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Abstract

In this paper we investigate the impulsive equation

{
(r(t)x′)′ + a(t)x + f (t, x, x′) = p(t), t ≥ t0, t 6= tk,

x(tk) = ckx(tk − 0), x′(tk) = dkx
′(tk − 0), k = 1, 2, 3, . . . ,

and establish a couple of criteria to guarantee the equations of this
type to possess the stability, including boundedness and asymptotic
properties. Some examples are given to illustrate our results and the
last one shows that, to some extent, our criteria have more comprehen-
sive suitability than those given by G. Morosanu and C. Vladimirescu.
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1 Introduction

As the motion of damped oscillator of one degree of freedom can be described
by second order equations, there have been quite a little literature to study
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the properties of the equations of this type with or without impulses, see,
e.g., [1-8] and the references therein. We observe that Morosanu et al [8]
investigated the stability of differential equation of the form

x′′ + 2h(t)x′ + x+ g(t, x) = 0, t ≥ 0 (1)

and obtained an interesting and feasible criterion ([8, Theorem 2.1] as follows.

Theorem A: Suppose that h ∈ C1([0,∞), (0,∞)) and g ∈ C([0,∞) ×
(−∞,∞)) with the local Lipschitzian condition for g in x. Suppose further
that there exist constants a ≥ 0, K ∈ (0, 1), M > 0 and α > 1 such that

|h′(t) + h2(t)| ≤ Kh(t) for all t ≥ a,

|g(t, x)| ≤ Mh(t)|x|α for all (t, x) ∈ [0,∞) × (−∞,∞).

Then the null solution of (1) is stable.
The questions posed here to answer are whether we can weaken the con-

ditions in Theorem A, such as weakening the restrictions that h(t) > 0
and α > 1, and the conclusion is also true. To these ends, in this paper we
consider a more general form than (1) and study the impulsive second order
nonlinear differential equation

{
(r(t)x′)′ + a(t)x+ f (t, x, x′) = p(t), t ≥ t0, t 6= tk,
x(tk) = ckx(tk − 0), x′(tk) = dkx

′(tk − 0), k = 1, 2, 3, · · · , (2)

where

x(tk) = x(tk + 0) = lim
h→0+

x(tk + h), x(tk − 0) = lim
h→0−

x(tk + h)

and

x′(tk) = x′(tk + 0) = lim
h→0+

x(tk + h) − xk

h
, x′(tk − 0) = lim

h→0−

x(tk + h) − xk

h
.

Let N be the set of positive integers and R be the real axis. Before
proceeding our discussions, we give the blanket assumptions for (2) as follows:

(H1) r, a ∈ C([t0,∞),R) with r(t) 6= 0, p ∈ C([t0,∞),R) with p(t) of
constant sign and f ∈ C([t0,∞) × R × R,R);
(H2) f(t, u, v) monotone decreasing in u provided p(t) is not identically zero;
(H3) bi ∈ C([t0,∞), [0,∞)), i = 1, 2, and α ≥ 1 is some constant such that
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|f(t, u, v)| ≤ b1(t)|u|α + b2(t)|v|α; and
(H4) t0 < t1 < ... < tk → ∞ as k → ∞ and {ck}, {dk} are positive sequences.

Let x1 = x and x2 = rx′. Then (2) can be rewritten as





X ′ = A(t)X +

(
0

p(t) − f (t, x1, x2/r(t))

)
, t ≥ t0, t 6= tk,

X(tk) = IkX(tk − 0), k ∈ N,
(3)

where X = (x1, x2)
T and

A(t) =

[
0 1

r(t)

−a(t) 0

]
, Ik =

[
ck 0
0 dk

]
, k ∈ N.

Set t0 < ζ ≤ ∞. As usual, a function X : [t0, ζ) → R
2 is said to be a

solution of (3) if it satisfies

X ′ = A(t)X +

(
0

p(t) − f (t, x1, x2/r(t))

)

for all t ∈ [t0, ζ) and t 6= tk, and X(tk + 0) as well as X(tk − 0) exist and
satisfy X(tk + 0) = X(tk) = IkX(tk − 0) for all tk ∈ [t0, ζ).

