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1 Introduction

In this paper, we consider the following nonlocal boundary value problem for fractional differ-

ential equations with integral boundary condition on the half-line



















CDα(p(t)u′(t)) + q(t)f(t, u(t)) = 0, t > 0,

p(0)u′(0) = 0,

lim
t→+∞

u(t) =
∫ +∞
0

g(t)u(t)dt,

(1.1)

where CDα is the standard Caputo derivative, 0 < α < 1 is a constant, f , g, p and q are given

functions.

Boundary value problems (BVPs) of differential equation have received much attention in recent

years due to their broad applications in applied mathematics and physics. There are many papers
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concerning the existence of solutions, positive solutions or multiple solutions of two point BVPs,

three point BVPs, m-point even nonlocal boundary conditions such as integral boundary conditions

about the integer order differential equation. For details we can refer to [6, 10, 13, 16–21, 24, 26].

Boundary value problems on the half-line have been applied in unsteady flow of gas through a semi-

infinite porous medium, the theory of drain flows, etc. In the paper [1], Agarwal and O’Regan gave

infinite interval problems modeling phenomena which arise in the theory of plasma and electrical

potential theory. In [6, 10, 11, 13, 19, 26], authors studied two-point or multipoint boundary value

problems on the half-line by using different method. The papers [20, 21] studied the existence of

positive solutions for second-order boundary value problems of differential equations system with

integral boundary condition on the half-line.

It is well known that fractional order differential equations have been proved to be valuable

tools in the modeling of many phenomena in various fields of science and engineering, and they

also have been of great interests, see [9, 15]. Recently, there are some papers which deal with the

existence of the solutions of the boundary values problems for fractional differential equations on

finite intervals. For details, see [2, 4, 5, 7, 8, 12, 14, 23, 25, 27, 28] and the references therein.

In [9] and [15], the basic theories for the fractional calculus and the fractional differential

equations were discussed. In [5], Benchohra, Hamania and Ntouyas investigated the existence and

uniqueness of solutions for problem:







CDαy(t) = f(t, y(t)), t ∈ [0, T ], 1 < α ≤ 2,

y(0) = g(y), y(T ) = yT .

By using Schauder’s fixed point theorem combined with the diagonalization method, Arara and

co-authors (see [4]) studied the existence of solutions for boundary value problems for fractional

order differential equation of the form







CDαy(t) + f(t, y(t)) = 0, t ∈ [0,∞), 1 < α ≤ 2,

y(0) = y0, y is bounded on [0,∞).

In [2], Ahmad and Nieto stuided some existence results for a boundary value problem involving

a nonlinear integrodifferential equation of fractional order 1 < q ≤ 2 with integral boundary

conditions by using contraction mapping principle and Krasnoselskíı’s fixed point theorem.

However, researches for the multiple solutions of the fractional differential equations with non-

local boundary condition on infinite intervals are few. In this paper, we aim to discuss the multiple

solutions for fractional differential equations with integral boundary condition on the half-line.

Applying the well-known Amann theorem and the upper and lower solutions method, we obtain a

new result on the existence of at least three distinct nonnegative solutions under some conditions.

An example is presented to illustrate the application of our main result.
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2 Preliminaries

In this section, we introduce preliminary facts which are used throughout this paper. We

denote that R = (−∞, +∞) and R+ = [0, +∞).

Definition 2.1 (See [9, 15]) Let α > 0. The fractional (arbitrary) order integral of the function

y : R+ → R of order α is defined by

Iαy(t) =
1

Γ(α)

∫ t

0

(t − s)α−1y(s)ds.

provided the integral exists, where Γ is the Gamma function.

Definition 2.2 (See [9,15]) The Caputo fractional order derivative of the function y of order α is

defined by

CDαy(t) =
1

Γ(n − α)

∫ t

0

y(n)(s)

(t − s)α+1−n
ds,

provided the right side is pointwise defined on (0, +∞), where n = [α] + 1 and [α] denotes the

integer part of α.

