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Abstract. We consider the existence and orbital stability of bound state solitary waves
and ground state solitary waves for a class of nonlinear Schrodinger system with
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Lemma. In additional, we also prove the orbital stability of bound state and ground
state solitary waves.
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1 Introduction
In this paper, we consider the following system of nonlinear Schrédinger equations

1
i0iu + —Au = Ao, (x,t) € R™1,
2m (1.1)

i 1 _ 2 n+1
10;0 + mAU =uu”, (x,t) e R",

where u and v are complex-valued wave fields, m and M are positive constants, A and y are
complex constants, and # is the complex conjugate of u.

Such systems have interesting applications in several branches of physics, such as in the
study of interactions of waves with different polarizations [1,11]. The Cauchy problem for
System 1.1 has been studied from the point of view of small data scattering [6,7]. In 2013,
Hayashi, Ozawa and Tanaka [8] studied the well-posedness of Cauchy problem for System 1.1
with large data. In particular, System 1.1 is regarded as a non-relativistic limit of the system
of nonlinear Klein—-Gordon equations

1 1 2
—Efu — —Au+ Eu = —Avii, (x,t)€ R"1
2c%m 2m 2 (1.2)
L M + —Mczv = —uu?, (x,t) € R*! |
22M%° T oM p VT THE Y /
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under the mass resonance condition M = 2m, where c is the speed of light.
Assume A = cji, ¢ > 0, A # 0 and p # 0, we introduce new functions (i, 9) defined by

i(x, ) = \/§|y|u (@x,t) Gt = —%v (@x,t) ,

and System (1.1) satisfies

ioiil + Al = —201, (x,t) € R,
(1.3)

19,7 + %Aﬁz —i2, (x,t) € R,

Using the ansatz (ii(x,t),9(x,t)) = (e“'¢(x), e p(x)), ¢p(x), p(x) £ 0 with w > 0, System
(1.3) becomes

{ — Ap+wp =2¢p, x €R", 14

— kAP + 2w = $?, x €R",
where k = 7.

Let LP(R") denote the usual Lebesgue space with the norm |u|, = ([g. |u|de)%. The
space H'(R") := {u € L[*(R"),Vu € L?(R")} with the corresponding norm |ju| =
(fgn |Vu?+ |u|?dx)2, and H}(R") := {u € H'(R"); u is radially symmetric}.

Recently, as 2 < n < 5, Hayashi, Ozawa and Tanaka [8] obtained the existence of radially
symmetric ground states for System (1.4) by using rearrangement method, Pohozaev identity
and the Sobolev compact embedding H; (R") C L3(RR").

In this paper, firstly, we prove the existence of bound states for System (1.4) by using the
Concentration-compactness Lemma and direct methods in the critical points theory. Secondly,
we discuss the general case for System (1.4), i.e.,

{—A¢+A1q>:2¢1p, x €R",

— kAP +Aop = §?, x €R”, 1)

where (A1, A2) € R%. By using the Concentration-compactness Lemma, variational arguments
and rearrangement result of Shibata [13], we obtain the existence of ground states for System
(1.5). In particular, if A = %)\2 > 0, then System (1.5) can be reduced to System (1.4) and the
existence of ground states for System (1.4) is obtained in [8]. Furthermore, we also prove the
orbital stability of bound states and ground states.

Remark 1.1. In contrast to results in [8], we obtain the existence of bound states in the
whole space H!(R"). Since the embedding H!(R") C L3(IR") is only continuous, we ap-
ply the Concentration-compactness Lemma and variational arguments to obtain the existence
of bound states.

2 Preliminaries and main results

In this section, we state our main results in this paper.
Now, we define the functionals I, ] and Q : H'(R") x H'(R") — R by

1) = 5 [ (VoP+xIVyR)x— [ gPpdr,  Vigy) € HI(RY) x H'(R),
1) =5 [ (V6P +xIV9PIax,  V(gy) € HU(RY) x H(RY),
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and
w

Q) =y ([ loPax+2 [ Iofar), Vg p) € HIRY) x HI(RY)

It is obvious that I, ] and Q € C'(H!(R") x H'(R"),R). Hence, (¢,1) is a weak solution of
System (1.4) if and only if (¢, ) is a critical point of the functional S := I+ Q.