Let X(t) = X(t; t0, X0) be a solution with X(t0) = X0. It is clear that
(3) has null solution when p(t) ≡ 0. The null solution of (3) is said to be
stable if for any ε > 0, there exists a δ = δ(ε, t0) such that ||X0|| < δ implies
that X(t) exists on [t0,∞) and ||X(t)|| < ε for all t ≥ t0.

2 Preliminaries

For the convenience, we will view C(t), D(t), E(t) and F (t, u, v) as

C(t) =
∏

t1≤tk≤t

ck, D(t) =
∏

t1≤tk≤t

dk, E(t) =
∏

t1≤tk≤t

Ik =

[
C(t) 0

0 D(t)

]
(4)

and
F (t, u, v) = f (t, C(t)u,D(t)v) (5)

whenever these notations are defined.
Let U(t) = (uij(t)) be any matrix. In this paper the norm of U(t) is

defined by the maximum of the row sums of (|uij(t)|).
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First of all, we consider the relation between the solutions of (3) and the
solutions of the following equation

Y ′ = E−1(t)A(t)E(t)Y + E−1(t)B(t, Y ), t ≥ t0, (6)

where

Y = (y1, y1)
T , B(t, Y ) =

(
0

p(t) − F (t, y1, y2/r(t))

)

and F is defined as in (5).
Let t0 < ζ ≤ ∞. By a solution of (6) we mean a continuous function

Y ∈ C([t0, ζ),R
2) which satisfies (6) when t 6= tk ∈ [t0, ζ).

Now let Y (t) be a solution of (6). Then, by straightforward verifications,
we learn that X(t) = E(t)Y (t) satisfies

X(tk) = IkX(tk − 0) for all tk ∈ [t0, ζ)

and it renders (3) into an identity when t 6= tk. Consequently, X(t) =
E(t)Y (t) is a solution of (3).

Conversely, suppose that X is a solution of (3). Then, for Y (t) =
E−1(t)X(t), we have

Y (tk − 0) = E−1(tk − 0)X(tk − 0) = E−1(tk)x(tk) = Y (tk).

In addition, it is easy to verify that Y (t) = E−1(t)X(t) satisfies (6) when
t 6= tk. So far the following result is obvious.

Lemma 1 If X(t) is a solution of (3), then Y (t) = E−1(t)X(t) is a solution
of (6). Conversely, if Y (t) is a solution of (6), then X(t) = E(t)Y (t) is a
solution of (3).

We next consider the solutions of (6). It is clear that the solutions of
(6) exist by the theory of ordinary differential equations [9]. Specially, if
E−1(t)A(t)E(t) is divided into

E−1(t)A(t)E(t) = A1(t) + A2(t),

where

A1(t) =

[
0 C(t)−1D(t)

r(t)

−C(t)−1D(t)
r(t)

0

]
, A2(t) =

[
0 0

C(t)−1D(t)
r(t)

− C(t)D(t)−1a(t) 0

]
,
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then, the fundamental matrix of the linear system corresponding to (6):

Y ′ = A1(t)Y, t ≥ t0

is given by

Φ(t) = exp

(∫ t

t0

A1(s)ds

)

=



 cos
(∫ t

t0

C(s)−1D(s)
r(s)

ds
)

sin
(∫ t

t0

C(s)−1D(s)
r(s)

ds
)

− sin
(∫ t

t0

C(s)−1D(s)
r(s)

ds
)

cos
(∫ t

t0

C(s)−1D(s)
r(s)

ds
)



 . (7)

Let Y (t) be a solution of (6) with Y (t0) = Y0, then it satisfies that

Y (t) = Φ(t)Y0 +

∫ t

t0

Φ(t)Φ−1(s)
{
A2(s)Y (s) + E−1(s)B(s, Y (s))

}
ds. (8)

As a special case, we consider




f(t, u, v) = f̃(t, u),
r ∈ C2([t0,∞), (0,∞)) and
r′(tk) = 0 or ck = dk for all k ∈ N.

