

Electronic Journal of Qualitative Theory of Differential Equations

2018, No. 97, 1–14; https://doi.org/10.14232/ejqtde.2018.1.97

www.math.u-szeged.hu/ejqtde/

Stable solitary waves for a class of nonlinear Schrödinger system with quadratic interaction

Guoqing Zhang™ and Tongmo Gu

College of Sciences, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China.

Received 29 June 2018, appeared 4 December 2018 Communicated by Dimitri Mugnai

Abstract. We consider the existence and orbital stability of bound state solitary waves and ground state solitary waves for a class of nonlinear Schrödinger system with quadratic interaction in \mathbb{R}^n (n=2,3). The existence of bound state and ground state solitary waves are studied by variational arguments and Concentration-compactness Lemma. In additional, we also prove the orbital stability of bound state and ground state solitary waves.

Keywords: bound (ground) state solitary waves, quadratic interaction, variational arguments.

2010 Mathematics Subject Classification: 35J20, 35J60.

1 Introduction

In this paper, we consider the following system of nonlinear Schrödinger equations

$$\begin{cases} i\partial_t u + \frac{1}{2m} \Delta u = \lambda v \overline{u}, & (x,t) \in \mathbb{R}^{n+1}, \\ i\partial_t v + \frac{1}{2M} \Delta v = \mu u^2, & (x,t) \in \mathbb{R}^{n+1}, \end{cases}$$
(1.1)

where u and v are complex-valued wave fields, m and M are positive constants, λ and μ are complex constants, and \overline{u} is the complex conjugate of u.

Such systems have interesting applications in several branches of physics, such as in the study of interactions of waves with different polarizations [1,11]. The Cauchy problem for System 1.1 has been studied from the point of view of small data scattering [6,7]. In 2013, Hayashi, Ozawa and Tanaka [8] studied the well-posedness of Cauchy problem for System 1.1 with large data. In particular, System 1.1 is regarded as a non-relativistic limit of the system of nonlinear Klein–Gordon equations

$$\begin{cases}
\frac{1}{2c^{2}m}\partial_{t}^{2}u - \frac{1}{2m}\Delta u + \frac{mc^{2}}{2}u = -\lambda v\overline{u}, & (x,t) \in \mathbb{R}^{n+1}, \\
\frac{1}{2c^{2}M}\partial_{t}^{2}v - \frac{1}{2M}\Delta v + \frac{Mc^{2}}{2}v = -\mu u^{2}, & (x,t) \in \mathbb{R}^{n+1},
\end{cases}$$
(1.2)

[™]Corresponding author. Email: zgqw2001@usst.edu.cn

under the mass resonance condition M = 2m, where c is the speed of light.

Assume $\lambda = c\overline{\mu}$, c > 0, $\lambda \neq 0$ and $\mu \neq 0$, we introduce new functions $(\widetilde{u}, \widetilde{v})$ defined by

$$\widetilde{u}(x,t) = \sqrt{\frac{c}{2}} |\mu| u \left(\sqrt{\frac{1}{2m}} x, t \right), \quad \widetilde{v}(x,t) = -\frac{\lambda}{2} v \left(\sqrt{\frac{1}{2m}} x, t \right),$$

and System (1.1) satisfies

$$\begin{cases}
i\partial_t \widetilde{u} + \Delta \widetilde{u} = -2\widetilde{v}\overline{\widetilde{u}}, & (x,t) \in \mathbb{R}^{n+1}, \\
i\partial_t \widetilde{v} + \frac{m}{M} \Delta \widetilde{v} = -\widetilde{u}^2, & (x,t) \in \mathbb{R}^{n+1},
\end{cases}$$
(1.3)

Using the ansatz $(\widetilde{u}(x,t),\widetilde{v}(x,t))=(e^{i\omega t}\phi(x),e^{i2\omega t}\psi(x)), \phi(x),\psi(x)\not\equiv 0$ with $\omega>0$, System (1.3) becomes

$$\begin{cases}
-\Delta \phi + \omega \phi = 2\phi \psi, & x \in \mathbb{R}^n, \\
-\kappa \Delta \psi + 2\omega \psi = \phi^2, & x \in \mathbb{R}^n,
\end{cases}$$
(1.4)

where $\kappa = \frac{m}{M}$.

Let $L^p(\mathbb{R}^n)$ denote the usual Lebesgue space with the norm $|u|_p = (\int_{\mathbb{R}^n} |u|^p dx)^{\frac{1}{p}}$. The space $H^1(\mathbb{R}^n) := \{u \in L^2(\mathbb{R}^n), \nabla u \in L^2(\mathbb{R}^n)\}$ with the corresponding norm $||u|| = (\int_{\mathbb{R}^n} |\nabla u|^2 + |u|^2 dx)^{\frac{1}{2}}$, and $H^1_r(\mathbb{R}^n) := \{u \in H^1(\mathbb{R}^n); u \text{ is radially symmetric}\}$.

Recently, as $2 \le n \le 5$, Hayashi, Ozawa and Tanaka [8] obtained the existence of radially symmetric ground states for System (1.4) by using rearrangement method, Pohozaev identity and the Sobolev compact embedding $H_r^1(\mathbb{R}^n) \subset L^3(\mathbb{R}^n)$.

In this paper, firstly, we prove the existence of bound states for System (1.4) by using the Concentration-compactness Lemma and direct methods in the critical points theory. Secondly, we discuss the general case for System (1.4), i.e.,

$$\begin{cases} -\Delta \phi + \lambda_1 \phi = 2\phi \psi, & x \in \mathbb{R}^n, \\ -\kappa \Delta \psi + \lambda_2 \psi = \phi^2, & x \in \mathbb{R}^n, \end{cases}$$
 (1.5)

where $(\lambda_1, \lambda_2) \in \mathbb{R}^2$. By using the Concentration-compactness Lemma, variational arguments and rearrangement result of Shibata [13], we obtain the existence of ground states for System (1.5). In particular, if $\lambda_1 = \frac{1}{2}\lambda_2 > 0$, then System (1.5) can be reduced to System (1.4) and the existence of ground states for System (1.4) is obtained in [8]. Furthermore, we also prove the orbital stability of bound states and ground states.

Remark 1.1. In contrast to results in [8], we obtain the existence of bound states in the whole space $H^1(\mathbb{R}^n)$. Since the embedding $H^1(\mathbb{R}^n) \subset L^3(\mathbb{R}^n)$ is only continuous, we apply the Concentration-compactness Lemma and variational arguments to obtain the existence of bound states.

2 Preliminaries and main results

In this section, we state our main results in this paper. Now, we define the functionals I, J and $Q: H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n) \to \mathbb{R}$ by

$$I(\phi,\psi) = \frac{1}{2} \int_{\mathbb{R}^n} (|\nabla \phi|^2 + \kappa |\nabla \psi|^2) dx - \int_{\mathbb{R}^n} \phi^2 \psi dx, \qquad \forall (\phi,\psi) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n),$$

$$J(\phi,\psi) = \frac{1}{2} \int_{\mathbb{R}^n} (|\nabla \phi|^2 + \kappa |\nabla \psi|^2) dx, \qquad \forall (\phi,\psi) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n),$$

and

$$Q(\phi,\psi) = \frac{\omega}{2} \left(\int_{\mathbb{R}^n} |\phi|^2 dx + 2 \int_{\mathbb{R}^n} |\psi|^2 dx \right), \qquad \forall (\phi,\psi) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n).$$

It is obvious that I, J and $Q \in C^1(H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n), \mathbb{R})$. Hence, (ϕ, ψ) is a weak solution of System (1.4) if and only if (ϕ, ψ) is a critical point of the functional S := I + Q.