Let My = {(¢, %) € H'(R") x H{(R") : Q(¢, %) = N, |¢|3,|¢|3 > 0} for some N > 0, and
the minimizing problem

I = inf{1(¢, ¥); (9, 9) € My}. 1)
Besides, for every N > 0, let Py denote the set of bound states of System (1.4), that is,

Py ={(9,9) € H'(R") x H'(R"); I(¢, ) = Iy and (¢, ) € Mn},
which generates the solitary waves of System (1.1).

Theorem 2.1. Let n = 2,3. Then we have:

(1) Forall N > 0, there exists (¢n, ¥n) € H(R") x HY(IR") a solution of

(@n, 9] € My, (2.2)

[(¢n, Yn) = min{I(¢, ¢); (¢, ) € Mn}.

(2) If (¢, ¥N) is a solution of the minimizing problem (2.2), then there exists a Lagrange multiplier
on > 0 such that

—A(]7+(7Na)(l):24)l/), x € R", 23)
— kAP + 20ywy = ¢*, x € RY, '
where oy is given by
2
2 , —1
oN = w) (O ) = In. (2.4)

N
(3) The set

X :={(N,on);N > 0,0y is a Lagrange multiplier of the minimizing problem (2.2)}

is a closed graph in (0, +00) x (0, +0c0). In particular, if ¥ is a function, then it is continuous and
there exists No > 0 such that oy, = 1. So, (¢n,, PN, ) is a bound state of System (1.4).

Next, we define the set

M,p = {(¢,9) € H'(R") x H'(R") : |p}5=w, |9]5 = B}

for any a, B > 0, and the minimizing problem

Lop = inf{I(¢, ); (¢, ) € Map}-

Besides, for any «, f > 0, let

Gop = {(¢, ) € Mop; 1(p, ) = Lnp},

which denotes the set of ground states of System (1.5).
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Theorem 2.2.

(1) For any a, B > 0, any minimizing sequence {(¢n, Pn) tn>1 C H(R™) x H(R™) with respect to
Iop is pre-compact. That is, taking a subsequence, there exist (¢, ) € My g and {yn}p>1 C R"
such that ¢ (- — yn) = ¢, Yu(- —yn) — Y in HY(R") as n — .

(2) Let (A1, A2) be the Lagrange multiplier associated with (¢,) on My g, we have A1 > 0.

(3) If (¢, ) € Gq,p, we have (|¢], |¢|) € Gy p. One also has (¢p*, p*) € G, p whenever (¢, ) € Gyp
and ¢*,p* > 0, where f* represents the symmetric decreasing rearrangement of the function f.

Definition 2.3. For any N > 0, the set Py is stable if for any ¢ > 0 there exists a 6(¢) > 0 such
that if (¢o, ) € H'(R") x H'(R") verifies

inf o) — (fw, ) < 5o,
(4)7\1/;’1\])6131\] H((PO IIJO) ((PN l/)N)HHl(lR )x H1(R") < )

then the solution (¢(t),¥(t)) of the System (1.1) with ¢(0) = ¢, ¥(0) = o satisfies

i f t, t - 7 n n <S.
Stgll;’ (¢Nr1})rl\1l)€PN [(@(t), w(£)) — (&N, YN || 1 (R < 11 (R

Besides, we can also define the set G, g is stable in the same way.
Theorem 2.4. Let n = 2,3, the sets Py and G, g are stable.

Now, we recall the rearrangement results of Shibata [13] as presented in [9]. Let u be a Borel
measureable function on R”. Then u is said to vanish at infinity if |{x € R"; [u(x)| > s}| < o0
for every s > 0. Here | - | stands for the n-dimensional Lebesgue measure. Considering two
Borel functions u,v which vanish at infinity in R”, we define for s > 0, set A*(u,v;s) :=
{x € R"; |x| < r} where r > 0 is chosen so that

B-(0)] = [{x € R [u(x)| > s}[ + [x € R [o(x)| > s},
and {u,v}* by
10,01 () = [ Kt (005
where x 4(x) is a characteristic function of the set A C R".