(9)

For example, we consider

r(t) = 2 + t+ sin t, t ≥ 0 and tk = (2k − 1)π.

Then it holds that r′(tk) = 0 for all k ∈ N.
At this stage we set

x1 = x and x2 = x′1 +
r′x1

2r
.

Then, similarly to [1, 8], from (2) it follows that when t ≥ t0 and t 6= tk,




x′1 = − r′(t)
2r(t)

x1 + a(t)
r(t)
x2 +

(
1 − a(t)

r(t)

)
x2,

x′2 = −a(t)
r(t)
x1 − r′(t)

2r(t)
x2 +

[(
r′(t)
2r(t)

)′

+
(

r′(t)
2r(t)

)2
]
x1 + p(t)

r(t)
− ef(t,x1)

r(t)
.

Hence (2) is equivalent to




X ′ = Ã1(t)X + Ã2(t)X + 1
r(t)

(
0

p(t) − f̃(t, x1)

)
, t ≥ t0, t 6= tk,

X(tk) = IkX(tk − 0), k ∈ N,

(10)
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where X and Ik are defined as in (3), and

Ã1(t) =

[
− r′(t)

2r(t)
a(t)
r(t)

−a(t)
r(t)

− r′(t)
2r(t)

]
, Ã2(t) =




0 1 − a(t)
r(t)(

r′(t)
2r(t)

)′

+
(

r′(t)
2r(t)

)2

0


 .

Analogously to (6), we consider the following equation

Y ′ = E−1(t)Ã1(t)E(t)Y + E−1(t)Ã2(t)E(t)Y + E−1(t)B̃(t, Y ), t ≥ t0, (11)

where Y = (y1, y2)
T , and

B̃(t, Y ) =
1

r(t)

(
0

p(t) − f̃ (t, C(t)y1)

)
.

Since the relation between the solutions of (10) and the solutions of (11) is
similar to Lemma 1, we wish to refrain from the repeating statements.

Let us set

Ã11(t) =

[
− r′(t)

2r(t)
C(t)−1D(t)a(t)

r(t)

−C(t)−1D(t)a(t)
r(t)

− r′(t)
2r(t)

]

as well as

Ã12(t) =

[
0 0

(C(t)−1D(t)−C(t)D(t)−1)a(t)

r(t)
0

]
.

Then it follows that

E−1(t)Ã1(t)E(t) = Ã11(t) + Ã12(t).

Now we take into account the following system corresponding to (11):

Y ′ = Ã11(t)Y, t ≥ t0. (12)

It is easy to verify that the fundamental matrix of (12) is given by

Φ̃(t) = e
−

R

t

t0

r
′(t)

2r(t)
ds


 cos

(∫ t

t0

C(s)−1D(s)a(s)
r(s)

ds
)

sin
(∫ t

t0

C(s)−1D(s)a(s)
r(s)

ds
)

− sin
(∫ t

t0

C(s)−1D(s)a(s)
r(s)

ds
)

cos
(∫ t

t0

C(s)−1D(s)a(s)
r(s)

ds
)


 .

Subsequently, the solution Y of (11) with Y (t0) = Y0 satisfies that

Y (t) = Φ̃(t)Y0 +

∫ t

t0

Φ̃(t)Φ̃−1(s)Ã12(s)Y (s)ds+

∫ t

t0

Φ̃(t)Φ̃−1(s)
{
E−1(s)Ã2(s)E(s)Y (s) + E−1(s)B̃(s, Y (s))

}
ds, t ≥ t0.

(13)
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3 Main results

In the sequel we give the stability criteria for (2). Recall that the definitions
of C(t), D(t) and E(t) have been defined in (4). For simplicity, we introduce
another notations as follows. Let λ1(c) and λ2(c) be denoted, respectively,
by

λ1(c) ≤ inf
t≥t0

C(t) = inf
t≥t0

∏

t1≤tk≤t

ck, λ2(c) ≥ sup
t≥t0

C(t) = sup
t≥t0

∏

t1≤tk≤t

ck.