Throughout the paper, we suppose that the following hypotheses are satisfied:

(H1) g ∈ L1(R+), g(t) ≥ 0, t ∈ R+, and 0 ≤
∫ +∞
0

g(t)dt := ||g||1 < 1.

(H2) p(t) > 0 for all t ∈ R+,
∫ +∞
0

1
p(r)dr exists and the function k(s) =

∫ +∞
s

(r−s)α−1

p(r) dr < +∞
is continuous on R+.

It is obvious that 0 < 1 − ||g||1 ≤ 1 if (H1) holds. From (H2), we can get that k(s) ≥ 0 and

lim
s→+∞

k(s) = 0. So k(s) is bounded, which implies that there exists a constant K0 > 0 such that

0 ≤ k(s) ≤ K0 = sup
s∈R+

k(s), for s ∈ R+.

We define that

K(t, s) =







∫ +∞
t

(r−s)α−1

p(r) dr, 0 ≤ s < t,
∫ +∞

s

(r−s)α−1

p(r) dr, 0 ≤ t ≤ s,
(2.1)

and

G(t, s) =
1

(1 − ||g||1)Γ(α)

(

(1 − ||g||1)K(t, s) +

∫ +∞

0

g(r)K(r, s)dr

)

. (2.2)

By (H1), (H2), (2.1) and (2.2), we can easily get that K and G satisfy the following lemma.

Lemma 2.1 Suppose (H1) and (H2) hold. Then

(1) K(t, s) is well defined and continuous, for all (t, s) ∈ R+ × R+;

(2) 0 ≤ K(t, s) ≤ K(s, s) = k(s) ≤ K0, for all (t, s) ∈ R+ × R+;

(3) G(t, s) is well defined, continuous, and 0 ≤ G(t, s) ≤ G(s, s) ≤ 1
(1−||g||1)Γ(α)K0, for all (t, s) ∈

R+ × R+;
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(4) For any s ∈ R+, lim
t→+∞

K(t, s) = 0, and denote

G∞(s) := lim
t→+∞

G(t, s) =
1

(1 − ||g||1)Γ(α)

∫ +∞

0

g(r)K(r, s)dr,

then G∞(s) is continuous, and

G∞(s) ≤ 1

(1 − ||g||1)Γ(α)
K0.

�

Lemma 2.2 Suppose that (H1) and (H2) hold, and h ∈ L1(R+). Then the following boundary

value problem


















CDα(p(t)u′(t)) + h(t) = 0, t > 0,

p(0)u′(0) = 0,

u(∞) =
∫ +∞
0

g(t)u(t)dt,

(2.3)

has a unique solution

u(t) =

∫ +∞

0

G(t, s)h(s)ds,

where u(∞) := lim
t→+∞

u(t).

Proof. By (2.3), we have

p(t)u′(t) = p(0)u′(0) − Iαh(t) = − 1

Γ(α)

∫ t

0

(t − s)α−1h(s)ds.

We get u′(t) = − 1
Γ(α)p(t)

∫ t

0
(t − s)α−1h(s)ds, and

u(t) =u(0) −
∫ t

0

(

1

Γ(α)p(r)

∫ r

0

(r − s)α−1h(s)ds

)

dr

=u(0) − 1

Γ(α)

∫ t

0

dr

∫ r

0

(r − s)α−1h(s)

p(r)
ds

=u(0) − 1

Γ(α)

∫ t

0

ds

∫ t

s

(r − s)α−1h(s)

p(r)
dr. (2.4)

So

u(∞) = u(0) − 1

Γ(α)

∫ +∞

0

ds

∫ +∞

s

(r − s)α−1h(s)

p(r)
dr =

∫ +∞

0

g(t)u(t)dt.

