approximation of system (3.1) at p, are

(16296620 4-12430179) nd 4,/39818709 — 152092p2i

5967 (16p + 210681) 221+/38779

Lemma 3.24. If we have the assumptions given in Lemma 3.23, the first Lyapunov coefficient at p, is

15877775277+/2470° (1602 + 210681) (1520920% — 39818709) o3 (p)
314,/6251537313 — 2387844402 (1035802 — 210681) 04 (p)05(0) s (0)’

bi(p2,da(p),p) =

where

03(p) = 26742294352244146788269524839873927270064311865600 ™
+ 8051848708654778807704292080914671903319227978529600'
— 833251051787696247262478453678965672779490503858506400 ™
— 39908334741334892754366139655879276980939381695819791040°
+ 1893941697027008827574154049507129272853933667749875352320,0°
——103337284251342816394773872075621179984010459502936989864334p4
+ 20452655110149866337445329461631666745307621703511573486365990°
— 13861057129694950151794339970517627657596357576143945686701523,



Andronov—Hopf and Bautin bifurcation 23

01(p) = 1029873831486339640° 4 15237274658171457240p* — 2964501861396032995650>
+ 82460396686124879118144,

05(p) = 1029887455814695480° + 1559250610762430844p4 — 69618757972976491437p2
+20615099171531219779536,

and

06(0) = 89309347428862847206600° — 293757116749725861586267560°
+ 7535731011874228165827361581p* + 11215868587553717802362565180>
+7624308163261898438530822053.

459
V10358

Corollary 3.25. There exists a unique real number 0 < p; <
coefficient ¢1(p2, d21(p1),01) = 0. Indeed p1 ~ 4.36757.

such that the first Lyapunov

Lemma 3.26 (Bautin regularity condition). The map (dy, p) — (&(p2,d2,p), l1(p2,d2, p)) is regu-
lar at (dy, p1), where (p2, da, p) is as in Lemma 3.19 and dq := dy(p1).

Theorem 3.27. The differential system (3.1) exhibits an Andronov—Hopf bifurcation at py with respect
to the parameter dy and its critical bifurcation value is dy(p), where p € (0,459/+/10358) and
p # p1. Moreover, if p < p; the bifurcation is subcritical and if p > pq the bifurcation is supercritical.

In order to show a Bautin bifurcation, we compute the second Lyapunov coefficient.

Lemma 3.28 (Second Lyapunov coefficient). If we have the assumptions given in Lemma 3.23,
then the second Lyapunov coefficient of differential system (3.1), £2(p2, d21(p1), p1) is negative. Indeed
fz(pz, d21 (pl),pl) ~ —161.216.

We summarize the results in the following theorem.

Theorem 3.29. The differential system (3.1) exhibits a Bautin bifurcation at p,, with respect to the
parameters dy and p and its critical bifurcation value is (dy1(p1), p1)-

3.3.3 Local dynamics at p3

Theorem 3.30. If the parameters k3, ky, ks, b, co and p satisfy the relations (3.14) of Lemma 3.15,
then, the differential system (3.1) does not exhibit a Hopf bifurcation at the equilibrium point

(5 . 94(210681 — 103580%)
Ps =\ & 3095082950

Proof. A necessary condition for a differential system to exhibit an Andronov-Hopf bifurca-
tion at an equilibrium point is that the characteristic polynomial of its linear approximation
has a pair of purely imaginary roots. According to the proof of Lemma 2.3, the characteristic
polynomial P(A) = A3 + A;A? 4+ AsA + Aj has a pair of purely imaginary roots +iw and a
real root « if and only if A, > 0 and

A1Ay — A3 =0,

where w = \/Az and « = — A;. By hypothesis, if My, is the linear approximation of differential
system (3.1) at p3 then

P(A) = det(Al — M,,) = A% + AjA? + AsA + As,



24 G. Bl¢, V. Castellanos and 1. Loreto-Herndndez

where,

o 0(417¢c, + 10p) 4, _ 202(81c;(10387d; + 14070p) + p(31161d; + 84655p))

663(27c; +2p)’ 146523(27¢; + 2p) ’
_ A70c2dzp(27¢2 + p)
3 T 146523(27¢, + 2p)
2 _ 2
Since ¢, = % >0, when 0 < p < \/%, we have that
2¢20Q9
A1Ay — Az = —
142 = A3 = T 7144749 (27, + 20)2 0

Qg = 237259854¢,%d; + 475242390, 0 + 8787402c2dap + 46697835¢0” + 8465500°.