The notations λ1(d) and λ2(d) can be defined similarly.

Theorem 1 Suppose that the following conditions hold:
(i) p(t) ≡ 0,

∫ ∞

t0
b1(s)ds <∞,

∫ ∞

t0

b2(s)
|r(s)|α

ds <∞ and

∫ ∞

t0

∣∣∣∣
C(s)−1D(s)

r(s)
− C(s)D(s)−1a(s)

∣∣∣∣ ds <∞,

(ii) λ1(c) · λ1(d) > 0 and λ2(c) + λ2(d) <∞.
Then the null solution of (3) is stable.

Proof. Let Y (t) be a solution of (6) satisfying Y (t0) = Y0. Then, Lemma
1 implies that X(t) = E(t)Y (t) is a solution of (3) with the initial condition
X(t0) = Y0. Set

M = max

{
λ1(c)

−1, λ1(d)
−1, λ2(c), λ2(d),

∫ ∞

t0

b1(s)ds,

∫ ∞

t0

b2(s)

|r(s)|α ds,

∫ ∞

t0

∣∣∣∣
C(s)−1D(s)

r(s)
− C(s)D(s)−1a(s)

∣∣∣∣ds

}
. (14)

Note that p(t) ≡ 0 implies that the function B in (8) satisfies

||B(s, Y (s))|| ≤ |f(s, C(s)y1(s), D(s)y2(s)/r(s))|

≤ b1(s)|x1(s)|α +
b2(s)

|r(s)|α |x2(s)|α

≤ b1(s)||X(s)||α +
b2(s)

|r(s)|α ||X(s)||α,

where we have imposed the relation X(s) = E(s)Y (s) and the assumption
(H3) on the function f for the second step. Note further that for all t ≥ t0,
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Φ(t) as in (7) satisfies ||Φ(t)||, ||Φ−1(t)|| ≤
√

2, and ||E(t)||, ||E−1(t)|| ≤ M ,
we now multiply (8) by E(t) and then obtain

||X(t)|| ≤
√

2M ||Y0|| +

2M2

∫ t

t0

∣∣∣∣
C(s)−1D(s)

r(s)
− C(s)D(s)−1a(s)

∣∣∣∣ · ||X(s)||ds+

2M2

∫ t

t0

b1(s)||X(s)||αds+ 2M2

∫ t

t0

b2(s)

|r(s)|α ||X(s)||αds. (15)

Let w(t) be defined by

w(t) = max

{
b1(t) +

b2(t)

|r(t)|α ,
∣∣∣∣
C(t)−1D(t)

r(t)
− C(t)D(t)−1a(t)

∣∣∣∣
}
. (16)

Then, since w(t) ≤ b1(t)+ b2(t)
|r(t)|α

+
∣∣∣C(t)−1D(t)

r(t)
− C(t)D(t)−1a(t)

∣∣∣, it holds that
∫ ∞

t0
w(s)ds ≤ 3M .
Case 1. Suppose that α > 1. Then we have from (15)–(16) that

||X(t)|| ≤
√

2M ||Y0|| + 2M2

∫ t

t0

w(s)||X(s)||ds+ 2M2

∫ t

t0

w(s)||X(s)||αds.

(17)

Let R(t) be defined by

R(t) =
√

2M ||Y0|| + 2M2

∫ t

t0

w(s)||X(s)||ds+ 2M2

∫ t

t0

w(s)||X(s)||αds.