Then

u(0) =

∫ +∞

0

g(r)u(r)dr +
1

Γ(α)

∫ +∞

0

ds

∫ +∞

s

(r − s)α−1h(s)

p(r)
dr. (2.5)

Substituting (2.5) into (2.4), we have

u(t) =

∫ +∞

0

g(r)u(r)dr +
1

Γ(α)

∫ +∞

0

ds

∫ +∞

s

(r − s)α−1h(s)

p(r)
dr − 1

Γ(α)

∫ t

0

ds

∫ t

s

(r − s)α−1h(s)

p(r)
dr

=

∫ +∞

0

g(r)u(r)dr +
1

Γ(α)

∫ t

0

ds

∫ +∞

t

(r − s)α−1h(s)

p(r)
dr +

1

Γ(α)

∫ +∞

t

ds

∫ +∞

s

(r − s)α−1h(s)

p(r)
dr

=

∫ +∞

0

g(r)u(r)dr +
1

Γ(α)

∫ t

0

(

∫ +∞

t

(r − s)α−1

p(r)
dr

)

h(s)ds +
1

Γ(α)

∫ +∞

t

(

∫ +∞

s

(r − s)α−1

p(r)
dr

)

h(s)ds.
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By (2.1), we get that

u(t) =

∫ +∞

0

g(r)u(r)dr +
1

Γ(α)

∫ +∞

0

K(t, s)h(s)ds. (2.6)

So

g(t)u(t) = g(t)

∫ +∞

0

g(r)u(r)dr +
g(t)

Γ(α)

∫ +∞

0

K(t, s)h(s)ds.

∫ +∞

0

g(t)u(t)dt =

∫ +∞

0

g(t)dt ·
∫ +∞

0

g(r)u(r)dr +
1

Γ(α)

∫ +∞

0

(

g(r)

∫ +∞

0

K(t, s)h(s)ds
)

dr

=

∫ +∞

0

g(t)dt ·
∫ +∞

0

g(r)u(r)dr +
1

Γ(α)

∫ +∞

0

ds

∫ +∞

0

g(r)K(r, s)h(s)dr

=

∫ +∞

0

g(t)dt ·
∫ +∞

0

g(r)u(r)dr +
1

Γ(α)

∫ +∞

0

(

∫ +∞

0

K(r, s)g(r)dr
)

h(s)ds.

Noting that 0 < 1 − ||g||1 = 1 −
∫ +∞
0

g(t)dt ≤ 1, we have

∫ +∞

0

g(r)u(r)dr =
1

(1 − ||g||1)Γ(α)

∫ +∞

0

(

∫ +∞

0

K(r, s)g(r)dr
)

h(s)ds. (2.7)

Substituting (2.7) into (2.6), we have

u(t) =
1

(1 − ||g||1)Γ(α)

∫ +∞

0

(

∫ +∞

0

K(r, s)g(r)dr
)

h(s)ds +
1

Γ(α)

∫ +∞

0

K(t, s)h(s)ds

=
1

(1 − ||g||1)Γ(α)

∫ +∞

0

(

∫ +∞

0

K(r, s)g(r)dr + (1 − ||g||1)K(t, s)
)

h(s)ds

=

∫ +∞

0

G(t, s)h(s)ds,

where

G(t, s) =
1

(1 − ||g||1)Γ(α)

(

∫ +∞

0

K(r, s)g(r)dr + (1 − ||g||1)K(t, s)
)

.

�

Lemma 2.3 Suppose (H1) and (H2) hold, if u = u(t) satisfies



















CDα(p(t)u′(t)) ≤ 0, t ∈ (0, +∞),

p(0)u′(0) ≤ 0,

u(∞) −
∫ +∞
0

g(r)u(r)dr ≥ 0.

(2.8)

Then u(t) ≥ 0 for t ∈ R+.

Proof. Let CDα(p(t)u′(t)) = −h(t) ≤ 0, p(0)u′(0) = k0 ≤ 0 and u(∞) −
∫ +∞
0

g(r)u(r)dr = k1 ≥
0. We consider the following boundary value problem



















CDα(p(t)u′(t)) = −h(t), t ∈ (0, +∞),

p(0)u′(0) = k0,

u(∞) −
∫ +∞
0

g(r)u(r)dr = k1.