Let $M_N = \{(\phi, \psi) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n) : Q(\phi, \psi) = N, |\phi|_2^2, |\psi|_2^2 > 0\}$ for some N > 0, and the minimizing problem

$$I_N = \inf\{I(\phi, \psi); (\phi, \psi) \in M_N\}. \tag{2.1}$$

Besides, for every N > 0, let P_N denote the set of bound states of System (1.4), that is,

$$P_N = \{(\phi, \psi) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n); I(\phi, \psi) = I_N \text{ and } (\phi, \psi) \in M_N\},$$

which generates the solitary waves of System (1.1).

Theorem 2.1. *Let* n = 2, 3. *Then we have:*

(1) For all N > 0, there exists $(\phi_N, \psi_N) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$ a solution of

$$(\phi_N, \psi_N) \in M_N,$$

$$I(\phi_N, \psi_N) = \min\{I(\phi, \psi); (\phi, \psi) \in M_N\}.$$
(2.2)

(2) If (ϕ_N, ψ_N) is a solution of the minimizing problem (2.2), then there exists a Lagrange multiplier $\sigma_N > 0$ such that

$$\begin{cases} -\Delta \phi + \sigma_N \omega \phi = 2\phi \psi, & x \in \mathbb{R}^n, \\ -\kappa \Delta \psi + 2\sigma_N \omega \psi = \phi^2, & x \in \mathbb{R}^n, \end{cases}$$
 (2.3)

where σ_N is given by

$$\sigma_N = \frac{\frac{2}{n}J(\phi_N, \psi_N) - I_N}{N}.$$
(2.4)

(3) The set

$$\Sigma := \{(N, \sigma_N); N > 0, \sigma_N \text{ is a Lagrange multiplier of the minimizing problem } (2.2)\}$$

is a closed graph in $(0, +\infty) \times (0, +\infty)$. In particular, if Σ is a function, then it is continuous and there exists $N_0 > 0$ such that $\sigma_{N_0} = 1$. So, (ϕ_{N_0}, ψ_{N_0}) is a bound state of System (1.4).

Next, we define the set

$$M_{\alpha,\beta} = \{(\phi, \psi) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n) : |\phi|_2^2 = \alpha, |\psi|_2^2 = \beta\}$$

for any α , β > 0, and the minimizing problem

$$I_{\alpha,\beta} = \inf\{I(\phi,\psi); (\phi,\psi) \in M_{\alpha,\beta}\}.$$

Besides, for any α , β > 0, let

$$G_{\alpha,\beta} = \{ (\phi, \psi) \in M_{\alpha,\beta}; I(\phi, \psi) = I_{\alpha,\beta} \},$$

which denotes the set of ground states of System (1.5).

Theorem 2.2.

- (1) For any $\alpha, \beta > 0$, any minimizing sequence $\{(\phi_n, \psi_n)\}_{n \geq 1} \subset H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$ with respect to $I_{\alpha,\beta}$ is pre-compact. That is, taking a subsequence, there exist $(\phi, \psi) \in M_{\alpha,\beta}$ and $\{y_n\}_{n \geq 1} \subset \mathbb{R}^n$ such that $\phi_n(\cdot y_n) \to \phi$, $\psi_n(\cdot y_n) \to \psi$ in $H^1(\mathbb{R}^n)$ as $n \to \infty$.
- (2) Let (λ_1, λ_2) be the Lagrange multiplier associated with (ϕ, ψ) on $M_{\alpha,\beta}$, we have $\lambda_1 > 0$.
- (3) If $(\phi, \psi) \in G_{\alpha,\beta}$, we have $(|\phi|, |\psi|) \in G_{\alpha,\beta}$. One also has $(\phi^*, \psi^*) \in G_{\alpha,\beta}$ whenever $(\phi, \psi) \in G_{\alpha,\beta}$ and $\phi^*, \psi^* > 0$, where f^* represents the symmetric decreasing rearrangement of the function f.

Definition 2.3. For any N > 0, the set P_N is stable if for any $\varepsilon > 0$ there exists a $\delta(\varepsilon) > 0$ such that if $(\phi_0, \psi_0) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$ verifies

$$\inf_{(\phi_N,\psi_N)\in P_N}\|(\phi_0,\psi_0)-(\phi_N,\psi_N)\|_{H^1(\mathbb{R}^n)\times H^1(\mathbb{R}^n)}<\delta(\varepsilon),$$

then the solution $(\phi(t), \psi(t))$ of the System (1.1) with $\phi(0) = \phi_0$, $\psi(0) = \psi_0$ satisfies

$$\sup_{t\in\mathbb{R}}\inf_{(\phi_N,\psi_N)\in P_N}\|(\phi(t),\psi(t))-(\phi_N,\psi_N)\|_{H^1(\mathbb{R}^n)\times H^1(\mathbb{R}^n)}<\varepsilon.$$

Besides, we can also define the set $G_{\alpha,\beta}$ is stable in the same way.

Theorem 2.4. Let n = 2, 3, the sets P_N and $G_{\alpha,\beta}$ are stable.

Now, we recall the rearrangement results of Shibata [13] as presented in [9]. Let u be a Borel measureable function on \mathbb{R}^n . Then u is said to vanish at infinity if $|\{x \in \mathbb{R}^n; |u(x)| > s\}| < \infty$ for every s > 0. Here $|\cdot|$ stands for the n-dimensional Lebesgue measure. Considering two Borel functions u, v which vanish at infinity in \mathbb{R}^n , we define for s > 0, set $A^*(u, v; s) := \{x \in \mathbb{R}^n; |x| < r\}$ where $r \geq 0$ is chosen so that

$$|B_r(0)| = |\{x \in \mathbb{R}^n; |u(x)| > s\}| + |x \in \mathbb{R}^n; |v(x)| > s\}|,$$

and $\{u, v\}^*$ by

$$\{u,v\}^{\star}(x):=\int_0^\infty \chi_{A^{\star}(u,v;s)}(x)ds,$$

where $\chi_A(x)$ is a characteristic function of the set $A \subset \mathbb{R}^n$.

Lemma 2.5 ([9, Lemma A.1]).

- (1) The function $\{u,v\}^*(x)$ is radially symmetric, non-increasing and lower semi-continuous. Moreover, for each s>0 there holds $\{x\in\mathbb{R}^n;\{u,v\}^*>s\}=A^*(u,v;s)$.
- (2) Let $\Phi: [0, \infty) \to [0, \infty)$ be non-decreasing, lower semi-continuous, continuous at 0 and $\Phi(0) = 0$. Then $\{\Phi(u), \Phi(v)\}^* = \Phi(\{u, v\}^*)$.
- (3) $|\{u,v\}^{\star}|_{p}^{p} = |u|_{p}^{p} + |v|_{p}^{p} \text{ for } 1 \leq p < \infty.$
- (4) If $u, v \in H^1(\mathbb{R}^n)$, then $\{u, v\}^* \in H^1(\mathbb{R}^n)$ and $|\nabla \{u, v\}^*|_2^2 \leq |\nabla u|_2^2 + |\nabla v|_2^2$. In addition, if $u, v \in (H^1(\mathbb{R}^n) \cap C^1(\mathbb{R}^n)) \setminus \{0\}$ are radially symmetric, positive and non-increasing, then we have

$$\int_{\mathbb{R}^n} |\nabla \{u,v\}^{\star}|^2 dx < \int_{\mathbb{R}^n} |\nabla u|^2 dx + \int_{\mathbb{R}^n} |\nabla v|^2 dx.$$

(5) Let $u_1, u_2, v_1, v_2 \ge 0$ be Borel measurable functions which vanish at infinity, then we have

$$\int_{\mathbb{R}^n} (u_1 u_2 + v_1 v_2) dx \le \int_{\mathbb{R}^n} \{u_1, v_1\}^* \{u_2, v_2\}^* dx.$$

3 Bound states

Let $\{(\phi_n, \psi_n)\}_{n\geq 1}$ be a minimizing sequence for the minimizing problem (2.1), that is, the sequence $\{(\phi_n, \psi_n)\}_{n\geq 1} \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$ satisfies $Q(\phi_n, \psi_n) \to N$ and $I(\phi_n, \psi_n) \to I_N$, as $n \to \infty$. Then, we have

Lemma 3.1. As n = 2, 3, there exists B > 0 such that $\|(\phi_n, \psi_n)\|_{H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)} \leq B$ for all n, and the functional I is bounded below on M_N .

