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Abstract. In this paper, we are concerned with the existence of positive solutions of
nonlinear periodic boundary value problems like

− u′′ + q(x)u = λ f (x, u), x ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π),

where q ∈ C([0, 2π], [0, ∞)) with q 6≡ 0, f ∈ C([0, 2π]×R+, R), λ > 0 is the bifurca-
tion parameter. By using bifurcation theory, we deal with both asymptotically linear,
superlinear as well as sublinear problems and show that there exists a global branch of
solutions emanating from infinity. Furthermore, we proved that for λ near the bifurca-
tion value, solutions of large norm are indeed positive.
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1 Introduction

The purpose of this article is to obtain some existence results for nonlinear periodic boundary
value problems (PBVPs) like

− u′′ + q(x)u = λ f (x, u), x ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π),
(1.1)

where q ∈ C([0, 2π], [0, ∞)) with q 6≡ 0, λ > 0 is the bifurcation parameter, f ∈ C([0, 2π]×
R+, R), where R+ := [0, ∞). If f (x, 0) ≥ 0 then (1.1) is called a positone problem and has been
investigated extensively; see [5, 11, 14, 15, 19, 20] and the references therein.

In the present paper, we deal here with the so called semipositone (or non-positone) problem,
when f is such that

(F1) f (x, 0) < 0, ∀x ∈ [0, 2π].
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Semipositone problems arise in many different areas of applied mathematics and physics,
such as the buckling of mechanical systems, the design of suspension bridges, chemical reac-
tions, and population models with harvesting effort; see [1, 10, 17].

Existence of positive solutions for nonlinear second order Dirichlet problems in semiposi-
tone case was initially studied by Castro and Shivaji in [4]. Henceforth, the existence, multi-
plicity, and the global behavior of positive solutions of nonlinear second order Dirichlet prob-
lems/Robin problems in the semipositone case have been extensively studied by using the
method of lower and upper solutions, fixed point theorem in cones as well as the bifurcation
theory, see [2, 12, 16, 18] and the references therein.

For nonlinear periodic boundary value problem (1.1), the existence, multiplicity and global
behavior of positive solutions have been investigated by several authors via fixed point theo-
rem in cones and the bifurcation theory, one may see J. R. Graef et al. [11], P. J. Torres [19] and
Ma et al. [15, 20]. In particular, the authors of [15, 20] showed that there exists an unbounded
continuum C emanating from (µ1, 0), consisting of positive solutions of (1.1) in the positone
case, where µ1 is the first positive eigenvalue of the linear problem corresponding to (1.1).
However, in the semipositone case, (1.1) has no positive solutions for λ large. Let us point out
that this is in contrast with the positone case.

It is the purpose of this paper to study the global behavior of positive solutions of (1.1)
in semipositone case via bifurcation theory. We shall handle the semipositone problems in
which nonlinearities are asymptotically linear, superlinear as well as sublinear at infinity.

After some notation and preliminaries listed in Section 2, we deal in Section 3 with asymp-
totically linear problems and use bifurcation theory to prove an existence result in the frame
of semipositone problems. In Section 4 we discuss superlinear problems, we show that (1.1)
possesses positive solutions for 0 < λ < λ∗. Similar arguments can be used in the sublin-
ear case, discussed in Section 5, to show that (1.1) has positive solutions provided λ is large
enough.

2 Notation and preliminaries

We denote the usual norm in Lr(0, 2π) by ‖ · ‖r and the inner product in L2(0, 2π) by 〈·, ·〉.
We will work in the Banach space X = C[0, 2π] with the norm ‖u‖ = maxx∈[0,2π] |u(x)| or
Y = C1[0, 2π] with the norm ‖u‖1 = maxx∈[0,2π] |u(x)|+ maxx∈[0,2π] |u′(x)|.

Define the linear operator L : D(L) ⊂ X → X

Lu = −u′′ + q(x)u, u ∈ D(L)

with
D(L) = {u ∈ C2[0, 2π]|u(0) = u(2π), u′(0) = u′(2π)}.