(2.9)
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Similar to the proof of Lemma 2.2, we can obtain that the BVP (2.9) has a unique solution.

u(t) =
k1

(1 − ||g||1)
− k0

(1 − ||g||1)

(
∫ +∞

0

ds

∫ +∞

s

g(s)

p(r)
dr + (1 − ||g||1)

∫ +∞

t

dr

p(r)

)

+

∫ +∞

0

G(t, s)h(s)ds.

(2.10)

Since k0 ≤ 0, k1 ≥ 0 and h(t) ≥ 0 for t > 0, it is easy to show

u(t) ≥ 0, for t ∈ R+

from (2.10), (H1) and (H2). �

Let E be a Banach space, P ⊂ E be a cone in E. A cone P is called solid if it contains interior

points, i.e., P̊ 6= Ø. Every cone P in E defines a partial ordering in E given by x � y iff y−x ∈ P .

If x � y and x 6= y, we write x � y; if a cone P is solid and y − x ∈ P̊ , we write x ≪ y. A cone P

is said to be normal if there exists a constant N > 0 such that 0 � x � y implies ||x|| ≤ N ||y||. If

P is normal, then every order interval [x, y] = {z ∈ E|x � z � y} is bounded.

The following Lemma 2.4 is the well-known Amann three-solution theorem (see [3, 22]), which

will be used in the later proof of our main results about the multiple solutions of the boundary

value problem.

Lemma 2.4 Let E be a Banach space, and P be a normal solid cone. Suppose that there exist α1,

β1, α2, β2 ∈ E with

α1 � β1 � α2 � β2,

and T : [α1, β2] −→ E is a completely continuous strongly increasing operator such that

α1 � Tα1, T β1 � β1, α2 � Tα2, T β2 � β2.

Then the operator T has at least three fixed points x1, x2, x3 such that

α1 � x1 ≪ β1, α2 ≪ x2 � β2, α2 � x3 � β1.

3 Multiple solutions of the boundary value problem

Definition 3.1. u = u(t) is called an upper (lower) solution of boundary value problem (1.1), if

it satisfies


















CDα(p(t)u′(t)) + q(t)f(t, u(t)) ≤ 0 (≥ 0), t > 0,

p(0)u′(0) ≤ 0 (≥ 0),

u(∞) −
∫ +∞
0

g(t)u(t)dt ≥ 0 (≤ 0).

In order to obtain the results, we suppose the following conditions hold:

(H3) q ∈ L1(R+), q(t) is nonnegative on R+ and q > 0 a.e. on R+.
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(H4) f : R+ × R+ −→ R+ is a Carathéodory function, that is to say, f(·, u) is measurable for

any u ∈ R+ and f(t, ·) is continuous for almost every t ∈ R+. f(t, u) is bounded for t ∈ R+ when

u is bounded, and

f(t, u1) < f(t, u2) with u1 < u2 ∈ R+, for almost every t ∈ R+.

Let E = {u ∈ C(R+) | lim
t→+∞

u(t) exists } be endowed with the norm ‖ u ‖:= sup
t∈R+

|u(t)|, then

E is a Banach space. We define the cone P ⊂ E by

P := {u ∈ E | u(t) ≥ 0, t ∈ R+}.

Obviously, P is a normal solid cone in E, and u � v ∈ E if and only if u(t) ≤ v(t) for t ∈ R+.

u � v ∈ E if and only if u(t) ≤ v(t) and u(t) 6≡ v(t), which implies that there exists an interval

[a0, b0] ⊂ R+ such that u(t) < v(t) for t ∈ [a0, b0].