Proof. By the Gagliardo-Nirenberg inequality, we have

$$\left(\int_{\mathbb{R}^n} |\phi|^3 dx\right)^{\frac{1}{3}} \leq C \left(\int_{\mathbb{R}^n} |\nabla \phi|^2 dx\right)^{\frac{n}{12}} \left(\int_{\mathbb{R}^n} |\phi|^2 dx\right)^{\frac{1}{2} - \frac{n}{12}}.$$

Hence, we have

$$\int_{\mathbb{R}^{n}} \phi^{2} \psi dx \leq \left(\int_{\mathbb{R}^{n}} (\phi^{2})^{\frac{3}{2}} dx \right)^{\frac{2}{3}} \left(\int_{\mathbb{R}^{n}} |\psi|^{3} dx \right)^{\frac{1}{3}} = \left(\int_{\mathbb{R}^{n}} |\phi|^{3} dx \right)^{\frac{2}{3}} \left(\int_{\mathbb{R}^{n}} |\psi|^{3} dx \right)^{\frac{1}{3}} \\
\leq C \left(\int_{\mathbb{R}^{n}} |\nabla \phi|^{2} dx \right)^{\frac{n}{6}} \left(\int_{\mathbb{R}^{n}} |\nabla \psi|^{2} dx \right)^{\frac{n}{12}}.$$

Since n=2,3, we have $\frac{n}{6}+\frac{n}{12}<1$. Thus, I is coercive and in particular $I_N>-\infty$. By the coerciveness of I on M_N , the sequence $\{(\phi_n,\psi_n)\}_{n\geq 1}$ is bounded in $H^1(\mathbb{R}^n)\times H^1(\mathbb{R}^n)$. Thus, there exists B>0 such that $\|(\phi_n,\psi_n)\|_{H^1(\mathbb{R}^n)\times H^1(\mathbb{R}^n)}\leq B$ for all n.

Lemma 3.2. For any N > 0, $I_N < 0$ and I_N is continuous with respect to N.

Proof. Let $A(\phi) = \frac{1}{2} \int_{\mathbb{R}^n} |\nabla \phi|^2 dx$, $B(\psi) = \frac{\kappa}{2} \int_{\mathbb{R}^n} |\nabla \psi|^2 dx$, and $C(\phi, \psi) = \int_{\mathbb{R}^n} \phi^2 \psi dx$, hence,

$$I(\phi,\psi) = A(\phi) + B(\psi) - C(\phi,\psi).$$

Now let $(\phi(x), \psi(x)) \in M_N$ be fixed. For any b > 0, we define $\phi_{\theta}(x) = \theta^{\frac{bn}{2}} \phi(\theta^b x)$, $\psi_{\theta}(x) = \theta^{\frac{bn}{2}} \psi(\theta^b x)$, then $(\phi_{\theta}(x), \psi_{\theta}(x)) \in M_N$ as well. We have the following scaling laws:

$$\begin{split} &A(\phi_{\theta}(x)) = \frac{1}{2} \int_{\mathbb{R}^n} |\theta^{\frac{bn}{2}} \nabla \phi(\theta^b x)|^2 dx = \theta^{2b} A(\phi(x)), \\ &B(\psi_{\theta}(x)) = \frac{\kappa}{2} \int_{\mathbb{R}^n} |\theta^{\frac{bn}{2}} \nabla \psi(\theta^b x)|^2 dx = \theta^{2b} B(\psi(x)), \end{split}$$

and

$$C(\phi_{\theta}(x), \psi_{\theta}(x)) = \int_{\mathbb{R}^n} \theta^{bn} \phi^2(\theta^b x) \theta^{\frac{bn}{2}} \psi(\theta^b x) dx = \theta^{\frac{bn}{2}} C(\phi(x), \psi(x)).$$

So, we get

$$I(\phi_{\theta}(x), \psi_{\theta}(x)) = \theta^{2b}A + \theta^{2b}B - \theta^{\frac{bn}{2}}C.$$

Since n = 2, 3, we have $\frac{bn}{2} < 2b$. Letting $\theta \to 0$, then $I(\phi_{\theta}(x), \psi_{\theta}(x)) \to 0^-$. Hence, we prove $I_N < 0$.

In order to prove that I_N is a continuous function, we assume $N_n = N + o(1)$. From the definition of I_{N_n} , for any $\varepsilon > 0$, there exists $(\phi_n, \psi_n) \in M_{N_n}$ such that

$$I(\phi_n, \psi_n) \le I_{N_n} + \varepsilon. \tag{3.1}$$

Setting

$$(u_n,v_n):=\left(\sqrt{rac{N}{N_n}}\phi_n,\sqrt{rac{N}{N_n}}\psi_n
ight)$$
,

we have that $(u_n, v_n) \in M_N$ and

$$I_N \le I(u_n, v_n) = I(\phi_n, \psi_n) + o(1).$$
 (3.2)

Combining (3.1) and (3.2), we obtain

$$I_N \leq I_{N_n} + \varepsilon + o(1)$$
.

Reversing the argument, we obtain similarly that

$$I_{N_n} \leq I_N + \varepsilon + o(1).$$

Therefore, since $\varepsilon > 0$ is arbitrary, we deduce that $I_{N_n} = I_N + o(1)$.

Lemma 3.3. $\frac{I_N}{N}$ is decreasing in $(0, +\infty)$.

Proof. For $(\phi, \psi) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$, we define $(\phi_{\theta}(x), \psi_{\theta}(x)) := (\theta^b \phi(\theta^a x), \theta^b \psi(\theta^a x))$, $\forall \theta > 0$. Choosing a, b > 0, such that 2b - na = 1, it follows that $Q(\phi_{\theta}(x), \psi_{\theta}(x)) = \theta Q(\phi, \psi)$ and we can write

$$I(\phi_{\theta}(x), \psi_{\theta}(x)) = \theta^{2a+1}I(\phi, \psi) + \theta^{2a+1} \int_{\mathbb{R}^n} \phi^2 \psi dx - \theta^{b+1} \int_{\mathbb{R}^n} \phi^2 \psi dx.$$
 (3.3)

We can choose a, b > 0 such that 2b - na = 1, b > 2a and it follows from (3.3) that

$$I(\phi_{\theta}(x), \psi_{\theta}(x)) < \theta^{2a+1}I(\phi, \psi), \quad \forall \theta > 1.$$

Since $(\phi(x), \psi(x)) \in M_N \Leftrightarrow (\phi_{\theta}(x), \psi_{\theta}(x)) \in M_{\theta N}, \forall \theta, N > 0$, it follows that

$$I_{\theta N} < \theta^{2a+1} I_N < \theta I_N, \qquad \forall \theta > 1.$$

Thus,

$$\frac{I_{\theta N}}{\theta N} < \frac{I_N}{N}, \qquad \forall \theta > 1.$$

Lemma 3.4. For any N > 0 and $\lambda \in (0, N)$, we have $I_N < I_{\lambda} + I_{N-\lambda}$.