Then, it is readily obtained that

R′(t) ≤ 2M2w(t)R(t) + 2M2w(t)R(t)α. (18)

Multiplying (18) by (1−α)R(t)−α exp
(
2M2(α− 1)

∫ t

t0
w(s)ds

)
, we arrive at

[
(1 +R(t)1−α)e

2M2(α−1)
R

t

t0
w(s)ds

]′
≥ 0,

which means that

(1 +R(t)1−α)e
2M2(α−1)

R

t

t0
w(s)ds ≥ 1 +M1−α

0 , (19)
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here M0 =
√

2M ||Y0||. In view of (19), we have when

M0 <
(
e6M3(α−1) − 1

)1/(1−α)

,

R(t) ≤
{

[1 +M1−α
0 ]e6M3(1−α) − 1

} 1
1−α

. (20)

From (20) and (17) we learn that X(t) is defined on [t0,∞) (see [9, Chapter
2]). Furthermore, when M0 is small enough, i.e., ||Y0|| is small enough, (17)
and (20) imply that ||X(t)|| is also small enough on [t0,∞), which indicates
the null solution of (3) is stable.

Case 2. Suppose that α = 1. We now have, from (15)–(16), that

||X(t)|| ≤
√

2M ||Y0|| + 4M2

∫ t

t0

w(s)||X(s)||ds,

which, together with the Bellman’s Inequality, induces

||X(t)|| ≤
√

2M ||Y0||e4M2
R

t

t0
w(s)ds

≤
√

2M ||Y0||e12M3

,

and this, likewise, means that the null solution of (3) is stable. The proof is
complete.

We observe that when ck ≡ dk on N, C(t)−1D(t) = C(t)D(t)−1 = 1 for
all t ≥ t0. Hence the following result is clear.

Corollary 1 Suppose that the following conditions hold:
(i) p(t) ≡ 0,

∫ ∞

t0
b1(s)ds <∞,

∫ ∞

t0

b2(s)
|r(s)|α

ds <∞ and

∫ ∞

t0

∣∣∣∣
1

r(s)
− a(s)

∣∣∣∣ ds <∞, and

(ii) ck = dk for all k ∈ N, λ1(c) > 0 and λ2(c) <∞.
Then the null solution of (3) is stable.

We notice that, by similar arguments, we may show that the solution
X(t; t0, X0) of (3) exists on [t,0 ,∞) for any X0 ∈ R

2 under the provisions
in Theorem 1. Now we consider the case that p(t) is of constant sign and is
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not identically zero. In this case we impose the assumption (in (H2)) that
f(t, u, v) is monotone decreasing in u and learn that the vector function

(
0

−f (t, x1, x2/r(t))

)

is quasi-monotone increasing on R
2.

Recall the Comparison Theorem [10]. Briefly speaking, if F (t, x) : R
2+1 →

R
2 and F is quasi-monotone increasing in x, and if ψ is the maximal solution

of x′ = F (t, x) with ψ(t0) = ψ0 for t ≥ t0, then ϕ′ ≤ F (t, ϕ) with ϕ(t0) ≤ ψ0

for t ≥ t0 implies that ϕ(t) ≤ ψ(t) for t ≥ t0. Hence, with the aid of compar-
ison theorem we may also show that the solution X(t; t0, X0) of (3) exists on
[t0,∞) for any X0 ∈ R

2. For simplicity we ignore the details of proof.
Next we consider the boundedness for (3).

Theorem 2 Suppose that the following conditions hold:
(i)

∫ ∞

t0
b1(s)ds <∞,

∫ ∞

t0

b2(s)
|r(s)|α

ds <∞,
∫ ∞

t0
|p(s)|ds <∞ and

∫ ∞

t0

∣∣∣∣
C(s)−1D(s)

r(s)
− C(s)D(s)−1a(s)

∣∣∣∣ ds <∞,

(ii) λ1(c) · λ1(d) > 0 and λ2(c) + λ2(d) <∞.
Then every solution of (3) is bounded.

Proof. We first assume that Y (t) is the solution of (6) with Y (t0) = Y0.
Then X(t) = E(t)Y (t) is a solution of (3). Let M be defined as in (14) and

∫ ∞

t0

|p(s)|ds ≤ M.