Then L is a closed operator with compact resolvent, and 0 ∈ ρ(L).
In order to study the semipositone problems (1.1) via bifurcation theory, we must consider

the following eigenvalue problem

− u′′ + q(x)u(x) = λB(x)u, x ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π),
(2.1)

where B(·) ∈ C([0, 2π]) with B 6≡ 0. From [6], we know that (2.1) has an simply eigenvalue
λ1; φ1 is the corresponding eigenfunction with φ1 > 0 and ‖φ1‖ = 1.
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We denote by G(x, s) the Green’s function associated with the following problem

− u′′ + q(x)u = h(x), x ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π).

From the Theorem 2.5 of [3], we know that G(x, s) > 0, ∀x, s ∈ [0, 2π] and the solution of
the above problem is given by

u(x) =
∫ 2π

0
G(x, s)h(s)ds. (2.2)

Now, by the positivity of G(x, s) and h(s), we have that u(x) > 0, ∀x ∈ [0, 2π].
Denote

m = min
0≤x,s≤2π

G(x, s), M = max
0≤x,s≤2π

G(x, s), σ =
m
M

. (2.3)

Obviously, 0 < m < M, and 0 < σ < 1.
Let K : X → X denote the Green operator of L with periodic boundary conditions, i.e.

u = Kv if and only if

− u′′ + q(x)u = v, x ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π).

With the above notation, problem (1.1) is equivalent to

u− λK f (u) = 0, u ∈ X. (2.4)

Hereafter we will use the same symbol to denote both the function and the associated
Nemitskii operator.

We say that λ∞ is a bifurcation from infinity for (2.4) if there exist µn → λ∞ and un ∈ X,
such that un − µnK f (un) = 0 and ‖un‖ → ∞. Extending the preceding definition, we will say
that λ∞ = +∞ is a bifurcation from infinity for (2.4) if solutions (µn, un) of (2.4) exist with
µn → +∞ and ‖un‖ → ∞. This is the case we will meet in Section 5.

In the following, we shall apply the Leray–Schauder degree theory, mainly to the mapping
Φλ : X → X.

Φλ(u) = u− λK f (u).

For R > 0, let BR = {u ∈ X : ‖u‖ < R}, let deg(Φλ(u), BR, 0) denote the degree of Φλ on BR

with respect to 0 and let i(T, U, X) is the fixed point index of T on U with respect to X.

3 Asymptotically linear problems

In this section, we suppose that f ∈ C([0, 2π]×R+, R) satisfies (F1) and

(F2) there exists m > 0 such that

lim
u→+∞

f (x, u)
u

= m.

Let λ∞ = λ1
m and define

a(x) = lim inf
u→+∞

( f (x, u)−mu), A(x) = lim sup
u→+∞

( f (x, u)−mu).

Our main result is the following.
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Theorem 3.1. Suppose that f satisfies (F1) and (F2). Then there exists ε > 0 such that (1.1) has
positive solutions provided either

(i) a > 0 in (0, 2π) and λ ∈ [λ∞ − ε, λ∞); or

(ii) A < 0 in (0, 2π) and λ ∈ (λ∞, λ∞ + ε].

Remark 3.2. Note that in (F2), we can allow that m depends on x.

The proof of Theorem 3.1 will be carried out in several steps. First of all, we extend f (x, ·)
to all R by setting

F(x, u) = f (x, |u|).

Let X = C[0, 2π] and set, for u ∈ X,

Ψ(λ, u) := u− λKF(u).

Obviously, any u > 0 such that Ψ(λ, u) = 0 is a positive solution of (1.1).
Next, we give two lemmas which will be used later.

Lemma 3.3. For every compact interval Λ ⊂ R+\{λ∞}, there exists r > 0 such that Ψ(λ, u) 6=
0, ∀ λ ∈ Λ, ∀ ‖u‖ ≥ r.

Proof. Suppose to the contrary that there exist µn ∈ Λ and un ∈ X with ‖un‖ → ∞ (n → ∞)

be such that

un = µnKF(un).