Proof. Thanks to the following well-known inequality: $\forall a, b, A, B > 0$,

$$\min\left\{\frac{a}{A}, \frac{b}{B}\right\} \le \frac{a+b}{A+B} \le \max\left\{\frac{a}{A}, \frac{b}{B}\right\},\,$$

where the equalities hold if and only if $\frac{a}{A} = \frac{b}{B}$, we get

$$\frac{(-I_{\lambda}) + (-I_{N-\lambda})}{\lambda + N - \lambda} \leq \max \left\{ \frac{-I_{\lambda}}{\lambda}, \frac{-I_{N-\lambda}}{N - \lambda} \right\}.$$

Without loss of generality, we assume $\frac{-I_{\lambda}}{\lambda}$ is larger than $\frac{-I_{N-\lambda}}{N-\lambda}$, then

$$\frac{(-I_{\lambda}) + (-I_{N-\lambda})}{N} \le \frac{-I_{\lambda}}{\lambda}.$$

By Lemma 3.3, we have

$$I_{\lambda} + I_{N-\lambda} \ge \frac{N}{\lambda} I_{\lambda} > I_{N}.$$

Proof of Theorem 2.1. Our proof is divided into five steps:

Step 1. The minimizing problem (2.2) has a solution. By Lemma 3.1, the sequence $\{(\phi_n, \psi_n)\}$ is bounded in $H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$. If

$$\sup_{y \in \mathbb{R}^n} \int_{B_R(y)} (|\phi_n|^2 + |\psi_n|^2) dx = o(1),$$

for some R > 0, the $\phi_n \to 0$, $\psi_n \to 0$ in $L^p(\mathbb{R}^n)$ for $2 , see [11,12]. This is incompatible with the fact that <math>I_N < 0$, see Lemma 3.2. Thus, the vanishing of minimizing sequence $\{(\phi_n, \psi_n)\}$ does not exist. Besides, Lemma 3.4 prevents their dichotomy. According to Concentration-compactness Lemma, only concentration exists, and we get a solution (ϕ_N, ψ_N) of the minimizing problem (2.2).

Step 2. There exists a positive Lagrange multiplier σ_N . Let (ϕ_N, ψ_N) a solution of the minimizing problem (2.2). From the Lagrange Multiplier Theorem, there exists $\theta \in \mathbb{R}$ such that $I'(\phi_N, \psi_N) = \theta Q'(\phi_N, \psi_N)$, that means

$$-\Delta\phi_N - 2\phi_N\psi_N = \theta\omega\phi_N, -\kappa\Delta\psi_N - \phi_N^2 = 2\theta\omega\psi_N.$$
 (3.4)

By multiply the above equations respectively by ϕ_N , ψ_N and integrating on \mathbb{R}^n , we get

$$I_N - \frac{1}{2} \int_{\mathbb{R}^n} \phi_N^2 \psi_N dx = \theta N. \tag{3.5}$$

Since $I_N < 0$, $\forall N > 0$, we obtain easily from (3.5) that $\theta < 0$.

For any λ , c > 0, we consider

$$(\phi_{\lambda}(x),\psi_{\lambda}(x)):=\left(\lambda^{\frac{cn}{2}}\phi_{N}(\lambda^{c}x),\lambda^{\frac{cn}{2}}\psi_{N}(\lambda^{c}x)\right),$$

then $(\phi_{\lambda}(x), \psi_{\lambda}(x)) \in M_N$ and $I(\phi_N, \psi_N) = \min_{\lambda > 0} I(\phi_{\lambda}(x), \psi_{\lambda}(x))$. In particular,

$$0 = \frac{d}{d\lambda} I\left(\phi_{\lambda}(x), \psi_{\lambda}(x)\right) \bigg|_{\lambda=1} = 2c J(\phi_{N}, \psi_{N}) - \frac{cn}{2} \int_{\mathbb{R}^{n}} \phi_{N}^{2} \psi_{N} dx. \tag{3.6}$$

Merging (3.5) and (3.6), we get

$$I_N - \frac{2}{n}J(\phi_N, \psi_N) = \theta N,$$

which implies that θ < 0 and the Lagrange multiplier

$$\sigma_N = -\theta = \frac{\frac{2}{n}J(\phi_N, \psi_N) - I_N}{N} > 0.$$
 (3.7)

Step 3. There exist $\gamma(n) > 0$ such that

$$-\frac{I_N}{N} < \sigma_N < \gamma(n) - \frac{I_N}{N}. \tag{3.8}$$

Since $I(\phi_N, \psi_N) < 0$, we get from Hölder's inequality and the Gagliardo–Nirenberg inequality that

$$J(\phi_{N}, \psi_{N}) < \int_{\mathbb{R}^{n}} \phi_{N}^{2} \psi_{N} dx \leq \frac{1}{2} \left(|\phi_{N}|_{3}^{4} + |\psi_{N}|_{2}^{3} \right)$$

$$\leq C \left(|\nabla \phi_{N}|_{2}^{\frac{2n}{3}} |\phi_{N}|_{2}^{4 - \frac{2n}{3}} + |\nabla \psi_{N}|_{2}^{\frac{n}{3}} |\psi_{N}|_{2}^{2 - \frac{n}{3}} \right)$$

$$\leq C \left(J(\phi_{N}, \psi_{N})^{\frac{n}{3}} + J(\phi_{N}, \psi_{N})^{\frac{n}{6}} \right) \rho(N),$$
(3.9)

where C > 0 and $\rho(N) := \max \left\{ N^{(2-\frac{n}{3})}, \ N^{(1-\frac{n}{6})} \right\}$. Let $f: (0, \infty) \to \mathbb{R}$ the function defined by

Let
$$f:(0,\infty)\to \mathbb{R}$$
 the function defined by

$$f(s) := \frac{s}{s^{\frac{n}{3}} + s^{\frac{n}{6}}},$$

and we know $f'(s) > 0, \forall s > 0$ and $\lim_{s \to 0^+} f(s) = 0$. So, we can rewrite (3.9) as

$$J(\phi_N, \psi_N) < f^{-1}(C\rho(N)).$$
 (3.10)

Note that

$$\rho(s) = s^{(1-\frac{n}{6})} \quad \text{if } s \le 1, \quad \text{and} \quad f(s) \ge \frac{1}{2} s^{(1-\frac{n}{6})} \quad \text{if } s \le 1,$$

$$\rho(s) = s^{(2-\frac{n}{3})} \quad \text{if } s \ge 1, \quad \text{and} \quad f(s) \ge \frac{1}{2} s^{(1-\frac{n}{3})} \quad \text{if } s \ge 1.$$

By a straightforward calculation we see that there exists $C_1 > 0$ such that

$$f^{-1}(C\rho(N)) \le C_1 N \text{ if } N \le 1,$$

 $f^{-1}(C\rho(N)) \le C_1 N^{(\frac{6-n}{3-n})} \text{ if } N \ge 1.$

Hence, we obtain from (3.10) that

$$J(\phi_N, \psi_N) < C_1 N, \quad \forall N > 0.$$

Let $\gamma(n) = \frac{2C_1}{n}$, (3.8) holds.