Furthermore, let w(t) be defined as in (16). Note that the function B in (8)
satisfies that

||B(s, Y (s))|| ≤ |p(s)| + b1(s)||X(s)||α +
b2(s)

|r(s)|α ||X(s)||α

for the time being.
Case 1. Suppose that α = 1. Then, similarly to (15) we have

||X(t)|| ≤
√

2M ||Y0|| + 2M3 +

EJQTDE, 2012 No. 29, p. 10



2M2

∫ t

t0

∣∣∣∣
C(s)−1D(s)

r(s)
− C(s)D(s)−1a(s)

∣∣∣∣ · ||X(s)||ds+

2M2

∫ t

t0

b1(s)||X(s)||ds+ 2M2

∫ t

t0

b2(s)

|r(s)|α ||X(s)||ds

≤
√

2M ||Y0|| + 2M3 + 4M2

∫ t

t0

w(s)||X(s)||ds. (21)

By means of Bellman’s Inequality and (21) one arrives at

||X(t)|| ≤
(√

2M ||Y0|| + 2M3
)
e
4M2

R

t

t0
w(s)ds

≤
(√

2M ||Y0|| + 2M3
)
e12M3

which shows that every solution of (3) is bounded when α = 1.
Case 2. Suppose that α > 1. For any given ε > 0, we take T > t0 so that

∫ ∞

T

w(s)ds ≤ ε and

∫ ∞

T

|p(s)|ds ≤ ε.

Analogously to (8) we have

Y (t) = Φ(t)Φ−1(T )Y (T ) +
∫ t

T

Φ(t)Φ−1(s)
[
A2(s)Y (s) + E−1(s)B(s, Y (s))

]
ds, t ≥ T.

which leads to

||X(t)|| ≤ 2M2||Y (T )|| + 2M2ε+ 2M2

∫ t

T

w(t)||X(s)||ds

+2M2

∫ t

T

w(t)||X(s)||αds =: R(t), t ≥ T. (22)

By the same manner as (19), we have from (22) that

(
1 +R(t)1−α

)
e2M2(α−1)

R

t

T
w(s)ds ≥ 1 +M1−α

0 , t ≥ T, (23)

where M0 = R(T ) = 2M2(||Y (T )|| + ε). Thus it holds from (23) that

R(t)1−α ≥
(
1 +M1−α

0

)
e2M2(1−α)

R

t

T
w(s)ds − 1, t ≥ T,
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which results in

R(t) ≤
{[
M1−α

0 + 1
]
e2M2(1−α)ε − 1

} 1
1−α

, t ≥ T, (24)

where

M0 <
(
e2M2(α−1)ε − 1

)− 1
α−1

.

Since ε is arbitrary, we can ensure that (24) is valid for Y (T ). Further, from
(22) and (24) we learn that R(t) is bounded on [T,∞), which implies that
the solution X(t) of (3) is bounded on [t0,∞) when α > 1. The proof is
complete.

The following result is concerned with the asymptotic behavior of (10)
(or (2)) under the assumptions (9). It is based on the fact that the solution
X(t; t0, x0) of (10) exists on [t0,∞) for any X0 ∈ R

2. The reasons are similar
to the proof of Theorem 1 and the statements before entering Theorem 2,
and therefore we skip them.

Theorem 3 Suppose that the following conditions hold:
(i) the hypothesis (9) is fulfilled, r′(t)

r(t)
≥ 0 on [t0,∞),

∫ ∞

t0

r′(s)
r(s)

ds = ∞ and
∫ ∞

t0

∣∣∣p(s)
r(s)

∣∣∣ ds <∞;

(ii) there exists a constant M > 0 such that

max
{
λ1(c)

−1, λ1(d)
−1, λ2(c), λ2(d)

}
≤M ;

(iii) there exist positive constants γ1 and γ2 such that

max

{
b1(t)

γ1r(t)
,
||Ã12(t)|| + ||Ã2(t)||

γ2

}
≤ r′(t)

r(t)
.

Then, every solution of (10) tends to zero as t → ∞ if one of the following
conditions holds:
(c1) α > 1 and 4M2γ2 < 1; or
(c2) α = 1 and 4M2(γ2 + γ1) < 1.