Lemma 3.1 (See [11]) Let E be defined as before and D ⊂ E. Then D is relatively compact in E

if the following conditions hold:

(a) D is uniformly bounded in E;

(b) the functions from D are equicontinuous on any compact interval of [0, +∞);

(c) the functions from D are equiconvergent, that is, for any given ε > 0, there exists a R0 =

R(ε) > 0 such that |u(t) − u(+∞)| < ε, for any t > R0, u ∈ D.

Now, we define an operator T : P −→ E by

(Tu)(t) =

∫ +∞

0

G(t, s)q(s)f(s, u(s))ds.

Lemma 3.2 Suppose that (H1)–(H4) hold. Then the operator T : P −→ P , and it is completely

continuous.

Proof. First of all, let us show the operator T is well defined, and T : P −→ P .

For any fixed u ∈ P , it implies that u is bounded, by Lemma 2.1, (H3) and (H4), and we can

get (Tu)(t) ≥ 0 for t ∈ R+. And there exists a constant fM0
> 0 such that 0 ≤ f(t, u(t)) ≤ fM0

for any t ∈ R+. Then

0 ≤ (Tu)(t) =

∫ +∞

0

G(t, s)q(s)f(s, u(s))ds ≤ K0fM0

(1 − ||g||1)Γ(α)

∫ +∞

0

q(s)ds < +∞.

And

lim
t→+∞

(Tu)(t) = lim
t→+∞

∫ +∞

0

G(t, s)q(s)f(s, u(s))ds =
1

(1 − ||g||1)Γ(α)

∫ +∞

0

G∞(s)q(s)f(s, u(s))ds < +∞.

Thus, T : P −→ P is well defined.

Secondly, we show that T is continuous.
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Let {un} ⊂ P , u ∈ P , and un → u0 as n → ∞. So, there exists a constant fM1
> 0, such that

0 ≤ f(t, un(t)), f(t, u0(t)) ≤ fM1
for any t ∈ R+. By (H3), (H4) and Lemma 2.1, we can see

||Tun − Tu0|| = sup
t∈R+

|(Tun)(t) − (Tu0)(t)| ≤
∫ +∞

0

G(s, s)q(s)|f(s, un(s)) − f(s, u0(s))|ds,

G(s, s)q(s)|f(s, un(s)) − f(s, u0(s))| ≤
2K0fM1

(1 − ||g||1)Γ(α)
q(s)

and

lim
n→∞

(

f(s, un(s)) − f(s, u0(s)
)

= 0, a.e. s ∈ R+.

According to the Lebesgue’s dominated convergence theorem, we can show

lim
n→∞

∫ +∞

0

G(s, s)q(s)|f(s, un(s)) − f(s, u0(s))|ds = 0.

Therefore, the operator T is continuous.

Finally, we will prove that the operator T maps bounded sets into relatively compact sets.

For the bounded set Ω ⊂ P , there exists a constant M2 > 0, such that ||u|| ≤ M2 for any u ∈ Ω.

Thus there exists a constant fM2
> 0, such that 0 ≤ f(t, u(t)) ≤ fM2

for any t ∈ R+. And

0 ≤ (Tu)(t) =

∫ +∞

0

G(t, s)q(s)f(s, u(s))ds ≤ K0fM2

(1 − ||g||1)Γ(α)

∫ +∞

0

q(s)ds < +∞.

Thus, the set T (Ω) is uniformly bounded.

For any [a, b] ⊂ [0, +∞) and any t1, t2 ∈ [a, b], by Lemma 2.1, we have G(t1, s)−G(t2, s) → 0,

as t1 → t2 for any s ∈ R+. And

0 ≤ |G(t1, s) − G(t2, s)|q(s)f(s, u(s)) ≤ 2G(s, s)q(s)fM2
≤ 2K0fM2

(1 − ||g||1)Γ(α)
q(s).