Step 4. Σ is closed in $(0, +\infty) \times (0, +\infty)$. For all (ϕ_N, ψ_N) solution of the minimizing problem (2.2), we define

$$\sigma(\phi_N,\psi_N) := \frac{1}{N} \left(\frac{2}{n} J(\phi_N,\psi_N) - I_N \right),$$

 $\Sigma_N := \{ \sigma(\phi_N, \psi_N); (\phi_N, \psi_N) \text{ solution of the minimizing problem (2.2)} \}.$

Then it is easy to see that $\Sigma = \{(N, \sigma_N); N > 0, \sigma_N \in \Sigma_N\}.$

Let $(N_n, \sigma_n) \in \Sigma$ such that $(N_n, \sigma_n) \to (N, \sigma)$, N > 0. By definition, there exists $(\phi_n, \psi_n) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$ such that $Q(\phi_n, \psi_n) = N_n$, $I(\phi_n, \psi_n) = I_{N_n}$ and

$$\sigma_n = \frac{1}{N_n} \left(\frac{2}{n} J(\phi_n, \psi_n) - I_{N_n} \right).$$

By Lemmas 3.1 and 3.2, $\{(\phi_n, \psi_n)\}$ is bounded in $H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$. If we define

$$(u_n,v_n):=\left(\sqrt{\frac{N}{N_n}}\phi_n,\sqrt{\frac{N}{N_n}}\psi_n\right),$$

then $\{(u_n, v_n)\}$ is also bounded in $H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$ and $Q(u_n, v_n) = N$. By using the Concentration-compactness Lemma, there exists a subsequence satisfying only one of the following three cases: 1) concentration; 2) vanishing; 3) dichotomy.

By using the argument as in step 1, only concentration exists. Therefore, there exists $\{y_n\}_{n\geq 1}\subset \mathbb{R}^n$ and $(\phi,\psi)\in H^1(\mathbb{R}^n)\times H^1(\mathbb{R}^n)$ such that

$$\phi_n(\cdot - y_n) \rightharpoonup \phi, \quad \psi_n(\cdot - y_n) \rightharpoonup \psi \text{ weakly in } H^1(\mathbb{R}^n),$$

$$\phi_n(\cdot - y_n) \rightarrow \phi, \quad \psi_n(\cdot - y_n) \rightarrow \psi \text{ in } L^2(\mathbb{R}^n),$$

$$\int_{\mathbb{R}^n} \phi_n^2(\cdot - y_n) \psi_n(\cdot - y_n) dx = \int_{\mathbb{R}^n} \phi_n^2 \psi_n dx \rightarrow \int_{\mathbb{R}^n} \phi^2 \psi dx.$$

In particular, $Q(\phi, \psi) = N$ and $I(\phi, \psi) \ge I_N$. On the other hand,

$$I(\phi_N, \psi_N) \leq \liminf_{n \to \infty} I(\phi_n(\cdot - y^n), \psi_n(\cdot - y^n)) = \lim_{n \to \infty} I(\phi_n, \psi_n) = I_N.$$

So, $I(\phi_N, \psi_N) = I_N$ and (ϕ_N, ψ_N) is a solution of the minimizing problem (2.2). Moreover, since

$$J(\phi_n,\psi_n)=I(\phi_n,\psi_n)+\int_{\mathbb{R}^n}\phi_n^2\psi_ndx\to I(\phi_N,\psi_N)+\int_{\mathbb{R}^n}\phi_N^2\psi_N=J(\phi_N,\psi_N),$$

we conclude that

$$\sigma = \frac{1}{N} \left(\frac{2}{n} J(\phi_N, \psi_N) - I_N \right) \in \Sigma_N.$$

Step 5. If Σ is a function, then it is continuous and there exists $N_0 > 0$ such that $\sigma_{N_0} = 1$. In particular, (ϕ_{N_0}, ψ_{N_0}) is a bound state of System (1.4). This follows easily from Step 4, (3.8) and Lemma 3.3.

4 Ground states

Lemma 4.1. The energy $I_{\alpha,\beta}$ satisfies that

- (i) For any $\alpha, \beta > 0, -\infty < I_{\alpha,\beta} < 0$.
- (ii) $I_{\alpha,\beta}$ is continuous with respect to $\alpha, \beta \geq 0$.
- (iii) $I_{\alpha+\alpha',\beta+\beta'} \leq I_{\alpha,\beta} + I_{\alpha',\beta'}$ for $\alpha, \alpha', \beta, \beta' \geq 0$.

Proof. The proofs of (i) and (ii) use the same arguments as in Lemmas 3.1 and 3.2. Next, we prove (iii). Indeed, for $\varepsilon > 0$, there exists $(u, v) \in M_{\alpha, \beta} \cap C_0^{\infty}(\mathbb{R}^n)$ and $(\phi, \psi) \in M_{\alpha', \beta'} \cap C_0^{\infty}(\mathbb{R}^n)$. By using parallel transformation, we can assume that $(\text{supp } u \cup \text{supp } v) \cap (\text{supp } \phi \cup \text{supp } \psi) = \emptyset$. Therefore $(u + \phi, v + \psi) \in M_{\alpha + \alpha', \beta + \beta'}$ and

$$I_{\alpha+\alpha',\beta+\beta'} \leq I(u+\phi,v+\psi) = I(u,v) + I(\phi,\psi) \leq I_{\alpha,\beta} + I_{\alpha',\beta'} + 2\varepsilon.$$

Since $\varepsilon > 0$ is arbitrarily, it asserts (iii).

Lemma 4.2. For any minimizing sequence $\{(\phi_n, \psi_n)\}_{n\geq 1}$ of $I_{\alpha,\beta}$, if $(\phi_n, \psi_n) \rightharpoonup (\phi, \psi)$ weakly in $H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$, then

$$\int_{\mathbb{R}^n} \phi_n^2 \psi_n - (\phi_n - \phi)^2 (\psi_n - \psi) dx = \int_{\mathbb{R}^n} \phi^2 \psi dx + o(1).$$

Proof. The idea of its proof comes from [5] (see also Lemma 2.3 of [4]). For any a_1 , a_2 , b_1 , $b_2 \in \mathbb{R}$ and $\varepsilon > 0$, we deduce from the mean value theorem and Young's inequality that

$$|(a_1+a_2)^2(b_1+b_2)-a_1^2b_1| \le C\varepsilon(|a_1|^3+|a_2|^3+|b_1|^3+|b_2|^3)+C_\varepsilon(|a_2|^3+|b_2|^3).$$

Denote $a_1 := \phi_n - \phi$, $b_1 := \psi_n - \psi$, $a_2 := \phi$, $b_2 := \psi$. Then

$$f_n^{\varepsilon} := \left[|\phi_n^2 \psi_n - (\phi_n - \phi)^2 (\psi_n - \psi) - \phi^2 \psi| - C\varepsilon (|\phi_n - \phi|^3 + |\phi|^3 + |\psi_n - \psi|^3 + |\psi|^3|) \right]_+ \\ \leq |\phi^2 \psi| + C_{\varepsilon} (|\phi|^3 + |\psi|^3),$$

and the dominated convergence theorem yields

$$\int_{\mathbb{R}^n} f_n^{\varepsilon} dx \to 0, \quad \text{as } n \to \infty.$$
 (4.1)

Since

$$|\phi_n^2 \psi_n - (\phi_n - \phi)^2 (\psi_n - \psi) - \phi^2 \psi| \le f_n^{\varepsilon} + C \varepsilon (|\phi_n - \phi|^3 + |\psi_n - \psi|^3 + |\phi|^3 + |\psi|^3|),$$

by the boundedness of $\{(\phi_n, \psi_n)\}_{n\geq 1}$ in $H^1(\mathbb{R}^n)\times H^1(\mathbb{R}^n)$ and (4.1), it follows that

$$\int_{\mathbb{R}^n} \phi_n^2 \psi_n - (\phi_n - \phi)^2 (\psi_n - \psi) dx = \int_{\mathbb{R}^n} \phi^2 \psi dx + o(1).$$

Lemma 4.3. Any minimizing sequence $\{(\phi_n, \psi_n)\}_{n\geq 1} \subset H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$ with respect to $I_{\alpha,\beta}$ is, up to translation, strongly convergent in $L^p(\mathbb{R}^n) \times L^p(\mathbb{R}^n)$ for 2 .