We may assume µn → µ > 0, µ 6= λ∞. Set wn := un‖un‖−1, we get

wn = µn‖un‖−1KF(un).

On the other hand, ‖un‖−1F(un) is bounded in X, {wn} is a relatively compact set in X by the
compactness of K. Suppose wn → w in X. Then ‖w‖ = 1 and satisfies

− w′′ + q(x)w = µm|w|, x ∈ (0, 2π),

w(0) = w(2π), w′(0) = w′(2π).
(3.1)

By (2.2), it is easy to see w > 0 in [0, 2π]. Since ‖w‖ = 1, we infer that µm = λ1, namely
µ = λ∞. This is a contradiction.

Lemma 3.4.

(i) Assume a > 0. Then the assertion of Lemma 3.3 holds with Λ = [λ∞, λ], ∀ λ > λ∞.

(ii) Assume A < 0. Then we can take Λ = [0, λ∞] in Lemma 3.3.

Proof. We prove statement (i); (ii) follows similarly. By Lemma 3.3, the assertion holds for any
interval Λε = [λ∞ + ε, β], ε > 0. Suppose now there exist sequences {un} in X and {λn} in
R+ with ‖un‖ → ∞, λn ↓ λ∞, such that Ψ(λn, un) = 0 ∀ n. Setting wn = ‖un‖−1un, as in the
proof of Lemma 3.3, we conclude that wn → w in X with w > 0. Thus, there exists β > 0 such
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that w = βφ1. Then one has un = ‖un‖wn → +∞ for all x ∈ [0, 2π] and F(x, un) = f (x, un) for
n large enough.

From Ψ(λn, un) = 0 it follows that

λ1〈un, φ1〉 = λn〈 f (x, un)−mun, φ1〉+ λnm〈un, φ1〉.

Since λn > λ∞ and 〈un, φ1〉 > 0 for n large enough, we infer that 〈 f (x, un)−mun, φ1〉 < 0 for
n large enough and the Fatou lemma yields

0 ≥ lim inf〈 f (x, un)−mun, φ1〉 ≥ 〈a, φ1〉,

a contradiction if a > 0.

Lemma 3.5. Let k ∈ L1(0, 2π) with k ≥ 0, and let u ∈ X satisfy

− u′′ + q(x)u ≥ −k(x), a.e. in (0, 2π),

u(0) = u(2π), u′(0) = u′(2π).

Then

u(x) ≥ σ

(
‖u‖ −

(
1
σ
+ 1
)

M‖k‖1

)
, x ∈ [0, 2π],

where σ and M are from (2.3).

Proof. Let w0 be the unique solution of the problem

− w′′ + q(x)w = −k(x), a.e. in (0, 2π),

w(0) = w(2π), w′(0) = w′(2π).

Then

w0(x) = −
∫ 2π

0
G(x, s)k(s)ds.

Set y = u− w0. Then

− y′′ + q(x)y ≥ 0, a.e. in (0, 2π),

y(0) = y(2π), y′(0) = y′(2π),

and accordingly

y(x) ≥ σ‖y‖, x ∈ [0, 2π].

Since w0(x) = −
∫ 2π

0 G(x, s)k(s)ds ≥ −M||k||1. Thus

u(x) = y(x) + w0(x)

≥ σ‖y‖ −M‖k‖1

= σ‖u− w0‖ −M‖k‖1

≥ σ(‖u‖ −M‖k‖1)−M‖k‖1

= σ

(
‖u‖ −

(
1
σ
+ 1
)

M‖k‖1

)
.
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Lemma 3.6. If λ > λ∞ there exists r > 0 such that

Ψ(λ, u) 6= tφ1, ∀t ≥ 0, ‖u‖ ≥ r.

Proof. Let us assume that for some sequence {un} in X with ‖un‖ → ∞ and numbers τn ≥ 0,
such that Ψ(λ, un) = τnφ1. Then

Lun = λF(x, un) + τnλ1φ1,

and since F(x, u) ≈ m|u| as |u| → ∞, and τnλ1φ1 ≥ 0 in [0, 2π], by (2.2), we know that un > 0
in [0, 2π].

