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1 Introduction

We study the existence of weak solutions for a degenerate p(x)-Laplace equation. The main
tool used is the variational method, more precisely, the Mountain Pass Theorem. The study of
differential equations and variational problems with nonstandard p(x)-growth conditions has
been a new and interesting topic. Such problems arise from the study of electrorheological
fluids (see Ruizi¢ka [31]), and elastic mechanics (see Zhikov [35]). It also has wide applications
in different research fields, such as image processing model (see e.g., [16,22]), stationary
thermorheological viscous flows (see [2]) and the mathematical description of the processes
filtration of an idea barotropic gas through a porous medium (see [3]).

In recent years, many problems on p(x)-Laplace type have been studied by many authors
using various methods, for example, variational method (see, e.g., [1,5-14,17,20,21,23,27,30,34,
36]), topological method (see, e.g., [15,24]), sub-supersolution method (see, e.g., [18]), Nehari
manifold method (see, e.g., [28]), monotone mapping theory (see, e.g., [29]) and fibering map
approach [32].

In this paper, we considered the following quasilinear degenerate p(x)-Laplace problem:

—div(a(x)|Vu|P®2Vu) = A(b(x) [u]1 720 — c(x) [u]" ¥ ~2u), inQ, )
u=20, on dQ),
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where () is a smooth boundary domain in RN, A € RN, and p,q,r € C.(Q), where C; (Q) is
defined by C;(Q) = {p € C(Q),inf g p(x) > 1}, g7 :=sup,.qq(x) < p~ :=inf g p(x) <
pt <r =inf 5r(x) < r(x) < p*(x), where p*(x) = NI\T;’(CJ)C), a(x),b(x) > 0 for x € Q.

We make the following assumptions:

__ ) _
(hy) 0 < a € L} (Q) and a "™<@ € L1(Q), where ¢ € C.(Q) with

loc

¢(x) < p(x).
(hy) 0 < b e L*N(Q)and & € Cy (Q).

(Q), a "1 ¢ LI

(he) 0 <ce L™ (Q) and vy € CL(O).

(r(x)=1)¢* (%)
(hr) r(x) < ==

To study (P) by means of variational methods, we introduce the functional associated

o) = [ SRVl s = [ 2z [ S5

for u € Wal(’z gx)(ﬂ), where the Sobolev space Waézgx)(ﬂ) which is called weighted variable

exponent Sobolev space, is introduced in [26].
We are now in the position to state our main results.

Theorem 1.1. Suppose that (h,), (hy), (he), (hq) and (h,) hold.

(i) If A > 0, then problem (P) has a nontrivial solution which is a minimizer of the associated integral
functional of ¢.

(ii)) If A < 0, then problem (P) has a sequence of solutions {+u,} such that ¢(£u,) — +oo, as
n — —+oo.

The rest of this paper is organized as follows. In Section 2, we recall some necessary
preliminaries, which will be used in our investigation in Section 3. In Section 3, we prove the
main results of the paper.

2 Preliminaries

In order to discuss problem (P), we need some theories on Waléi Sx)(Q) which we will call
weighted variable exponent Sobolev space. For more details on the basic properties of these
spaces, we refer the reader to Kufner and B. Opic [26], Kim, Wang and Zhang [25].

Denoted by U (Q2) the set of all measurable real functions defined on (), elements in U/ (Q2)

which are equal to each other almost everywhere are considered as one element.
Write

LP0(Q) = {u e U0 / () [PWdx < +oo}
with the norm |u]Lp<x)(Q) = |ufp(x) =inf{A >0: fQ ]P Jdx < 1}, and
WP () = {u e LP'D(Q) : [Vul € L'O(Q)

with the norm [|ul[ 1,0 (q) = [u + [Vl

lp(x)
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Lemma 2.1 ([19]).

(1) Poincaré’s inequality in W& (x)(Q) holds, that is, there exists a positive constant C such that
[ul oy < CIV Ul o), Yu € WP ().

(2) Ifg € C.(Q) and g(x) < p*(x) for any x € O, then the embedding from WP (Q)) to L1¥) ()
is compact and continuous.