Proof. Note that b2(t) in assumption(H3) vanishes when f(t, u, v) = f̃(t, u).
Let β(t) be designated by

β(t) =
r′(t)

2r(t)
.
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For any given ε > 0, we may take T > t0 so that
∫ ∞

T

∣∣∣p(s)
r(s)

∣∣∣ ds ≤ ε. Let Y (t)

be a solution of (11) with Y (T ) = Y0. For the simplicity, we assume that

Φ̃−1(T ) ≤M . Analogously to (13) we now have

Y (t) = Φ̃(t)Φ̃−1(T )Y0 +
∫ t

T

Φ̃(t)Φ̃−1(s)
{
E−1(s)Ã2(s)E(s)Y (s) + E−1(s)B̃(s, Y (s))

}
ds, t ≥ T,

which, with the help of b2(t) ≡ 0, infers that

||X(t)|| ≤
√

2M2||Y0||e−
R

t

t0
β(s)ds

+ 2M2ε+

2M2

∫ t

T

e−
R

t

s
β(u)du

(
||Ã12(t)|| + ||Ã2(t)||

)
||X(s)||ds+

2M2

∫ t

T

e−
R

t

s
β(u)du b1(s)

|r(s)| ||X(s)||αds

=: R̃(t), t ≥ T, (25)

where we have imposed the inequalities

||Φ̃(t)|| ≤
√

2 exp

(
−

∫ t

t0

β(s)ds

)
and

||Φ̃(t)Φ̃−1(s)|| ≤ 2 exp

(
−

∫ t

s

β(u)du

)
.

Case 1. Suppose that α > 1 and 4M2γ2 < 1. Then (25) conduces to

R̃(t) =
√

2M2||Y0||e−
R

t

t0
β(s)ds

+ 2M2ε+

4M2

∫ t

T

e−
R

t

s
β(u)duβ(s) (γ2||X(s)||+ γ1||X(s)||α) ds, t ≥ T,

which implies that

R̃′(t) ≤
(
4M2γ2 − 1

)
β(t)R̃(t) + 4M2γ1β(t)R̃(t)α, t ≥ T. (26)

Now multiplying (26) by (1 − α)R̃(t)−αe
(1−α)(1−4M2γ2)

R

t

t0
β(s)ds

we obtain

{[
R̃(t)1−α − 4M2γ1

1 − 4M2γ2

]
e
(1−α)(1−4M2γ2)

R

t

t0
β(s)ds

}′

≥ 0,
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which infers that
[
R̃(t)1−α − 4M2γ1

1 − 4M2γ2

]
e
(1−α)(1−2M2γ2)

R

t

t0
β(s)ds ≥ M1−α

0 − 4M2γ1

1 − 4M2γ2

, (27)

where M0 = R̃(T ) = M2(
√

2||Y0||e−
R

T

t0
β(s)ds

+ 2ε). In view of (27) we learn
that when

||Y0|| <
1√
2M2

[(
1 − 4M2γ2

4M2γ1

)α−1

− 2M2ε

]
e

R

T

t0
β(s)ds

,

it follows that

R̃(t) ≤ 1
{[
M1−α

0 − 4M2γ1

1−4M2γ2

]
e
(α−1)(1−4M2γ2)

R

t

t0
β(s)ds

+ 4M2γ1

1−4M2γ2

}α−1 . (28)

Associated with the condition
∫ ∞

t0

r′(s)
r(s)

ds = ∞, (28) induces limt→∞ ||R̃(t)|| =

0 and hence limt→∞ ||X(t)|| = 0.
Case 2. Suppose that α = 1 and 4M2(γ2 + γ1) < 1. In this case it follows

from (25) that

R̃(t) =
√

2||Y0||e−
R

t

t0
β(s)ds

+ 2M2ε+

4M2

∫ t

T

e−
R

t

s
β(u)duβ(s) (γ2 + γ1) ||X(s)||ds, t ≥ T,

and hence
R̃′(t) ≤

[
4M2(γ2 + γ1) − 1

]
β(t)R̃(t),

which yields that

R̃(t) ≤ R̃(T )e
[4M2(γ2+γ1)−1]

R

t

t0
β(s)ds

.