Note that un ∈ D(L) has a unique decomposition

un = vn + snφ1, (3.2)

where sn ∈ R and 〈vn, φ1〉 = 0. Since un > 0, φ1 > 0 on [0, 2π], we have from (3.2) that
sn = 〈un, φ1〉〈φ1, φ1〉−1 > 0, ∀n ∈N.

Choose κ > 0 such that

κ < 1− λ∞

λ
.

By (F2), there exists M0 > 0, such that

f (x, u) ≥ (1− κ)mu, ∀u > M0, x ∈ [0, 2π].

From ‖un‖ → ∞ and Lemma 3.5, we know that there exits N∗ > 0, such that

un > M0, ∀n ≥ N∗,

and consequently

f (x, un) ≥ (1− κ)mun. (3.3)

Applying (3.3), it follows that

snλ1〈φ1, φ1〉 = 〈un, Lφ1〉
= 〈Lun, φ1〉
= λ〈F(x, un), φ1〉+ τnλ1〈φ1, φ1〉
≥ λ〈F(x, un), φ1〉
≥ λ〈(1− κ)mun, φ1〉
= λ(1− κ)m〈φ1, un〉
= λ(1− κ)msn〈φ1, φ1〉.

Thus

λ∞ ≥ λ(1− κ).

This is a contradiction.
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In order to investigate the bifurcation from infinity, we follow the standard pattern and
perform the change of variable z = u‖u‖−2 (u 6= 0).

Letting

Φ(λ, z) = ‖u‖−2Ψ(λ, u) = z− λ‖z‖2KF
(

z
‖z‖2

)
,

one has that λ∞ is a bifurcation from infinity for (2.4) if and only if it is a bifurcation from the
trivial solution z = 0 for Φ = 0. From Lemmas 3.3 and 3.4 it follows by homotopy that

deg(Φ(λ, ·), B1/r, 0) = deg(Φ(0, ·), B1/r, 0)

= deg(I, B1/r, 0) = 1, ∀λ < λ∞.
(3.4)

Similarly, by Lemma 3.6 one infers, for all τ ∈ [0, 1] and for all λ > λ∞,

deg(Φ(λ, ·), B1/r, 0) = deg(Φ(0, ·)− τφ, B1/r, 0)

= deg(Φ(0, ·)− φ, B1/r, 0) = 0.
(3.5)

Let us set

Σ = {(λ, u) ∈ R+ × X : u 6= 0, Ψ(λ, u) = 0}.

From (3.4) and (3.5) and the preceding discussion we deduce

Lemma 3.7. λ∞ is a bifurcation from infinity for (2.4). More precisely there exists an unbounded
closed connected set Σ∞ ⊂ Σ that bifurcates from infinity. Moreover, Σ∞ bifurcates to the left (to the
right) provided a > 0 (respectively A < 0).

Proof of Theorem 3.1. By the above lemmas, it suffices to show that if µn → λ∞ and ‖un‖ → ∞
then un > 0 in [0, 2π] for n large enough. Setting wn = un‖un‖−1 and using the preceding
arguments, we find that, up to subsequence, wn → w in X, and w = βφ1, β > 0. Then, it
follows that un > 0 in [0, 2π], for n large enough.

Remark 3.8. The proof of Theorem 3.1 actually shows that there exists k > 0 such that for all
(λ, u) ∈ Σ∞ with ‖u‖ ≥ k one has that u > 0 in [0, 2π]. Thus such (λ, u) are solutions of (1.1).

Example 3.9. Let us consider the second-order periodic boundary value problem

− u′′(x) + q(x)u = λ f (x, u), x ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π),
(3.6)

where q ∈ C([0, 2π], [0, ∞)) with q 6≡ 0, f (x, u) = 10u + x ln(1 + u)− x, λ > 0 is a parameter.