Lemma 2.2 ([19]). Set p(u) = [, |u(x)[P¥)dx. For u € LP¥)(Q)), we have
. - +

(1) if [ufp) > 1, then ’”‘Z(x) <p(u) < ‘“|Z(x)/
. + -

(2) 1f|u]p(x) < 1, then ]u\i(x) <pu) < \u|§(x)

Lemma 2.3 ([15]). Assume that h € L2(Q), p € C(Q). If [u|"¥) € LP¥)(Q), then we have

. - N )
mln{]u]Z(x)p(x),\u|Z(x)p(x)} < ‘]u\h( )

- t
o = max {\“’ux)p(x)' u h<x>p<x>} '

We consider Wal(’i gx) (Q)) as an appropriate Sobolev space for studding problem (P), which
is defined as a completion of C§°(Q)) with respect to the norm

Jull = 19l

where Lg((;c))(ﬂ) ={ueU(Q): [ya(x)|ul¥dx < +oo} is equipped with the norm

. u |p(x)
]u\Lf((;)(Q):1nf{(7>0:/0a(x)‘a‘ dxgl},

The Sobolev space Waléi )(x)(Q) which is called weighted variable exponent Sobolev space, is
introduced in [26], where a(x) is a measurable, nonnegative real valued function for x € Q).
Lemma 2.4 ([32, Theorem 2.5]). Assume that (hy,), (hy) and (h,) are satisfied. Then we have the
following compact embedding W;E§SX) (Q) — ngg (Q).

A function u € W;ézgx) (Q) is said to be a weak solution of (P) if

/ a(x)|Vu|PW 2V yVody = )\/ ) |[u] 1) 2 ypdx
0

- /\/ ) |u" ¥ 2yvdx, Vv € W;(’ng)(()).

Then

(¢'(u),v) :/Qa(x)\Vu\p(")’ZVqudx—A/Qb(x)]u\q(x)’zuvdx+/\/Qc(x)]u\r(x)*2uvdx

for all u,v € W;&Z gx)(Q). It is well known that the weak solution of (P) corresponds to the

critical point of the functional ¢ on Wal{i gx) (Q).
In order to prove Theorem 1.1, we need a lemma.
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Let X be a reflexive and separable Banach space, then there are {¢;} C X and {e;} C X
such that

X =span{ej:j=1,2,3,---}, X* = span{e]’f :j=1,23,---}

and

€,a) = { =i
Or ]# L.

For convenience, we write

Xj=span{e;},  Yi=@f,X; and Z; = %X (2.1)

Lemma 2.5 ([33]). X is a Banach space, ¢ € C'(X,R) is an even functional, the subspaces Y} and Zy
are defined in (2.1). If for each k = 1,2,3,..., there exists p > dy > 0 such that

(1) maxyey, ju=p, P(1) <0;
() infyez, |jujj=d, P(u) — 00 as k — oco.
(3) The functional ¢ satisfies the (P.S.) condition.

Then, ¢ has an unbounded sequence of critical values.

3 Proof of the main result

Throughout the paper, the letters c¢,c;, i = 1,2,3,... denote positive constants which may
change from line to line.
First, we recall that in view of Lemma 2.3,

o' (x)

b(x) 2
7uq(x)dx<7bax uq(x)
[ 2l < 2ol

2 q+ q-
< qf|b‘a(x) |:|u|q(x)oc’(x) + |u’q(x)a’(x)] ’

Note that 1 < g(x)a’(x) < &*(x) for all x € Q), then by Lemma 2.4, we have Wal’p(x)(()) —

(x)
LZ&;“ (x) (Q)) (compact embedding). Furthermore, there exists a positive constant ¢ such that

the following inequality holds [uy(y)a(x) < cl[uf|. Thus,

b(X) 2 + + — _
=)™ dx < 1By [cT [Jul|T + T JJul)7 ]
[ el <l e e ]

Proof. We start by proving the first assertion (i) of Theorem 1.1, if A > 0, so the functional ¢
is coercive. In fact, let ||u|| > 1. From the Lemma 2.2 we have

1 47

p(u) > o [ullP — qf|b|a(x)cq+||”||q+' (3.1)
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Note that g7 < p~, so ¢ is coercive and has a minimizer which is a solution of (P). This
minimizer is nonzero. Indeed, for t > 0 small enough and v € Wul(’zgx) (Q),

_ a(x) p(x _/ (%) 4| ax / (%) #7(0) | g |7 (%)
go(tvo)—/op(x) ¥ | Voo dx — A xt Vwo|T™®dx 4 A ) |vo|"dx

+

g _
<2 [ oGl ol e =S [ o)+ S [ ool e
q Q Q
q :
< 7/ !VUO|P dx — /\qt+ Qb(x”vqu dx+ Atf /Qc(x)|vo|r(x)

< Cltp — Cth
<0,

because g7 < p~.
Now, we are to check the second assertion (ii) of Theorem 1.1. Since W;EZ gx)(Q) is a

reflexive and separable Banach space, it is worth to recall that there {¢;} C X and {¢} C X~
such that

X =span{ej:j=1,2,3,---}, X" = span{e]’.k :j=1,23,---}

L
<e;-:ei>:{' J=
0, j#1i.

and

Set
Xj = span{e;}, Y = EszlXj and  Zp = &7 X;.
Next, via Lemma 2.5, we are to prove that the Problem (P) has infinitely many solutions

whether A < 0.
Set 6 = infyey, |o)=1 fQ T |v| Jdx. Let t > 1 and v € Y, with ||o]| = 1, we have

(p(tv):/ﬂp((itp VolPt dx—A/ itq o] 70x dx+A/ i QNG

§c1tp —I—Cth — cat’ (Sk.