Lemma 2.5 ([9, Lemma A.1]).

(1) The function {u,v}*(x) is radially symmetric, non-increasing and lower semi-continuous. More-
over, for each s > 0 there holds {x € R";{u,v}* > s} = A*(u,v;s).

(2) Let ® : [0,00) — [0, 00) be non-decreasing, lower semi-continuous, continuous at 0 and ®(0) = 0.
Then {®(u), ®(v)}* = @ ({u,0}*).

(3) \{u,v}*]i = ulb+ [o|h for 1 < p < co.

(4) If u,v € H'(R"), then {u,v}* € H'(R") and |V{u,v}*|3 < |Vul}+ |Vol3. In addition, if
u,v € (HY(R") N CYR"))\{0} are radially symmetric, positive and non-increasing, then we
have

/|V{u,v}*|2dx</ |Vu|2dx—|—/ |Vo|2dx.
Rn Rn Rl‘l

(5) Let uy,uz,v1,v2 > 0 be Borel measurable functions which vanish at infinity, then we have

/]R (ugup 4+ v1v7)dx < /]R {uy, 01} {up, vp }dx.
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3 Bound states

Let {(¢n, Pu) }n>1 be a minimizing sequence for the minimizing problem (2.1), that is, the
sequence {(¢n, Pn)}n>1 € HY(R") x HY(R") satisfies Q(¢n, ¥) — N and I(¢n, ) — Iy, as
n — oo. Then, we have

Lemma 3.1. As n = 2,3, there exists B > 0 such that ||(¢n, Yn) || i (re) 11 gy < B for all n, and
the functional I is bounded below on M.

Proof. By the Gagliardo-Nirenberg inequality, we have

</ ) \<P!3dx>é <cC </ qub\de)nz (/R |<P|2dx>

n

12

NI—

Hence, we have

[ < (] n<¢2>3dx)§(/m n |¢|3dx) (/, |¢r3dx) (L |¢r|3dx)é
<cC (/R |V4>|2dx>g (/ |V1/J|2dx> .

Since n = 2,3, we have % + 15 < 1. Thus, I is coercive and in particular Iy > —co. By the
coerciveness of I on My, the sequence {(¢,, ¥,,) },>1 is bounded in H!(R") x H'(IR"). Thus,
there exists B > 0 such that ||(¢n, Yn)[| g (rr)x 12 ey < B for all n. O

Lemma 3.2. Forany N > 0, Iy < 0and Iy is continuous with respect to N.

Proof. Let A(¢) = 3 [ |VO|?dx, B() = & [ [V§|?dx, and C(¢, ) = [, ¢*¢dx, hence,

[(¢, ) = Al9) + B(y) — C(¢, ).

Now let (¢(x),p(x)) € My be fixed. For any b > 0, we define ¢g(x) = 9%4)(91’3(), Po(x) =
6%"1,0(91’ ), then (¢g(x), Po(x)) € My as well. We have the following scaling laws:

Alpolx) = 5 [ 10% Tp(@')Px = 62 A(g(x)),
B(o(x)) = 5 [ 10% V(6" Pdx = 67 B(y(x)),

and

C¢o(), ya(x)) = [ 6797630 p(@"x)ax = 0¥ C(p(x), p(x)).

So, we get
2b 2b o
I(po(x), Po(x)) =60"A+60"B—02C.
Since n = 2,3, we have % < 2b. Letting 6 — 0, then I(¢y(x), ¢o(x)) — 0~. Hence, we prove
In < 0.

In order to prove that Iy is a continuous function, we assume N, = N 4 0(1). From the
definition of Iy, for any ¢ > 0, there exists (¢n, ¥») € My, such that

I(pn, pn) < Iy, +&. (3.1)
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Setting

(1, 0) 1= <\/NW¢ \/NW¢> ,

we have that (u,,v,) € My and
In < L1t 04) = (@, ) + 0(1). (32)

Combining (3.1) and (3.2), we obtain

Iy < In, +e+0(1).
Reversing the argument, we obtain similarly that

In, < In+e+o0(1).
Therefore, since € > 0 is arbitrary, we deduce that Iy, = Iy + o(1). O
Lemma 3.3. 1 is decreasing in (0, +c0).