Then

|(Tu)(t1) − (Tu)(t2)| =|
∫ +∞

0

G(t1, s)q(s)f(s, u(s))ds −
∫ +∞

0

G(t2, s)q(s)f(s, u(s))ds|

≤
∫ +∞

0

|G(t1, s) − G(t2, s)|q(s)f(s, u(s))ds

≤
∫ +∞

0

|G(t1, s) − G(t2, s)|q(s)fM2
ds

→0, as t1 → t2. (3.1)

That is, Tu from T (Ω) is equicontinuous on any compact interval of [0, +∞).

By Lemma 2.1, we have

|(Tu)(t) − (Tu)(∞)| =|
∫ +∞

0

(

G(t, s) − G∞(s)
)

q(s)f(s, u(s))ds|

≤
∫ +∞

0

|G(t, s) − G∞(s)|q(s)fM2
ds

→0, as t → +∞.
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Then Tu from T (Ω) is equiconvergent.

Using Lemma 3.1, we can obtain that the set T (Ω) is a relatively compact set. Hence, the

operator T maps bounded sets into relatively compact sets.

Therefore, we can get that the operator T is completely continuous.

�

Theorem 3.3 Suppose that (H1)–(H4) hold, and there exist two lower solutions x1, x2 and two

upper solutions y1, y2 of boundary value problem (1.1) such that x2, y1 are not the solutions of the

boundary value problem (1.1) with

x1 � y1 � x2 � y2.

Then the boundary value problem (1.1) has at least three distinct nonnegative solutions u1, u2, u3

which satisfy that for t ∈ R+

x1(t) ≤ u1(t) < y1(t), x2(t) < u2(t) ≤ y2(t), x2(t) � u3(t) � y1(t).

Proof. It is obvious that the boundary value problem (1.1) has nonnegative solutions if and only

if the operator T has fixed points on P .

It follows from Lemma 3.2 that T : [x1, y2] → P is completely continuous.

Let us prove that T is a strongly increasing operator.

For any w1, w2 ∈ P , with w1 � w2, that is to say that w1(t) ≤ w2(t) for all t ∈ R+, and there

exists [a0, b0] ⊂ R+ such that w1(t) < w2(t) for any t ∈ [a0, b0].

Hence, for any t ∈ R+, using the conditions (H3) and (H4) we have

(Tw2)(t) − (Tw1)(t) =

∫ +∞

0

G(t, s)q(s)
(

f(s, w2(s)) − f(s, w1(s))
)

ds

≥
∫ b0

a0

G(t, s)q(s)
(

f(s, w2(s)) − f(s, w1(s))
)

ds

>0.

We can get that

0 < (Tw2)(t) − (Tw1)(t) ∈ P̊ .

Hence, we conclude that T is a strongly increasing operator.

Let us now prove that x1 � Tx1.

We denote x = Tx1 − x1.

Noting that x1 is the lower solution of boundary value problems (1.1) and applying the definition
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of the operator T , we have

CDα(p(t)x′(t)) =CDα
(

p(t)
(

(Tx1)
′(t) − x′

1(t)
)

)

=CDα(p(t)(Tx1)
′(t)) −CDα(p(t)x′

1(t))

= − q(t)f(t, x1(t)) −CDα(p(t)x′
1(t))

≤0,

x′(0) = (Tx1)
′(0) − x′

1(0) ≤ 0,

and

x(∞) −
∫ +∞

0

g(t)x(t)dt = (Tx1)(∞) − x1(∞) −
∫ +∞

0

g(t)
(

(Tx1)(t) − x1(t)
)

dt ≥ 0.

It follows from Lemma 2.3 that

x(t) = (Tx1)(t) − x1(t) ≥ 0, for t ∈ R+.

Then

x1 � Tx1.

Similarly, we can get that

x2 � Tx2.

Since x2 is an lower solution of (1.1) and not a solution of (1.1), we have (Tx2) 6= x2. Thus

x2 � Tx2.

Using the same method, we can also get that

Ty1 � y1, T y2 � y2.

Using the Lemma 2.4, we obtain T has at least three fixed points u1, u2, u3 ∈ [x1, y2].