Since r~ > max{p™, 4"}, so we may find t € [1,00) satisfies ¢(tov) < 0 and thus there exists
large p; > 0 such that
max ¢(u) <O0.
u€Yy|[ull=px

(2) Let B = sup,ez, o<1 fQ ]v| )dx. By Zyi1 C Zj we see that 0 < Biyq < Bi and
Brx — 0 when k — co. Indeed, from the definition of B, we may find uy such that

R I

Note that {u;} is bounded in W:{Z gx)(()). Thus, we may assume without loss of generality
that up — up in Wulézgx)(ﬂ) and hence, e}‘(uk) — 0 as k — oo. Thus, we must have e]’.k(uo) =0
forallj > 1,s0 up=0.

1
_ > .
<k’ Vk>1
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Moreover, if u € Wal(’z gx)(ﬂ) with [Ju]| > 1, we deduce,

o) = [ SEHTuPOx = [ ER A [ Sl

fnuHP’—A/ S 1 = capy 62)
> Ll — eupelul,

p*

because A < 0. .
Putting dy = (2p+1C4ﬁk) "=~ in this case ||u|| — oo since Bx — 0. Hence, taking ||u|| = dy,
it follows from (3.2) that

inf u —dp — 00, ask — oco.
ueZk,HuH:dk(P( )2 2pt K

(3) The functional ¢ verifies the Palais-Smale condition (P.S.) on W (pgx)(ﬂ). In fact, let
{u,} be a (P.S.). sequence, that is, ¢(u,) — ¢ and ¢'(u,) — 0 in (W;(zgx)(ﬂ))*‘ For ||uy||
large enough, we have

rre+1>r1r @(un) — ¢ (un)uy

/Q [P )~ ] x)]Vu|P(x)dx—/\/Q [qzx) — 1] b(x) || dx

a _
> [Jr 1] 177 | L
Lp(x)

This implies that {u,} is bounded sequence in W, ) (Q)). Up to a subsequence, still denoted

(3.3)

by {u,}, we may assume that

/ a(x) \Vun|”(")dx — 0, n— +oo (3.4)
a p(x)

and also there exists ug € W;g gx) (Q)) satisfies

Uy — up in W;{ZgJC)(Q)f

up(x) = up(x) ae x€Q,

=y inLY(Q),  w, =y in L) (Q).

Invoking Lemma 2.4, we deduce that

Tim | be) (|2 [10] 1) Zu0) (atn — 0) = 0

and

lim c(x)(]un|7(")_2un — |u0|7(x)_2uo)(un —up) = 0.
n—oo @)
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Hence, we must have

nlgn a(x) (| Vin|P¥ 2V, — |Vug P2V o) (Vu, — Vi) = 0.
©.JO
Below we shall prove that {u,} has a strongly convergent subsequence in the following
two cases, respectively.
Case (I): 0 = 0.
Indeed, by using (3.4), we derive that

/ M]Vun\"’(")dx —0, n — oo,
a p(x)

Then, u, is strongly convergent to 0 in Wal(’z gx) (Q)), the proof is complete.

Case (II): ¢ > 0.
It is observed now that (see [4]) for x,y € RV, we have the following estimates

x —yl? <2%(|x|"2x = [y|"Py) - (x—y), if6>2,
1

g+ D> (2 2 = I ?y) - (x—y), if1<B<2,

x—y|* <

where x - y is the inner product in RY.
Using the above inequalities, there is c5 > 0 such that

lim [ a(x)(| Vi |P 72V, — |Vue|P¥ "2V ug) (Vi — Vug)dx

n—00 O

> c5/ a(x)| Vi, — Vue|P¥dx. (3.5)
0

Thereby,
/Qa(x)Wun — Vup|P¥dx — 0, n— +oo,

which implies that

Uy — ug in W;ezgx)(ﬂ),
finishing the proof. Therefore, by virtue of Lemma 2.5, the second conclusion of Theorem 1.1
is true.
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