Proof. For (¢,9) € HY(R") x HY(R"), we define (¢p(x), Pp(x)) := (6°¢(6°x),6%p(6"x)),
V6 > 0. Choosing a,b > 0, such that 2b — na = 1, it follows that Q (¢p(x), Po(x)) = 6Q(¢, ¥)
and we can write

1 (ga(x), o)) = 0 11(g,9) + 02 | gpax— 0" [ Py (33)
We can choose a,b > 0 such that 2b — na = 1, b > 2a and it follows from (3.3) that
I(¢o(x), po(x)) <> (¢, p),  VO>1.
Since (¢(x),¥(x)) € Mn < (Po(x), Po(x)) € Mgy, V0, N > 0, it follows that
Iy < 0y <0y, VO > 1.
Thus,

Ion  In
—_— < — 0> 1. OJ
ON < N’ o >

Lemma 3.4. Forany N > 0and A € (0, N), we have Iy < I + In_,.
Proof. Thanks to the following well-known inequality: Va, b, A, B > 0,

. a b a+b a b
R P < - Z
mln{A'B}_A+B_maX{A'B}'

where the equalities hold if and only if & = %, we get

(=) + (—In-2) —Iy —IN-a
< — .
ALN_A -

ATN=-A
Without loss of generality, we assume %IA is larger than %, then

(1)) + (—In-»r) _I/\‘

<

By Lemma 3.3, we have
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Proof of Theorem 2.1. Our proof is divided into five steps:

Step 1. The minimizing problem (2.2) has a solution. By Lemma 3.1, the sequence { (¢, ¥,)}
is bounded in H'(RR") x H'(R"). If

sup (Ipnl* + [1pu|*)dx = o(1),
yeR" Y Br(y)

for some R > 0, the ¢, — 0, ¢, — 0 in LP(R") for 2 < p < 2%, see [11,12]. This is in-

compatible with the fact that Iy < 0, see Lemma 3.2. Thus, the vanishing of minimizing

sequence {(¢u, Pn)} does not exist. Besides, Lemma 3.4 prevents their dichotomy. Accord-

ing to Concentration-compactness Lemma, only concentration exists, and we get a solution

(¢n, Pn) of the minimizing problem (2.2).

Step 2. There exists a positive Lagrange multiplier 0. Let (¢n, ¥n) a solution of the mini-
mizing problem (2.2). From the Lagrange Multiplier Theorem, there exists § € R such that

I'(¢n, YN) = 0Q'(¢n, ¥N), that means
—APN — 2NN = Bwon,

) (3.4)
By multiply the above equations respectively by ¢n, n and integrating on R", we get
1
Iy— = / $2pndx = ON. (3.5)
2 JRrn
Since Iy < 0, VN > 0, we obtain easily from (3.5) that 6 < 0.
For any A, ¢ > 0, we consider
(92 (x), 9a(x)) == (AZn (1), AT (A°x) ),
then (¢a(x), Pa(x)) € My and I(¢n, Pn) = miny~o I (Pr(x), Pr(x)). In particular,
d cn 2
0= —=I(pa(x), pa(x)) | =2¢J(Pn, Pn) — */ Prpndx. (3.6)
dA A1 2 Jre
Merging (3.5) and (3.6), we get
2
In — E]((PN/ ¥N) = 6N,
which implies that 8 < 0 and the Lagrange multiplier
2
2 , — 1
oN = —0 = uJon v = In (3.7)
N
Step 3. There exist y(n) > 0 such that
I I
— N oy <yn) - (3.8)

N N

Since I(¢n, Pn) < 0, we get from Holder's inequality and the Gagliardo-Nirenberg inequality
that

1
Jwopn) < [ Rpwdx < 5 (owls+ ynl3)
<c(1eniF lonly ™ + Vi lpls ) 59)

< C (J(@n 9n)* + I (@n, 9n)?) p(N),
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where C > 0 and p(N) := max {N(Z_%), N(l_%)}.
Let f : (0,00) — R the function defined by

S

f6) =
and we know f'(s) > 0,Vs > 0 and limg_,¢+ f(s) = 0. So, we can rewrite (3.9) as
J(gn,9n) < f7H(Cp(N)). (3.10)
Note that .
p(s) = s1-8) ifs<1, and f(s) > E sU-8) ifs <1,
o(s) =s?73) ifs>1, and f(s)> % (1=3) jfs > 1.