Let λ1 be the first positive eigenvalue corresponding to the linear problem

− u′′(x) + q(x)u = λh(x)u, x ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π),

where h(·) ∈ C([0, 2π]) with h 6≡ 0. Let φ be the positive eigenfunction corresponding to λ1.
Next, we will check that all of conditions in Theorem 3.1 are fulfilled.
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In fact,

f (x, 0) = −x < 0, x ∈ (0, 2π);

m = lim
u→+∞

f (x, u)
u

= 10;

a(x) = lim inf
u→+∞

( f (x, u)−mu) = lim inf
u→+∞

(x ln(1 + u)− x) > 0, x ∈ (0, 2π).

Notice that λ∞ = λ1
10 . Thus, from Theorem 3.1, there exists ε > 0, such that (3.6) has positive

solutions provided λ ∈ (λ∞ − ε, λ∞). Moreover, Lemma 3.7 guarantees that there exists an
unbounded closed connected set Σ∞ ⊂ Σ that bifurcates from infinity. Moreover, Σ∞ bifurcates
to the left.

4 Superlinear problems

We will study the existence of positive solutions for problems (1.1) when f (x, ·) is superlinear.
Precisely, we suppose that f ∈ C([0, 2π]×R+, R) satisfies (F1) and

(F3) there exists b ∈ C[0, 2π], b > 0, such that limu→∞ u−p f (x, u) = b, uniformly in x ∈ [0, 2π]

with 1 < p < ∞.

Our main result is the following theorem.

Theorem 4.1. Let f ∈ C([0, 2π]×R+, R) satisfy (F1) and (F3). Then there exists λ∗ > 0 such that
(1.1) has positive solutions for all 0 < λ ≤ λ∗. More precisely, there exists a connected set of positive
solutions of (1.1) bifurcating from infinity at λ∞ = 0.

The following well-known result of the fixed point index is crucial in our arguments.

Lemma 4.2 ([8]). Let E be a Banach space and K a cone in E. For r > 0, define Kr = {v ∈ K :
‖x‖ < r}. Assume that T : K̄r → K is completely continuous such that Tx 6= x for x ∈ ∂Kr = {v ∈
K : ‖x‖ = r}.

(i) If ‖Tx‖ ≥ ‖x‖ for x ∈ ∂Kr, then i(T, Kr, K)=0.

(ii) If ‖Tx‖ ≤ ‖x‖ for x ∈ ∂Kr, then i(T, Kr, K)=1.

Proof of Theorem 4.1. As before we set

F(x, u) = f (x, |u|)

and let
Ĝ(x, u) = F(x, u)− b|u|p.

For the remainder of the proof, we will omit the dependence with respect to x ∈ [0, 2π].
In order to prove that λ∞ = 0 is a bifurcation from infinity for

u− λKF(u) = 0, (4.1)

we use the rescaling w = γu, λ = γp−1, γ > 0. A direct calculation shows that (λ, u), λ > 0,
is a solution of (4.1) if and only if

w−KF̃(γ, w) = 0, (4.2)
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where

F̃(γ, w) := b|w|p + γpĜ(γ−1w).

We can extend F̃ to γ = 0 by setting

F̃(0, w) = b|w|p

and, by (F3), such an extension is continuous. We set

S(γ, w) = w−KF̃(γ, w), γ ∈ R+.

Let us point out explicitly that S(γ, ·) = I − KF̃(γ, ·), with KF̃(γ, ·) is compact. For γ = 0,
solutions of S0(w) := S(0, w) = 0 are nothing but solutions of

− w′′ + q(x)w = b|w|p, x ∈ (0, 2π),

w(0) = w(2π), w′(0) = w′(2π).
(4.3)

Now, we claim that there exist two constants r1, R1 with 0 < r1 < R1, such that

S0(w) 6= 0, ∀ ‖w‖ ≥ R1 (4.4)

S0(w) 6= 0, ∀ ‖w‖ ≤ r1 (4.5)

and
deg

(
S0, KR\K̄r, 0

)
= −1, ∀ 0 < r ≤ r1, R ≥ R1. (4.6)

In order to prove (4.4), (4.5) and (4.6), we divide the proof into two steps.