This, together with the hypothesis
∫ ∞

t0

r′(s)
r(s)

ds = ∞, leads to ||X(t)|| → 0 as
t→ ∞. The proof is complete.

4 Examples

In this section we give three examples to illustrate our main results.
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Example 1 Consider the following equation

{
(e2tx′)

′
+ 1

t2+1
x− |x|α−1x

t2+1
+ et|x′|α−1x′ = q

t2+1
, t ≥ 0, t 6= k,

x(k) =
(
1 + 1

k2

)
x(k − 0), x′(k) =

(
1 − 1

(k+1)2

)
x′(k − 0), k = 1, 2, 3, · · · ,

(29)
where α ≥ 1 and q is a constant.

Let ck = 1 + 1
k2 and dk = 1 − 1

(k+1)2
. Note that

C(t) = (1 + 1)

(
1 +

1

22

)
. . .

(
1 +

1

[t]2

)
,

then we have

lnC(t) =

[t]∑

k=1

ln

(
1 +

1

k2

)
≤

∞∑

k=1

ln

(
1 +

1

k2

)

and hence we we can take

λ1(c) = 2 and λ2(c) = e
P

∞

k=1 ln(1+ 1
k2 ).

Similarly, by calculating we have

λ1(d) = e
P

∞

k=1 ln
“

1− 1
(k+1)2

”

and λ2(d) =
1

2
.

Note further that when f(t, u, v) = − |u|α−1u
t2+1

+ et|v|α−1v, and

r(t) = e2t, a(t) = b1(t) =
1

t2 + 1
, b2(t) = et and p(t) =

q

t2 + 1
,

all the conditions in Theorem 1-2 are verified. Hence, by Theorem 1 we
learn the null solution of (29) is stable when q = 0 and, by Theorem 2, every
solution of (29) is bounded.

Example 2 Consider the equation





(
e

t

10x′
)′

+ e
t

10x− e
t
10

103 x
α = 1, t ≥ 0, t 6= k,

x(k) = e
(−1)k

k x(k − 0), x′(k) = e
(−1)k

k x′(k − 0), k = 1, 2, 3, · · · ,
(30)

where α is a positive odd integer and, in this case f(t, u, v) = −e
t
10

103 u
α.
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For ck = dk = e
(−1)k

k , by the definitions of C(t), D(t) and Ã12(t) in

(4)–(5) and (13) it is easy to see that ||Ã12(t)|| = 0 and

C(t) = D(t) = e−1+ 1
2
− 1

3
+...+ (−1)[t]

[t] → eln
1
2 as t→ ∞.

Hence we can take M = 3 so that M ≥ max {λ1(c)
−1, λ1(d)

−1, λ2(c), λ2(d)}.
In addition, if we take r(t) = a(t) = e

t

10 , p(t) = 1, γ1 = 1
400

and γ2 = 1
40

,
then 4M2γ2 < 1 and 4M2(γ1 + γ2) < 1. Furthermore, it follows that

r′(t)

r(r)
=

1

10
,

b(t)

γ1r(r)
=

1

10

as well as

Ã2(t) =




0 1 − a(t)

r(t)(
r′(t)
2r(t)

)′

+
(

r′(t)
2r(t)

)2

0



 =

[
0 0
1

202 0

]

and therefore

||Ã12(t)|| + ||Ã2(t)||
γ2

=
1

10
.

Now by Theorem 3 we see that every solution of (30) tends to zero as t→ ∞.

Example 3 Let us consider the special form of (2) as follows

x′′ + x = 0, t ≥ t0. (31)

It is clear that we fail to use Theorem A to consider the stability of (31)
since the function h(t) ≡ 0 in (1). Now we turn to use our results. At present
r(t) ≡ 1, a(t) ≡ 1, ck = dk = 1 and f(t, u, v) ≡ 0 in (2), so all the conditions
in Corollary 1 are fulfilled and hence the null solution of (31) is stable.
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