By a straightforward calculation we see that there exists C; > 0 such that
fH(Co(N)) <IN if N <1,
FH(Cp(N)) < GINGS) i N > 1.
Hence, we obtain from (3.10) that
J(@n,¢n) <CiN, YN >0.

Let y(n) = %, (3.8) holds.

Step 4. X is closed in (0, +00) x (0, +00). For all (¢, ¥y) solution of the minimizing problem
(2.2), we define

o(Pn, PN) = % (il@Nr ¥N) — IN) ,

YN = {c(¢n,¥N); (¢n, Pn) solution of the minimizing problem (2.2)}.

Then it is easy to see that . = {(N,on); N > 0,0n € Zx}.
Let (N, 0,) € X such that (Ny,,0,) — (N,0), N > 0. By definition, there exists (¢,, ) €
H'(R") x H'(R") such that Q(¢n, ¥) = Ny, [(¢n, ) = Iy, and

1
Nn < ]((P”'ll)n) - n) .
By Lemmas 3.1 and 3.2, {(¢n, ¥,)} is bounded in H!(IR") x H!(IR"). If we define

o= (oo ).

then {(u,,v,)} is also bounded in H!(R") x H'(R") and Q(un,v,) = N. By using the
Concentration-compactness Lemma, there exists a subsequence satisfying only one of the
following three cases: 1) concentration; 2) vanishing; 3) dichotomy.

By using the argument as in step 1, only concentration exists. Therefore, there exists
{yn}u>1 CR"and (¢, ) € H'(R") x H'(R") such that

On(- = yn) = ¢, Yu(- —yn) = ¢ weakly in H'(R"),
$u(- —yn) > ¢, Yu(- —yn) = ¢ in L*(R"),
[ BC=v)pnC —yddx = [ gFpudx— [ gPpax.

On =
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In particular, Q(¢, ) = N and I(¢, ) > Iy. On the other hand,
I(pn, Pn) < h}gg‘“(‘f’n(' =¥ (- —y")) = 32{)101(47”,1/}”) = In.

So, I(¢n, ¥n) = In and (¢n, Pn) is a solution of the minimizing problem (2.2). Moreover,
since

J@urtn) = 1@ ) + [ GFpudx = Hgn, ) + [ 9Ron = (g, ),

we conclude that 1 /o
C=5 <n](47N,l/JN) — IN> € XN.

Step 5. If X is a function, then it is continuous and there exists Ny > 0 such that oy, = 1. In
particular, (¢n,, Pn,) is a bound state of System (1.4). This follows easily from Step 4, (3.8)
and Lemma 3.3. O

4 Ground states

Lemma 4.1. The energy I, p satisfies that

(i) Forany a,p >0, —oco < I 5 < 0.

(i1) Iyp is continuous with respect to a, > 0.
(iii) Iosarprp < lojp+ Lo g for a,a’, B, g/ > 0.

Proof. The proofs of (i) and (ii) use the same arguments as in Lemmas 3.1 and 3.2. Next, we
prove (iii). Indeed, for e > 0, there exists (u,v) € M, N CF(R") and (¢, ) € My g NCF(R").
By using parallel transformation, we can assume that (supp u U supp v) N (supp ¢ U supp ) =
@. Therefore (u + ¢, v+ ) € My o p4p and

I“+“//‘B+‘B/ < I(u +¢,v+ l[]) = I(M,U) -+ I((P,#’) < Itx,ﬁ + sz’,,B’ + 2e.
Since € > 0 is arbitrarily, it asserts (iii). O

Lemma 4.2. For any minimizing sequence {(¢n, ¥u)},>1 of lop, if (Pn, ¥n) — (¢, ) weakly in
HY(R") x HY(R"), then

2 2 _ 2
[ B = (9n = 9P —p)x = [ gPpdx+o(1).