Step 1: We show that there exists R > 0 such that S0(w) 6= 0, ∀ ‖w‖ ≥ R.
Assume to the contrary that there exists a sequence {wn} of solutions of (4.3) satisfying

lim
n→∞
‖wn‖ = ∞,

that is,

− w′′n + q(x)wn = (b|wn|p−1)wn, x ∈ (0, 2π),

wn(0) = wn(2π), w′n(0) = w′n(2π).

Notice that

lim
n→∞

b|wn|p−1 = ∞, ∀x ∈ [0, 2π].

From the Sturm comparison theorem [13, Theorem 2.6] or the special case of [7, Lemma 5.1]
when p = 2, we have wn must change its sign in [0, 2π]. This contradicts the fact that wn > 0
on [0, 2π].

Step 2: We show that there exists r1 > 0 such that S0(w) 6= 0 for all 0 < ‖w‖ ≤ r1.
Assume on the contrary that (4.5) is not true. Then there exists a sequence wn of solutions

of (4.3) satisfying

‖wn‖ → 0, n→ ∞.
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Let vn = wn/‖wn‖. From (4.3), we have

− v′′n + q(x)vn = b(x)
|wn|p
‖wn‖

, x ∈ (0, 2π),

vn(0) = vn(2π), v′n(0) = v′n(2π),
(4.7)

that is,

vn(x) =
∫ 2π

0
G(x, s)b(s)

|wn|p
‖wn‖

ds.

Since b ∈ C[0, 2π] and p > 1 we have that

lim
n→∞

(
b
|wn|p
‖wn‖

)
≤ lim

n→∞

(
b
‖wn‖p

‖wn‖

)
= 0, uniformly in x ∈ [0, 2π].

So limn→∞ vn = 0 uniformly but this is a contradiction since ‖vn‖ = 1 for all n ∈N.
To show (4.6) is valid. Define a cone K in X by

K :=
{

u ∈ X : u(x) ≥ 0 on [0, 2π] and min
0≤x≤2π

u(x) ≥ σ‖u‖
}

,

where σ is from (2.3). A standard argument can be used to show that KF̃(0, ·) : K → K.
Denote

Kr := {u ∈ K : ‖u‖ < r}.

Now, from (4.4) and (4.5), we deduce

S0(w) 6= 0, ∀w ∈ ∂KR, S0(w) 6= 0, ∀w ∈ ∂Kr.

This implies

S0(w) 6= 0, ∀w ∈ ∂(KR\K̄r).

Thus the degree deg(S0, KR\K̄r, 0) is well defined.

Next, we show that deg(S0, KR\K̄r, 0) = −1.
The remaining arguments are the same as that of Theorem 3 of [9] and we will only give a

short sketch.
Denote

f1(w) := |w|p, ∀x ∈ [0, 2π].

It is easy to verify the following conditions

(A1) f0 := limw→0+
f1(w)

w = 0;

(A2) f∞ := limw→+∞
f1(w)

w = ∞.

Choose M1 > 0 such that

σmM1

∫ 2π

0
b(s)ds > 1,

where σ, m are from (2.3).
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By (A2), there is R2 > 0 such that f (w) ≥ M1w for all w ≥ R2. Choose R > max{R1, R2},
we claim that ‖KF̃(0, w)‖ > ‖w‖ for w ∈ ∂KR. In fact, for w ∈ ∂KR

(KF̃(0, w))(x) =
∫ 2π

0
G(x, s)b(s) f1(w)ds

≥ σmM1‖w‖
∫ 2π

0
b(s)ds

> ‖w‖.

Hence, Lemma 4.2 implies

i(KF̃(0, ·), KR, K) = 0. (4.8)

On the other hand, by (A1) there is a δ > 0 such that 0 ≤ w ≤ δ implies

f1(w) ≤ ηw,

where η > 0 satisfying

Mη
∫ 2π

0
b(s)ds ≤ 1.