Proof. Similar to the Step 1 of the proof of Theorem 2.1, we can know that there exists a $\beta_0 > 0$ and a sequence $\{y_n\} \subset \mathbb{R}^n$ such that

$$\sup_{y\in\mathbb{R}^n}\int_{B_R(y_n)}(|\phi_n|^2+|\psi_n|^2)dx\geq \beta_0>0,$$

and we deduce from the weak convergence in $H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$ and the local compactness in $L^p(\mathbb{R}^n) \times L^p(\mathbb{R}^n)$ that $(\phi_n(x-y_n), \psi_n(x-y_n)) \rightharpoonup (\phi, \psi) \neq (0,0)$ weakly in $H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$. In order to prove that $u_n(x) := \phi_n(x) - \phi(x+y_n) \to 0$, $v_n(x) := \psi_n(x) - \psi(x+y_n) \to 0$ in $L^p(\mathbb{R}^n)$ for $2 , we suppose that there exists a <math>2 < q < 2^*$ such that $(u_n, v_n) \nrightarrow (0,0)$ in $L^p(\mathbb{R}^n) \times L^p(\mathbb{R}^n)$. Note that under this assumption by contradiction there exists a sequence $\{z_n\} \subset \mathbb{R}^n$ such that

$$(u_n(x-z_n),v_n(x-z_n)) \rightharpoonup (u,v) \neq (0,0)$$

weakly in $H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$.

Now, combining the Brézis-Lieb Lemma ([10]), Lemma 4.2 and the translational invariance, we conclude

$$I(\phi_n, \psi_n) = I(u_n(x - y_n), v_n(x - y_n)) + I(\phi, \psi) + o(1)$$

$$= I(u_n(x - z_n) - u, v_n(x - z_n) - v) + I(u, v) + I(\phi, \psi) + o(1),$$

$$|\phi_n(x - y_n)|_2^2 = |u_n(x - z_n) - u|_2^2 + |u|_2^2 + |\phi|_2^2 + o(1),$$
(4.2)

and

$$|\psi_n(x-y_n)|_2^2 = |v_n(x-z_n)-v|_2^2 + |v|_2^2 + |\psi|_2^2 + o(1).$$

Let $\alpha':=\alpha-|u|_2^2-|\phi|_2^2$, $\beta':=\alpha-|v|_2^2-|\psi|_2^2$, then

$$|u_n(x-z_n)-u|_2^2 = \alpha' + o(1), \qquad |v_n(x-z_n)-v|_2^2 = \beta' + o(1).$$
 (4.3)

Noting that

$$|u|_2^2 \le \liminf_{n \to \infty} |u_n(x - z_n)|_2^2 = \liminf_{n \to \infty} |\phi_n(x - y_n) - \phi|_2^2 = \alpha - |\phi|_2^2$$

then $\alpha' \geq 0$. Similarly, $\beta' \geq 0$. Recording that $I(\phi_n, \psi_n) \rightarrow I_{\alpha,\beta}$, in consideration of (4.3), Lemma 4.1 (ii) and (4.2), we get

$$I_{\alpha,\beta} \ge I_{\alpha',\beta'} + I(u,v) + I(\phi,\psi).$$
 (4.4)

We know from the front that $(\phi, \psi) \neq (0, 0)$ and $(u, v) \neq (0, 0)$. As for ϕ , ψ , u, v, if one of them is identically zero, we have

$$I_{\alpha,\beta} \geq I_{\alpha',\beta'} + I(u,v) + I(\phi,\psi) > I_{\alpha',\beta'} + I_{|u|_{2}^{2},|v|_{2}^{2}} + I_{|\phi|_{2}^{2},|\psi|_{2}^{2}} \geq I_{\alpha,\beta},$$

which is impossible. So, ϕ , ψ , u, $v \not\equiv 0$. If $I(u,v) > I_{|u|_2^2,|v|_2^2}$ or $I(\phi,\psi) > I_{|\phi|_2^2,|\psi|_2^2}$, we also have a contradiction. Hence $I(u,v) = I_{|u|_2^2,|v|_2^2}$ and $I(\phi,\psi) = I_{|\phi|_2^2,|\psi|_2^2}$. We denote by ϕ^* , ψ^* , u^* , v^* the classical Schwarz symmetric-decreasing rearrangement of ϕ , ψ , u, v. Since

$$|\phi^*|_2^2 = |\phi|_2^2$$
, $|\psi^*|_2^2 = |\psi|_2^2$, $|u^*|_2^2 = |u|_2^2$, $|v^*|_2^2 = |v|_2^2$, $I(\phi^*, \psi^*) \le I(\phi, \psi)$, $I(u^*, v^*) \le I(u, v)$

see [10], we conclude that

$$I(\phi^*, \psi^*) = I_{|\phi|_2^2, |\psi|_2^2}, \qquad I(u^*, v^*) = I_{|u|_2^2, |v|_2^2}.$$

Therefore, (ϕ^*, ψ^*) , (u^*, v^*) are solutions of the System (1.1) and from standard regularity results we have that ϕ^* , ψ^* , u^* , $v^* \in C^2(\mathbb{R}^n)$.

By Lemma 2.5, we have

$$\int_{\mathbb{R}^{n}} \left| \nabla \left\{ \phi^{*}, u^{*} \right\}^{*} \right|^{2} dx < \int_{\mathbb{R}^{n}} \left(|\nabla \phi^{*}|^{2} + |\nabla u^{*}|^{2} \right) dx \leq \int_{\mathbb{R}^{n}} \left(|\nabla \phi|^{2} + |\nabla u|^{2} \right) dx, \\ \int_{\mathbb{R}^{n}} \left| \nabla \left\{ \psi^{*}, v^{*} \right\}^{*} \right|^{2} dx < \int_{\mathbb{R}^{n}} \left(|\nabla \psi^{*}|^{2} + |\nabla v^{*}|^{2} \right) dx \leq \int_{\mathbb{R}^{n}} \left(|\nabla \psi|^{2} + |\nabla v|^{2} \right) dx,$$

and

$$\int_{\mathbb{R}^n} \left(\{ \phi^*, u^* \}^* \right)^2 \{ \psi^*, v^* \}^* \, dx \ge \int_{\mathbb{R}^n} \left((\phi^*)^2 \, \psi^* + (u^*)^2 \, v^* \right) \, dx \ge \int_{\mathbb{R}^n} \left(\phi^2 \psi + u^2 v \right) \, dx.$$

Thus,

$$I(\phi, \psi) + I(u, v) > I(\{\phi^*, u^*\}^*, \{\psi^*, v^*\}^*),$$
 (4.5)

and

$$\int_{\mathbb{R}^{n}} \left| \left\{ \phi^{*}, u^{*} \right\}^{*} \right|^{2} dx = \int_{\mathbb{R}^{n}} \left(\left| \phi^{*} \right|^{2} + \left| u^{*} \right|^{2} \right) dx = \int_{\mathbb{R}^{n}} \left(\left| \phi \right|^{2} + \left| u \right|^{2} \right) dx = \alpha - \alpha',
\int_{\mathbb{R}^{n}} \left| \left\{ \psi^{*}, v^{*} \right\}^{*} \right|^{2} dx = \int_{\mathbb{R}^{n}} \left(\left| \psi^{*} \right|^{2} + \left| v^{*} \right|^{2} \right) dx = \int_{\mathbb{R}^{n}} \left(\left| \psi \right|^{2} + \left| v \right|^{2} \right) dx = \beta - \beta'.$$
(4.6)

Taking (4.4)–(4.6) and Lemma 4.1 (iii) into consideration, one obtains the contradiction

$$I_{\alpha,\beta} > I_{\alpha',\beta'} + I_{\alpha-\alpha',\beta-\beta'} \ge I_{\alpha,\beta}.$$

The contradiction indicates that $u_n(x) := \phi_n(x) - \phi(x + y_n) \to 0$ and $v_n(x) := \psi_n(x) - \psi(x + y_n) \to 0$ in $L^p(\mathbb{R}^n)$ for 2 .