Proof. The idea of its proof comes from [5] (see also Lemma 2.3 of [4]). For any ay, as, by,
b, € R and € > 0, we deduce from the mean value theorem and Young’s inequality that

(a1 + a2)* (b1 + by) — aiby| < Ce(|ar* + |az|* + b1 + [b2|*) 4 Ce(laz]® + |b2]).
Denote a; := ¢, — ¢, by := ¢, — ¢, ap :== ¢, by := . Then
fr = (107 — (¢n — ) (Wn — ¥) — §*¢| — Ce(|pn — &1 + (@1 + [ — ¢ + [9I°D)]
<[] + Ce(|9p + [w]?),

and the dominated convergence theorem yields

/IR" fidx — 0, asn — oo. 4.1)
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Since

(Pnpn = (P = @) (Y = 9) = *9l < i+ Cellpn = @P + [n =9I + 9P + [9]),
by the boundedness of {(¢n, ¥n)},~; in H'(R") x H'(R") and (4.1), it follows that

2 2 _ 2
[ 82— (9n = ) (p —p)x = [ gPpdx+o(1). =

Lemma 4.3. Any minimizing sequence {(¢n, Pu)},>q C H'(R") x H'(R") with respect to I, p is,
up to translation, strongly convergent in LF (R") x LP(R") for2 < p < 2*.

Proof. Similar to the Step 1 of the proof of Theorem 2.1, we can know that there exists a Bo > 0
and a sequence {y,} C R" such that

sup (I¢n]* + ipu]*)dx > Bo > 0,
yeR? B (yn)

and we deduce from the weak convergence in H'(R"”) x H'(R") and the local compactness in
LP(R") x LP(R") that (¢u(x — Yu), u(x — yu)) = (¢, ) # (0,0) weakly in H'(R") x H'(R").
In order to prove that u,(x) := ¢u(x) — p(x + yn) — 0, v,(x) := Pu(x) — P(x +y,) — 0 in
LP(R") for 2 < p < 2*, we suppose that there exists a 2 < g < 2* such that (u,,v,) - (0,0) in
LP(R") x LP(R™). Note that under this assumption by contradiction there exists a sequence
{z4} C R" such that
(un(x = zn), 0n(x — z4)) = (u,0) # (0,0)

weakly in H'(R") x H!(R").

Now, combining the Brézis-Lieb Lemma ([10]), Lemma 4.2 and the translational invari-
ance, we conclude

I(pn, ¥n) = I(un(x — yn), on(x — yn)) + 1(¢, ) +0(1) 4.2)
= I(un(x — zy) —u,05(x —zy) —0) + I(u,0) + I(¢, ) + 0(1), .
| (x = yn) 3 = un(x = 20) — ul3 + [uf3 + ¢]3 +0(1),
and
[9n (x = yn) 3 = |on(x — 24) — 03 + [0 + [$13 + 0(1).
Let o i= a — [uf} — |93, B i= & — [of3 — [y, then
|un(x —za) —ul =a'+0(1),  |va(x —24) —[3 = ' +o0(1). (4.3)

Noting that
ufZ < limin s (x — 2,)3 = Himinf | (x — y) — 913 = & — 93,

then a’ > 0. Similarly, B’ > 0. Recording that I(¢,, ¥n) — I,p, in consideration of (4.3),
Lemma 4.1 (ii) and (4.2), we get

Inpg > Ly g + I(u,v) + I(¢, ). (4.4)

We know from the front that (¢, ¢) # (0,0) and (u,v) # (0,0). As for ¢, ¢, u, v, if one of
them is identically zero, we have

lp 2 Lo +100,0) + 1@ ) > L + Dupg g + Tgpg g = Tup
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which is impossible. So, ¢, ¥, u, v # 0. If I(u,v) > Lz oz OF I(p, ) > Lipjz, g2, We also have a
contradiction. Hence I(u,v) = I|u‘%,|v|% and I(¢, ) = IIfI’\%rIlI’I%' We denote by ¢*, ¢*, u*, v* the
classical Schwarz symmetric-decreasing rearrangement of ¢, ¢, u, v. Since

0 2 =1¢l3,  [WBE=1vB | =ulb 05 =0l
I(¢* ¢") < (¢, p),  I(u",v") < I(u,0)
see [10], we conclude that
1@%97) = Dy yp 17 07) = Lz -

