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Abstract. This paper serves as a corrigendum to the paper “Multiplicity of positive
weak solutions to subcritical singular elliptic Dirichlet problems”, published in Electron
J. Qual. Theory Differ. Equ. 2017, No. 100, 1-30. We modify one of the assumptions of
that paper and we present a correct proof of the Lemma 2.11 of that paper.
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1 Introduction

Lemma 2.11 in [1], under the assumptions stated there, is false. In order to correct this
situation, the assumption H2) of [1], Theorem 1.1 (assumed, jointly with H1) and H3)-H5),
in the quoted lemma and throughout the whole article [1]) must be replaced (throughout the
whole article [1]) by the (slightly stronger) following new version of it:

H2) a € L® (Q)),a > 0a.e. in Q), and there exists § > 0 such that inf4, a > 0.

Here and below, for p > 0,
Ay ={x € Q:dq(x) <p},

where dq := dist (-,0Q)); and, for a measurable subset E of (), infr means the essential infi-
mum on E. In the next section we give (assuming the stated new version of H2)) a correct
proof of [1, Lemma 2.11]. With these changes, all the results contained in [1] hold.
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2 Correct proof of [1, Lemma 2.11]

Below, “problem (2.4)” refers to the problem labeled (2.4) in [1]; i.e., refers to the problem

—Au = xpsopa(x)u"+¢ inQ,
u = 0 on 0Q),
u>0inQ, u >0ae.in {a >0},

where { € L (Q)). Recall that the new version of H2) is assumed in the following lemma.

Lemma 2.1 ([1, Lemma 2.11]). Assume 1 < a < 3, and let { € L* (Q)) be such that { > 0. Let u
be the solution to problem (2.4) given by [1, Lemma 2.5] (in the sense stated there). Then there exists a

2
positive constant c, independent of {, such that u > cdy™* in Q.

Proof. From [1, Lemma 2.5], there exists a positive constant ¢/, independent of {, such that
u > c'dq ae in Q. Then (since infn 4, do > 0), there exists a positive constant ¢’ (that
1

depends on 4, but not on ) such that
2
u>c'dy®  aeinQ\ A, (2.1)

Let U be a C! domain such that A% C U C As. Note that oU \ 9Q) C Q '\ A%. Indeed, let
z € 9U \ 9Q). Since U C A; U0Q), we havez € ). If z € A(s, then, for some open set V, such
that z € V, C ), we would have dn < 3(5 on V,, and so V, C As C U, which contradicts that
z € oU. Then oU \ 9Q) C Q\A%.
We claim that
du = dQ in A%, (2.2)

where dy; := dist (-,0U). Indeed, let x € A%, let y, € 0Q) be such that dq (x) = |[x —yx],

and let w € BU\E)Q. Since oU \ 0Q) C Q\Ag, we have |w —yy| > dq(z) > 5. Also,

|x — x| = da (x) < g. Therefore, by the triangle inequality, |w — x| > |w — yx| — [x — yx| >
¢ —¢ =3 Then dlst (x oU \ 9Q)) > 3 for any x € Azs, and so (since dq (x) < §), dy (x) =
rnin{dlst(x oU\0Q),dq (x)} =da (x )for all x € Ay

Since U C A; we have that a := infya > 0. Let o7 be the principal eigenvalue for —A
in U with homogeneous Dirichlet boundary condition and weight function a, and let i; be
the corresponding positive principal eigenfunction, normalized by ||¢1]|,, = 1. Observe that

o

2
% € Hj (U)NL* (U) (because 1 < a < 3), and that a computation gives

2z 2 22 a—1/ 2\7" 2
() = 2t 2 (o) o

2 —K
< Ba < ”"‘) ae. in U,

where B := 1201 + 2 i % V1 ]|%. Then

-
o (gl ) <a(prngl)  inu
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in the weak sense of [1, Lemma 2.5] (i.e., with test functions in H} (U) N L*® (U)). Moreover,

2
again in the weak sense of [1, Lemma 2.5], —Au > au™" in U. Also u > ,B’ﬁipl”“ in oU.
2

Then, by the weak maximum principle in [2, Theorem 8.1], u > ‘B_H%lpll”‘ a.e. in U; therefore,

1

2
for some positive constant ¢’ independent of {, u > ¢"'d/[* a.e. in U. In particular,

2
u>c"d[™* ae in As. (2.3)

2
From (2.1), (2.3), and (2.2), we get u > cd§* a.e. in Q), with ¢ := min {¢”, ¢’} and the lemma
follows. O
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