Proof of Theorem 2.2. (1) Let $\{(\phi_n, \psi_n)\}$ be a minimizing sequence for the functional I on $M_{\alpha,\beta}$. In light of Lemma 4.3, we know that there exists $\{y_n\} \subset \mathbb{R}^n$ such that $\phi_n(x-y_n) \to \phi$, $\psi_n(x-y_n) \to \psi$ in $L^p(\mathbb{R}^n)$ for 2 . Hence, by weak convergence, we get

$$I(\phi, \psi) \le I_{\alpha, \beta}. \tag{4.7}$$

Now, we let $|\phi|_2^2 = \alpha'$, $|\psi|_2^2 = \beta'$. To show that $|\phi|_2^2 = \alpha$ and $|\psi|_2^2 = \beta$, we assume by contradiction that $\alpha' < \alpha$ or $\beta' < \beta$. We consider the following three cases: (1) $0 \le \alpha' < \alpha$, $0 \le \beta' < \beta$ and $\alpha' + \beta' \ne 0$; (2) $0 \le \alpha' < \alpha$, $\beta' = \beta$; and (3) $0 \le \beta' < \beta$, $\alpha' = \alpha$.

Case 1. $0 \le \alpha' < \alpha$, $0 \le \beta' < \beta$ and $\alpha' + \beta' \ne 0$. By definition $I(\phi, \psi) \ge I_{\alpha', \beta'}$ and thus it results from (4.7) that $I_{\alpha', \beta'} \le I_{\alpha, \beta}$. From Lemma 4.1 (iii), $I_{\alpha, \beta} \le I_{\alpha', \beta'} + I_{\alpha - \alpha', \beta - \beta'}$ and by Lemma 4.1 (i), $I_{\alpha - \alpha', \beta - \beta'} < 0$, we obtain $I_{\alpha, \beta} < I_{\alpha', \beta'}$ and it is a contradiction.

Case 2. $0 \le \alpha' < \alpha$, $\beta' = \beta$. By definition $I(\phi, \psi) \ge I_{\alpha', \beta}$, we get $I_{\alpha', \beta} \le I_{\alpha, \beta}$. From Lemma 4.1 (iii) $I_{\alpha, \beta} \le I_{\alpha', \beta} + I_{\alpha - \alpha', 0}$, we have $I_{\alpha', \beta} \le I_{\alpha, \beta} \le I_{\alpha', \beta}$. Thus $I_{\alpha', \beta} = I_{\alpha, \beta}$. Let $|\psi|_2^2 = \beta$, and β is fixed. From the above, we know that $N = \frac{\omega}{2}(|\phi|_2^2 + 2\beta)$, then N is only related to $|\phi|_2^2$. By Lemma 3.3, $\frac{I_{N(|\phi|_2^2)}}{N(|\phi|_2^2)}$ is decreasing in $(0, +\infty)$, when $|\phi|_2^2$ gradually increases. If $|\phi|_2^2 = \alpha'$, we have $I_{N(\alpha')} = I_{\alpha', \beta}$. Similarly, $I_{N(\alpha)} = I_{\alpha, \beta}$. Since $\frac{I_{N(\alpha')}}{N(\alpha')} > \frac{I_{N(\alpha)}}{N(\alpha')}$, we have $I_{N(\alpha')} > \frac{N(\alpha)}{N(\alpha')} I_{N(\alpha')} > I_{N(\alpha)}$. So, we obtain that $I_{\alpha', \beta} > I_{\alpha, \beta}$, and it is a contradiction. As for the case (3), we can prove by the same argument.

Now we have $u_n(x) = \phi_n(x) - \phi(x + y_n) \to 0$, $v_n(x) = \psi_n(x) - \psi(x + y_n) \to 0$ in $L^2(\mathbb{R}^n)$. By using the P.-L. Lions Lemma, $u_n(x)$, $v_n(x) \to 0$ in $L^3(\mathbb{R}^n)$. According to Hölder inequality, we have $\left| \int_{\mathbb{R}^n} u_n^2 v_n dx \right| \leq |u_n|_3^2 |v_n|_3$. Hence $\int_{\mathbb{R}^n} u_n^2 v_n dx \to 0$. By the Brézis-Lieb Lemma,

$$I(\phi_n, \psi_n) = I(\phi, \psi) + I(u_n, v_n) + o(1)$$

$$= I_{\alpha, \beta} + \frac{1}{2} \int_{\mathbb{R}^n} |\nabla u_n|^2 + \kappa |\nabla v_n|^2 dx + o(1) \quad \text{as } n \to \infty.$$

Taking $n \to \infty$, we obtain $\lim_{n \to \infty} \int_{\mathbb{R}^n} |\nabla u_n|^2 + \kappa |\nabla v_n|^2 dx = 0$. Thus we get $\lim_{n \to \infty} u_n = \lim_{n \to \infty} v_n = 0$ in $H^1(\mathbb{R}^n)$.

(2) Let $(\phi, \psi) \in G_{\alpha,\beta}$ for any $\alpha, \beta > 0$. By the Lagrange multiplier method, there exists a pair $(\lambda_1, \lambda_2) \in \mathbb{R}^2$ such that $(\lambda_1, \lambda_2, \phi, \psi)$ satisfies System (1.5). By multiply the first equation of (1.5) by ϕ , we get

$$\int_{\mathbb{R}^n} |\nabla \phi|^2 dx - 2 \int_{\mathbb{R}^n} \phi^2 \psi dx = -\lambda_1 |\phi|_2^2.$$

Since $I(\phi, \psi) < 0$ (see Lemma 4.1 (i)), we get

$$\int_{\mathbb{R}^n} |\nabla \phi|^2 dx - 2 \int_{\mathbb{R}^n} \phi^2 \psi dx < 2I(\phi, \psi) < 0.$$

Then $\lambda_1 > 0$.

(3) Using the fact

$$|\nabla |\phi||_2 \le |\nabla \phi|_2$$
, $|\nabla |\psi||_2 \le |\nabla \psi|_2$ and $\int_{\mathbb{R}^n} |\phi|^2 |\psi| dx \ge \int_{\mathbb{R}^n} \phi^2 \psi dx$

it follows that $(\phi, \psi) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n) \Rightarrow (|\phi|, |\psi|) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$ and $I(|\phi|, |\psi|) \leq I(\phi, \psi)$. Thus, $G_{\alpha,\beta}$ contains $(|\phi|, |\psi|)$ and hence, the minimizer (ϕ, ψ) can be chosen to be \mathbb{R} -valued.

To prove $(\phi^*, \psi^*) \in G_{\alpha,\beta}$, we need the following fact

$$|\nabla \phi^*|_2 \le |\nabla \phi|_2, \qquad |\nabla \psi^*|_2 \le |\nabla \psi|_2 \tag{4.8}$$

see [10, Theorem 7.17]. Moreover, it is well-know that the symmetric decreasing rearrangement preserves the L^p norm, that is,

$$|\phi^*|_p = |\phi|_p, \qquad |\psi^*|_p = |\psi|_p, \qquad 1 \le p \le \infty.$$
 (4.9)

Furthermore, we have

$$\int_{\mathbb{R}^n} (\phi^*)^2 \psi^* dx \ge \int_{\mathbb{R}^n} \phi^2 \psi dx \tag{4.10}$$

(see for example, Theorem 3.4 of [10]). Taking into account of (4.8), (4.9) and (4.10), it follows that

$$|\phi^*|_2^2 = |\phi|_2^2$$
, $|\psi^*|_2^2 = |\psi|_2^2$ and $I(\phi^*, \psi^*) \leq I(\phi, \psi)$, $\forall (\phi, \psi) \in H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$,

which shows that $G_{\alpha,\beta}$ contains (ϕ^*, ψ^*) whenever it does (ϕ, ψ) .