Therefore, (¢*,9*), (u*,v*) are solutions of the System (1.1) and from standard regularity
results we have that ¢*, ¢*, u*, v* € C>(R").
By Lemma 2.5, we have

/]Rn V {¢* ) Pdx < /R (V" |? + |Vu' ) dx < /IR (VP + |VuP) dx,
/Rn IV {*, 0"} P dx < /IR (Vg2 + | Vo' [?) dx < /}R (V92 +|Vol]?) dx,
and
/W ({9, w})? {y*, 0"} dx > /R (@79 + w)or)dx > [ (¢ +uP0) dx.
Thus,
L, 9) + I(u,0) > I ({¢",u"}", {y",0"}"), (4.5)
and

Je
[y oyPax= [ (192 +10 ) dx = [ (9P +1o) dx =p - p.

Taking (4.4)—(4.6) and Lemma 4.1 (iii) into consideration, one obtains the contradiction

{(p*,u*}*]zdx:/]R (!¢*|2+]u*\2>dx:/ (|pf* + [u]?) dx =« — o,

n R11

Irx,ﬁ > sz’,/%/ + Ia—o/,ﬁ—ﬁ/ > Iac,ﬂ-

The contradiction indicates that u,(x) = ¢u(x) — ¢(x +v,) — 0 and v,(x) = P,(x)—
P(x+y,) — 0in LP(R") for 2 < p < 2*. O

Proof of Theorem 2.2. (1) Let {(¢n, ¥») } be a minimizing sequence for the functional I on M, 4.
In light of Lemma 4.3, we know that there exists {y,} C R" such that ¢,(x —y,) — ¢,
Pu(x —yn) = ¢ in LP(R") for 2 < p < 2*. Hence, by weak convergence, we get

I(¢, ) < Ip. (4.7)

Now, we let |¢|3 = &/, |93 = p/. To show that |¢p|3 = a and [|3 = B, we assume by
contradiction that «’ < a or B/ < B. We consider the following three cases: (1) 0 < &’ < «,
0<p <PBanda’+p #0,2)0<a’<a,p =Band3)0<p <B,a' =u.

Casel. 0 <a' <a,0<p <pBanda’+p" # 0. By definition I(¢, ) > Ly g and thus it results
from (4.7) that Iy g < I, g. From Lemma 4.1 (iii), Iy, g < Ly p + Io—w p—p and by Lemma 4.1 (i),
Iy—orp—p <0, we obtain I, g < I g and it is a contradiction.
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Case 2. 0 < a’ < a, B’ = B. By definition I(¢, 1) > Ly g, we get Iy g < I, 3. From Lemma 4.1
(iii) Iop < Lo p + Ln—arp, we have Iy g < I < Iypg. Thus Iyg = I p. Let l¢|5 = B, and B is
fixed. From the above, we know that N = 4 (|¢|3 + 2B), then N is only related to |¢|3. By

I
Lemma 3.3, I\;V((lg‘é)) is decreasing in (0, +o0), when |¢|5 gradually increases. If |¢|3 = &/, we
have Iy(y) = Iy p. Similarly, Iy(,) = Iip. Since % > %, we have Iy > %INW) >

IN(w)- So, we obtain that I,y g > I, g, and it is a contradiction. As for the case (3), we can prove
by the same argument.

Now we have u,(x) = ¢u(x) — ¢(x +yu) — 0, vy (x) = Pu(x) — P(x +y,) — 0in L2(R").
By using the P-L. Lions Lemma, u,(x), v,(x) — 0 in L3(R"). According to Holder inequality,
we have U}Rn u%vndx] < |un|3|vn|3. Hence Jrn u2v,dx — 0. By the Brézis-Lieb Lemma,

L(@n, ¥n) = 1(¢, ) + 1(un, va) +0(1)
1
= Ipp + 5/ |Vun)? + | Vo, |*dx 4+ 0(1) asn — oo.
IRVI

Taking n — oo, we obtain lim,_c f]R" |Vuu|? + x| Vo, |2dx = 0. Thus we get lim, o tty =
lim,, 00 v, = 0 in H'(RR").