Choose 0 < r < min
{

δ, r1
2

}
, for w ∈ ∂Kr,

‖KF̃(0, w)‖ = max
x∈[0,2π]

∫ 2π

0
G(x, s)b(s) f1(w)ds

≤ Mη‖w‖
∫ 2π

0
b(s)ds

≤ ‖w‖.

It is obvious that KF̃(0, w) 6= w for w ∈ ∂Kr. An application of Lemma 4.2 again shows that

i(KF̃(0, ·), Kr, K) = 1. (4.9)

Now, the additivity of the fixed point index and (4.8), (4.9) together implies

i(KF̃(0, ·), KR\K̄r, K) = −1.

Combining this together with the fact S0 : X → KR\K̄r, it deduces that

deg
(
S0, KR\K̄r, 0

)
= −1.

Therefore, the claim is proved.

Next we show the following result.

Lemma 4.3. There exists γ0 > 0 such that

(i) deg
(
S(γ, ·), KR\K̄r, 0

)
= −1, ∀ 0 ≤ γ ≤ γ0;

(ii) if S(γ, w) = 0, γ ∈ [0, γ0], r ≤ ‖w‖ ≤ R, then w > 0 in [0, 2π].
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Proof. Clearly (i) follows if we show that S(γ, w) 6= 0 for all ‖w‖ ∈ {r, R} and all 0 ≤ γ ≤ γ0.
Otherwise, there exists a sequence (γn, wn) with γn → 0, ‖wn‖ ∈ {r, R} and wn = KF̃(γn, wn).
Since K is compact then, up to a subsequence, wn → w and S0(w) = 0, ‖w‖ ∈ {r, R}, a
contradiction with (4.4) and (4.5).

To prove (ii), we argue again by contradiction. As in the preceding argument, we find a
sequence wn ∈ X, with {x ∈ [0, 2π] : wn(x) ≤ 0} 6= ∅, such that wn → w, ‖w‖ ∈ [r, R] and
S0(w) = 0; namely, w solves (4.3). From the positivity of Green’s function G(x, s) and b|w|p,
we have w > 0. Therefore wn > 0 on [0, 2π] for n large enough, a contradiction.

Proof of Theorem 4.1 completed. By Lemma 4.3, we know that problem (4.2) has a positive solu-
tion wγ, for all 0 ≤ γ ≤ γ0. Recalling, for γ > 0, the rescaling λ = γp−1, u = w/γ, gives a
solution (λ, uλ) of (4.1) for all 0 < λ < λ := γ

p−1
0 . Since wγ > 0, (λ, uλ) is a positive solution

of (1.1). Finally ‖wγ‖ ≥ r for all γ ∈ [0, γ0] implies that ‖uλ‖ = ‖wγ‖/γ → ∞ as γ → 0. This
completes the proof.

5 Sublinear problems

In this section, we deal with sublinear f , namely f ∈ C([0, 2π]×R+, R) that satisfy (F1) and

(F4) there exists b ∈ C[0, 2π] with b > 0 in [0, 2π] such that limu→∞ u−q f (x, u) = b, uniformly
in x ∈ [0, 2π] with 0 ≤ q < 1.

We will show that in this case positive solutions of (1.1) branch off from ∞ for λ∞ = +∞.
First, some preliminaries are in order. It is convenient to work on Y = C1[0, 2π]. Following
the same procedure as for the superlinear case, we employ the rescaling w = γu, λ = γq−1

and use the same notation, with q instead of p and Y instead of X. As before, (λ, u) solves
(4.1) if (γ, w) satisfies (4.2). Note that now, since 0 ≤ q < 1, one has that

λ→ +∞⇔ γ→ 0. (5.1)

Furthermore, it follows from the special case of Dai et al. [7, Theorem 6.1] when p = 2, we get
that

− u′′(x) + q(x)u(t) = buq, x ∈ (0, 2π),

u(0) = u(2π), u′(0) = u′(2π)
(5.2)

has a unique positive solution w0 with w0(t) > 0 in [0, 2π].