To show that $\phi^* > 0$ on \mathbb{R}^n , observe that $(|\phi|, |\psi|) \in G_{\alpha, \beta}$ satisfies the Euler–Lagrange differential equations

$$\begin{cases} -\Delta|\phi| + \lambda_1|\phi| = 2|\phi||\psi|, & x \in \mathbb{R}^n, \\ -\kappa\Delta|\psi| + \lambda_2|\psi| = |\phi|^2, & x \in \mathbb{R}^n, \end{cases}$$

where (λ_1, λ_2) is the same pair of numbers as in System (1.5). Letting $f_1(|\phi|, |\psi|) = 2|\phi||\psi|$. Since $\lambda_1 > 0$, we have

$$|\phi| = G^{\sqrt{\lambda_1}}(x) * f_1(|\phi|, |\psi|) = \int_{\mathbb{R}^n} G^{\sqrt{\lambda_1}}(x - y) f_1(|\phi|, |\psi|)(y) dy,$$

where $G^{\mu}(x)$ is defined by

$$G^{\mu}(x) = \int_0^{\infty} (4\pi\tau)^{-\frac{n}{2}} \exp\left\{-\frac{|x|^2}{4\tau} - \mu^2\tau\right\} d\tau,$$

for $x \in \mathbb{R}^n$, $\mu > 0$. Since the function f_1 is everywhere nonnegative and not identically zero, it follows that $|\phi| > 0$. So, we obtain $\phi^* > 0$. Besides, by the maximum principle, we get $\psi^* > 0$. This concludes the proof of statement (3).

5 Orbital stability

In this section, we proceed as in [3] to prove the orbital stability of bound state and ground state solitary waves.

Proof of Theorem 2.4. We assume that the set P_N is not stable, then there is a $\varepsilon_0 > 0$, $\{(\phi_n(0), \psi_n(0))\} \subset H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$ and $\{t_n\} \subset \mathbb{R}^+$ such that

$$\inf_{(\phi_N,\psi_N)\in P_N} \|(\phi_n(0),\psi_n(0)) - (\phi_N,\psi_N)\|_{H^1(\mathbb{R}^n)\times H^1(\mathbb{R}^n)} \to 0 \quad \text{as } n\to\infty,$$
 (5.1)

and

$$\inf_{(\phi_N,\psi_N)\in P_N} \|(\phi_n(t_n),\psi_n(t_n)) - (\phi_N,\psi_N)\|_{H^1(\mathbb{R}^n)\times H^1(\mathbb{R}^n)} \ge \varepsilon_0, \tag{5.2}$$

Since by the conservation laws, we have

$$|\phi_n(t_n)|_2^2 = |\phi_n(0)|_2^2, \qquad |\psi_n(t_n)|_2^2 = |\psi_n(0)|_2^2,$$

and

$$I(\phi_n(t_n), \psi_n(t_n)) = I(\phi_n(0), \psi_n(0)).$$

If we define

$$(\hat{\phi}_n,\hat{\psi}_n)=\left(rac{\phi_n(t_n)}{|\phi_n(t_n)|_2}\sqrt{\eta},\;rac{\psi_n(t_n)}{|\psi_n(t_n)|_2}\sqrt{rac{2N-\omega\eta}{2\omega}}
ight),$$

where $0 < \eta < \frac{2N}{\omega}$, we get that

$$Q(\hat{\phi}_n, \hat{\psi}_n) = N$$
 and $I(\hat{\phi}_n, \hat{\psi}_n) = I_N + o(1)$.

Namely $\{(\hat{\phi}_n, \hat{\psi}_n)\}$ is a minimizing sequence for the minimizing problem (2.1). From Theorem 2.1 (1), it follows that it is precompact in $H^1(\mathbb{R}^n) \times H^1(\mathbb{R}^n)$ thus (5.2) fails.

The proof of the orbital stability of $G_{\alpha,\beta}$ is similar to the above proof.

Acknowledgements

This research is supported by NSF of China (No. 11771291).

References

- [1] A. L. Berkhoer, V. E. Zakharov, Self exitation of waves with different polarizations in nonlinear media, *Sov. Phys. JETP* **31**(1970), 903–911. https://doi.org/10.1007/BF00745002;
- [2] H. Brézis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, *Proc. Am. Math. Soc.* **88**(1983), No. 3, 486–490. https://doi.org/10.2307/2044999; MR0699419;
- [3] T. CAZENAVE, P. L. LIONS, Orbital stability of standing waves for some nonlinear Schrödinger equations, *Comm. Math. Phys.* **85**(1982), No. 4, 549–561. https://doi.org/10.1007/BF01403504; MR0677997; Zbl 0513.35007
- [4] Z. Chen, W. Zou, Existence and symmetry of positive ground states for a doubly critical Schrödinger system, *Trans. Amer. Math. Soc.* **367**(2015), 3599–3646. https://doi.org/10.1090/S0002-9947-2014-06237-5; MR3314818
- [5] T. Gou, L. Jeanjean, Existence and orbital stability of standing waves for nonlinear Schrödinger systems, *Nonlinear Anal.* **144**(2016), 10–22. https://doi.org/10.1016/j.na. 2016.05.016; MR3534090
- [6] N. HAYASHI, C. LI, P. I. NAUMKIN, On a system of nonlinear Schrödinger equations in 2D, *Differential Integral Equations* **24**(2011), 417–434. MR2809614; Zbl 1249.35305
- [7] N. Hayashi, C. Li, T. Ozawa, Small data scattering for a system of nonlinear Schrödinger equations, *Differ. Equ. Appl.* **3**(2011), No. 3, 415–426. https://doi.org/10.7153/dea-03-26; MR2856418
- [8] N. Hayashi, T. Ozawa, K. Tanaka, On a system of nonlinear Schrödinger equations with quadratic interaction, *Ann. Inst. H. Poincaré Anal. Non Linéaire* **30**(2013), No. 4, 661–690. https://doi.org/10.1016/j.anihpc.2012.10.007; MR3082479
- [9] N. Ikoma, Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions, *Adv. Nonlinear Stud.* **14**(2014), No. 1, 115–136. https://doi.org/10.1515/ans-2014-0104; MR3158981
- [10] E. H. Lieb, M. Loss, Analysis, second ed., Graduate Studies in Mathematics, Vol. 14, American Mathematical Society, Providence, 2001. https://doi.org/10.1090/gsm/014; MR1817225
- [11] P. L. LIONS, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1. *Ann. Inst. H. Poincaré Anal. Non Linéaire* **1**(1984), No. 2, 109–145. https://doi.org/10.1016/S0294-1449(16)30422-X; MR0778970; Zbl 0541.49009
- [12] P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 2. *Ann. Inst. H. Poincaré Anal. Non Linéaire* **1**(1984), No. 4, 223–283. https://doi.org/10.1016/S0294-1449(16)30422-X; MR0778974; Zbl 0704.49004
- [13] M. Shibata, A new rearrangement inequality and its application for L^2 -constraint minimizing problems, *Math. Z.* **287**(2017), No. 1–2, 341-359. https://doi.org/10.1007/s00209-016-1828-1; MR3694679