(2) Let (¢, ) € Gup for any «, B > 0. By the Lagrange multiplier method, there exists a

pair (A1, A2) € R? such that (A1, Ay, ¢, ¢) satisfies System (1.5). By multiply the first equation
of (1.5) by ¢, we get

V¢ 2dx — 2/ gbZIde =—-Ml¢p 3.
/n [V|dx . 1ol
Since I(¢, ) < 0 (see Lemma 4.1 (i)), we get

/Rn |Vo|*dx — 2/1Rn P*pdx < 21(¢p, ) < 0.

Then A; > 0.
(3) Using the fact

Viglla < Vgl IVIgla< V9l and [ lgPlplax> [ gy

it follows that (¢, ) € HY(R") x HY(R") = (|¢|,|¢]) € H(R") x HY(R") and I(|¢], |¢|) <
I(¢, ). Thus, G, contains (|¢], |¢|) and hence, the minimizer (¢, ) can be chosen to be
R-valued.

To prove (¢*,¢*) € G, p, we need the following fact

Vo™, <Vl  [VY©a < [Vl (4.8)

see [10, Theorem 7.17]. Moreover, it is well-know that the symmetric decreasing rearrange-
ment preserves the L” norm, that is,

’4’*|p = ’4’|p/ ‘I/J*’p = Wj‘pr 1<p<oco. (4.9)
Furthermore, we have
[Py > [ gPyax (4.10)
R" R"

(see for example, Theorem 3.4 of [10]). Taking into account of (4.8), (4.9) and (4.10), it follows
that

9" 13 =1¢l5, ¢ 3=Iyl3 and I(¢p* ¢*) <I(¢,p), V()€ H'(R") x H'(R"),
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which shows that G, g contains (¢, ¥*) whenever it does (¢, ¢).
To show that ¢* > 0 on R", observe that (|¢|,||) € G,p satisfies the Euler-Lagrange
differential equations

— Alp| + Alp| =2|pl|ly|, x €R",
—kAlp|+ Aoy = [9]>,  x €R”,

where (A1, A;) is the same pair of numbers as in System (1.5). Letting f1(|¢|, [¢]) = 2|p||¢].
Since A1 > 0, we have

¢l = GVM (%) * fullgl, [yl) = /W GVM (x = ) fillgl, [w]) (y)dy,
where G"(x) is defined by

|x|?

GHt(x) = /oo(47tr)_% exp {_47 - yzr} dr,
0

for x € R", u > 0. Since the function f; is everywhere nonnegative and not identically zero, it
follows that |¢| > 0. So, we obtain ¢* > 0. Besides, by the maximum principle, we get * > 0.
This concludes the proof of statement (3). O

5 Orbital stability

In this section, we proceed as in [3] to prove the orbital stability of bound state and ground
state solitary waves.

Proof of Theorem 2.4. We assume that the set Py is not stable, then there is a ¢ > 0,
{(¢,(0),9,(0))} € H(R") x H'(R") and {t,} C R* such that

inf  [[(¢4(0), ¥ (0)) — (¢n, ¥N) | g Ry xHr () — 0 @s 1 — o0, (5.1)
(¢n.PN)EPN
and
inf ty), t)) — , 1) ny > €0, 5.2
(¢N,¢N)€PNH(<Pn( ), Pn(tn)) — (On, PN (| Ry < H1 (R = €0 (5.2)

Since by the conservation laws, we have

on(ta) 5 = 192 (0)5,  [¥a(ta) 5 = [¢(0)]5,
and

I(‘Pn(tn)r lpn(tn)) = I(‘Pn(o)r Pn (O))

o (Pn(tn> 1lJn(tn) 2N — wr
(i) = (r%(tn)rﬂ' PullV 20 )

If we define

where 0 <7 < %, we get that

Q((ﬁnzlﬁn) = N al’ld I((ﬁn,l/}n) = IN+O(1)
Namely {(¢n, )} is a minimizing sequence for the minimizing problem (2.1). From Theo-

rem 2.1 (1), it follows that it is precompact in H'(R") x H!(IR") thus (5.2) fails.
The proof of the orbital stability of G, g is similar to the above proof. O
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