Therefore, the differential system (3.1) does not exhibit an Andronov-Hopf bifurcation at the

o . 5 . 94(210681—10358>
equilibrium point p3 = (1, 1, ( 30950829037 )) 0

Theorem 3.31. If the parameters k3, k7, ks, by, co and p satisfy the relations (3.14) of Lemma 3.15,

then the equilibrium point p3 = (3,1, 94(2;896?38;;?12289 2)) of differential system (3.1) is locally unstable.

Proof. From Theorem 3.30, the characteristic polynomial P(A) has three sign changes in its
coefficients. By the Descartes rule of signs, we have that there exists at least one positive
eigenvalue for the linearization at p3. Then p3 is unstable. O

3.3.4 Simultaneous periodic orbits at p1 and p;

If the parameters k3, k7, ks, b, c2 and p satisfy the relations (3.14) of Lemma 3.15, then accord-
ing to Theorem 3.20 the differential system (3.1) exhibits an Andronov-Hopf bifurcation at p;,
with respect to the parameter d,, with critical bifurcation value dy = dyy(p). By Theorem 3.27
the differential system (3.1) exhibits an Andronov-Hopf bifurcation at p,, with respect to the
parameter dp, with critical bifurcation value d, = d;(p). In order to find a parameter value
where the differential system exhibits a simultaneous Andronov-Hopf bifurcation we solve
the equation

dx1(p) — dao(p) = 0.

The unique solution in the interval (0, \/%) is
2478
0, = 8262 ~ 0.81892.
38779+/10580386691137 + 126081609691

The Figure 3.1 (a), shows the graph of critical bifurcation value in terms of p for each
equilibrium point and its intersection at (p«, d20(p«)) Therefore the differential system (3.1)
exhibits a simultaneous Andronov-Hopf bifurcation at p; and p,, with respect to the param-
eter d,, with critical bifurcation value

d20(p+) = dn (p+)

1593299484 \/ 2478 (38779 v/10580386691137 + 126081609691

= ~ 0.08032.
76178503957+/10580386691137 + 248078464264819189
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Since p. < po < p1, by Theorems 3.20 and 3.27, this simultaneous Andronov-Hopf bi-
furcation is subcritical at p; and p, (the Figure 3.1 (b) shows the first Lyapunov coefficient
corresponding to p; or p»). In this case, the limit cycle bifurcating from p; and the limit cycle
bifurcating from p, are unstable. By Theorems 3.22 and 3.29 the differential systems exhibits
a Bautin bifurcation, then there are two limit cycles bifurcating from p; or p,, where one is
stable and the other is unstable.

@ ©)
w2 0
s o ti(p2,p0)
08 d20(P) ol fl(PLP)
04 o ‘ A . 4 p
& Po! P1
dx (p)
0.0 o5 p*j s 20p _0al

Figure 3.1: (a) Parameter bifurcation value, d>. (b) First Lyapunov coefficient at
p1 and p»

Example 3.32. Taking a; = 22.7118, a, = 984.723, by = 5.75, b, = 1.10108, ¢; = 0.0060473,
co = 0.0164717, c3 = 1 and p = 44 > p1 > po, then dyy = 468.666, dy; = 49.021 and the
parameters involved in the differential system (3.1) satisfy the hypothesis established in the
Subsection 3.3. Hence we have three equilibrium points pi, p» and ps. The first Lyapunov
coefficient at p; and p, are

O (p1, dog) = —1.24243,  {1(pa,dy1) = —0.0135894.

In this case, we have two stable limit cycle each one bifurcating from the equilibrium points
p1 and po. In the Figure 3.2 we show two trajectories whose w—limit are the stable periodic
orbits, where dy = dyg 4+ 1/100.

4 Conclusion

When the prey has a linear growth, the differential system has only one equilibrium point
in the positive octant (2 and around this point appear an stable periodic orbit generated by
an Andronov-Hopf bifurcation or a Bautin bifurcation. On the other hand, if the growth of
the prey is logistic, the differential system can have even three equilibrium points in (). In
particular, when there is only one equilibrium point in ), it is not hyperbolic. When there
are two equilibria, one is not hyperbolic and the other exhibits an limit cycle generated by an
Andronov-Hopf bifurcation or Bautin bifurcation. In the case, when there are three equilib-
rium points, two of them can present Andronov-Hopf and Bautin bifurcation, in fact they can
appear simultaneously. Thus the differential system exhibits bi-stability. The other equilib-
rium point is always unstable. This analysis shows that the condition to have coexistence of
the three populations is better in the logistic growth.
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Figure 3.2: Phase space of differential system (3.1) with three equilibria and two
limit cycles.
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