Moreover, u1, u2, u3 ∈ P and

x1 � u1 ≪ y1, x2 ≪ u2 � y2, x2 � u3 � y1.

Hence, the boundary value problem (1.1) has at least three distinct nonnegative solutions u1, u2, u3 ∈
[x1, y2] and we see for t ∈ R+

x1(t) ≤ u1(t) < y1(t), x2(t) < u2(t) ≤ y2(t), x2(t) � u3(t) � y1(t).

�
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4 Illustration

To illustrate our main results, we present an example.

Example 4.1. Consider the following integral boundary value problem



















CD
1
2 (p(t)u′(t)) + q(t)f(t, u) = 0, t > 0,

p(0)u′(0) = 0,

u(∞) =
∫ +∞
0 e−2tu(t)dt,

(4.1)

where

p(t) = et, f(t, u) =
200√

π







u2, 0 ≤ u < 1,
√

u , u ≥ 1.

We take α = 1
2 , q(t) = te−t, g(t) = e−2t. It is easy to show that

g ∈ L1(R+), 0 ≤ ||g||1 =

∫ +∞

0

g(t)dt =
1

2
< 1, and 1 − ||g||1 = 1 −

∫ +∞

0

g(t)dt =
1

2
,

then (H1) holds.

p(t) = et > 0, k(s) =

∫ +∞

s

(r − s)α−1

p(r)
dr =

√
πe−s, s ∈ R+,

that is (H2) holds.

q(t) = te−t,

∫ +∞

0

q(t)dt =

∫ +∞

0

te−tdt = 1 < +∞,

it implies that (H3) holds.

We can easily verify the condition (H4) holds.

In view of Lemma 2.2, for any h ∈ L1(R+), u(t) =
∫ +∞
0 G(t, s)h(s)ds satisfies the boundary

conditions of (4.1).

Now, let h(t) = 200t√
π

e−t. It is obvious h ∈ L1(R+).

For t ∈ R+, we take

x1(t) = 0, x2(t) =
1

242

∫ +∞

0

G(t, s)h(s)ds,

and

y1(t) =
1

532

∫ +∞

0

G(t, s)h(s)ds, y2(t) = 53

∫ +∞

0

G(t, s)h(s)ds.

Then x1, x2, y1, y2 ∈ P .

It is easy to see 0 = x1(t) < y1(t) < x2(t) < y2(t) for t ∈ R+, that is x1 � y1 � x2 � y2.

Moreover, we have

p(0)x′
i(0) = 0, p(0)y′

i(0) = 0, xi(∞) =

∫ +∞

0

e−2txi(t)dt, yi(∞) =

∫ +∞

0

e−2tyi(t)dt, i = 1, 2.
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Through calculation, we can get that 24 <
∫ +∞
0 G(t, s)h(s)ds < 53, and we can easily verify

CD
1
2 (p(t)x′

1(t)) + q(t)f(t, x1(t)) = 0,

CD
1
2 (p(t)x′

2(t)) + q(t)f(t, x2(t)) >CD
1
2 (p(t)x′

2(t)) +
1

242
h(t) = 0,

CD
1
2 (p(t)y′

1(t)) + q(t)f(t, y1(t)) <CD
1
2 (p(t)y′

1(t)) +
1

532
h(t) = 0

and

CD
1
2 (p(t)y′

2(t)) + q(t)f(t, y2(t)) ≤CD
1
2 (p(t)y′

2(t)) + 53h(t) = 0.

Therefore, x1(t), x2(t) are lower solutions of BVP (4.1), and y1(t), y2(t) are upper solutions of

BVP (4.1).

It follows from Theorem 3.3 that the boundary value problem (4.1) has at least three distinct

nonnegative solutions u1, u2, u3 ∈ [x1, y2]. Moreover, for t ∈ R+

x1(t) ≤ u1(t) < y1(t), x2(t) < u2(t) ≤ y2(t), x2(t) � u3(t) � y1(t).

�
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