Let λ1[bwq−1
0 ] denote the first eigenvalue of the linearized problem

− v′′(x) + q(x)v(x) = λbwq−1
0 v, x ∈ (0, 2π),

v(0) = v(2π), v′(0) = v′(2π).
(5.3)

(5.2) implies that v = w0 is an eigenfunction corresponding to

λ1

[
bwq−1

0

]
= 1. (5.4)

We set Dδ = {w ∈ Y : ‖w− w0‖1 ≤ δ} and extend F̃ to γ = 0 by

F̃0(w) = F̃(0, w) := b|w|q.
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Lemma 5.1. There exists δ > 0 such that KF̃ : [0, ∞)× Dδ → Y is compact and continuous.

Proof. First of all, we proved that KF̃ : [0, ∞)× Dδ → Y is continuous. If 0 < q < 1 the same
arguments used for p > 1 show that KF̃ is continuous. Now we consider a situation where
q = 0. Let δ > 0 be such that w > 0 for all w ∈ Dδ. Obviously, it suffices to show that
KF(γn, wn) → KF̃0(w) whenever γn → 0 and wn → w in Y. Since w > 0 then γ−1

n wn → +∞,
pointwise in [0, 2π]. Notice q = 0 implies that limu→∞ f (x, u) = b, and accordingly,

G(γ−1
n wn)→ 0 in Lr(0, 2π), ∀r ≥ 1.

Then

KF̃(γn, wn) = KF̃0(wn) +KG(γ−1
n wn)→ KF̃0(w),

in the Sobolev space H2,r, ∀r ≥ 1. A standard argument can be used to show that KF̃ :
[0, ∞)× Dδ → Y is compact.

Theorem 5.2. Let f ∈ C([0, 2π] ×R+, R) satisfy (F1) and (F4). Then there exists λ∗ > 0 such
that (1.1) has positive solutions for all λ ≥ λ∗. More precisely, there exists a connected set of positive
solutions of (1.1) bifurcating from infinity for λ∞ = +∞.

Proof. By Lemma 5.1, degree theoretic arguments apply to S(γ, w) = w−KF̃(γ, w). Moreover,
note that S0(w) = S(0, w) = w−KF̃0(w) is C1 on Dδ and its Fréchet derivative S′0(w0) is given
by

S′0(w0)v =

{
v−K[qbwq−1

0 v], 0 < q < 1,

v, q = 0.

In particular, for 0 < q < 1, (5.4) implies that all the characteristic values of I − S′0(w0) are
greater than 1.

Since w0 is the unique positive solution of (5.2). By [8, Theorem 8.10], we have

deg(S0, Dδ, 0) = deg(I −KF̃0, Dδ, 0) = deg(S′0(w0), Dδ, 0) = (−1)m(λ), ∀q ∈ [0, 1),

where m(λ) is the sum of algebraic multiplicity of the eigenvalues µ of problem (5.3) satisfying
λ−1µ < 1. If λ ∈ [0, λ1), we know that there is no such a µ at all, then

deg(S0, Dδ, 0) = (−1)m(λ) = (−1)0 = 1, ∀q ∈ [0, 1).

By continuation, we deduce that there exists a connected subset Γ of solutions of S(γ, w) =

0(γ > 0), such that (0, w0) ∈ Γ̄. Moreover, by an argument similar to that of Lemma 4.3, we
get that there exists γ0 > 0 such that these solutions are positive provided 0 < γ ≤ γ0. By
the rescaling λ = γq−1, u = w/γ, Γ is transformed into a connected subset Σ∞ of solutions of
(1.1). These solutions are indeed positive for all λ > λ∗ := γ

q−1
0 and, according to (5.1), Σ∞

bifurcates from infinity for λ∞ = +∞.

Remark 5.3. In general, solutions on Σ∞ can change sign and the behavior of Σ∞ depends on
the definition of f for u < 0. Let us point out that this is in contrast with the positone case;
see, for example, the article [7, 15, 20].
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