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Abstract. We consider the existence and orbital stability of bound state solitary waves
and ground state solitary waves for a class of nonlinear Schrödinger system with
quadratic interaction in Rn (n = 2, 3). The existence of bound state and ground state
solitary waves are studied by variational arguments and Concentration-compactness
Lemma. In additional, we also prove the orbital stability of bound state and ground
state solitary waves.
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1 Introduction

In this paper, we consider the following system of nonlinear Schrödinger equations
i∂tu +

1
2m

∆u = λvu, (x, t) ∈ Rn+1,

i∂tv +
1

2M
∆v = µu2, (x, t) ∈ Rn+1,

(1.1)

where u and v are complex-valued wave fields, m and M are positive constants, λ and µ are
complex constants, and u is the complex conjugate of u.

Such systems have interesting applications in several branches of physics, such as in the
study of interactions of waves with different polarizations [1, 11]. The Cauchy problem for
System 1.1 has been studied from the point of view of small data scattering [6, 7]. In 2013,
Hayashi, Ozawa and Tanaka [8] studied the well-posedness of Cauchy problem for System 1.1
with large data. In particular, System 1.1 is regarded as a non-relativistic limit of the system
of nonlinear Klein–Gordon equations

1
2c2m

∂2
t u− 1

2m
∆u +

mc2

2
u = −λvu, (x, t) ∈ Rn+1,

1
2c2M

∂2
t v− 1

2M
∆v +

Mc2

2
v = −µu2, (x, t) ∈ Rn+1,

(1.2)

BCorresponding author. Email: zgqw2001@usst.edu.cn

https://doi.org/10.14232/ejqtde.2018.1.97
https://www.math.u-szeged.hu/ejqtde/


2 G. Zhang and T. Gu

under the mass resonance condition M = 2m, where c is the speed of light.
Assume λ = cµ, c > 0, λ 6= 0 and µ 6= 0, we introduce new functions (ũ, ṽ) defined by

ũ(x, t) =
√

c
2
|µ|u

(√
1

2m
x, t

)
, ṽ(x, t) = −λ

2
v

(√
1

2m
x, t

)
,

and System (1.1) satisfies i∂tũ + ∆ũ = −2ṽũ, (x, t) ∈ Rn+1,

i∂tṽ +
m
M

∆ṽ = −ũ2, (x, t) ∈ Rn+1,
(1.3)

Using the ansatz (ũ(x, t), ṽ(x, t)) = (eiωtφ(x), ei2ωtψ(x)), φ(x), ψ(x) 6≡ 0 with ω > 0, System
(1.3) becomes {

− ∆φ + ωφ = 2φψ, x ∈ Rn,

− κ∆ψ + 2ωψ = φ2, x ∈ Rn,
(1.4)

where κ = m
M .

Let Lp(Rn) denote the usual Lebesgue space with the norm |u|p = (
∫

Rn |u|pdx)
1
p . The

space H1(Rn) := {u ∈ L2(Rn),∇u ∈ L2(Rn)} with the corresponding norm ‖u‖ =

(
∫

Rn |∇u|2 + |u|2dx)
1
2 , and H1

r (R
n) := {u ∈ H1(Rn); u is radially symmetric}.

Recently, as 2 ≤ n ≤ 5, Hayashi, Ozawa and Tanaka [8] obtained the existence of radially
symmetric ground states for System (1.4) by using rearrangement method, Pohozaev identity
and the Sobolev compact embedding H1

r (R
n) ⊂ L3(Rn).

In this paper, firstly, we prove the existence of bound states for System (1.4) by using the
Concentration-compactness Lemma and direct methods in the critical points theory. Secondly,
we discuss the general case for System (1.4), i.e.,{

− ∆φ + λ1φ = 2φψ, x ∈ Rn,

− κ∆ψ + λ2ψ = φ2, x ∈ Rn,
(1.5)

where (λ1, λ2) ∈ R2. By using the Concentration-compactness Lemma, variational arguments
and rearrangement result of Shibata [13], we obtain the existence of ground states for System
(1.5). In particular, if λ1 = 1

2 λ2 > 0, then System (1.5) can be reduced to System (1.4) and the
existence of ground states for System (1.4) is obtained in [8]. Furthermore, we also prove the
orbital stability of bound states and ground states.

Remark 1.1. In contrast to results in [8], we obtain the existence of bound states in the
whole space H1(Rn). Since the embedding H1(Rn) ⊂ L3(Rn) is only continuous, we ap-
ply the Concentration-compactness Lemma and variational arguments to obtain the existence
of bound states.

2 Preliminaries and main results

In this section, we state our main results in this paper.
Now, we define the functionals I, J and Q : H1(Rn)× H1(Rn)→ R by

I(φ, ψ) =
1
2

∫
Rn
(|∇φ|2 + κ|∇ψ|2)dx−

∫
Rn

φ2ψdx, ∀(φ, ψ) ∈ H1(Rn)× H1(Rn),

J(φ, ψ) =
1
2

∫
Rn
(|∇φ|2 + κ|∇ψ|2)dx, ∀(φ, ψ) ∈ H1(Rn)× H1(Rn),
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and

Q(φ, ψ) =
ω

2

(∫
Rn
|φ|2dx + 2

∫
Rn
|ψ|2dx

)
, ∀(φ, ψ) ∈ H1(Rn)× H1(Rn).

It is obvious that I, J and Q ∈ C1(H1(Rn)× H1(Rn), R). Hence, (φ, ψ) is a weak solution of
System (1.4) if and only if (φ, ψ) is a critical point of the functional S := I + Q.

Let MN = {(φ, ψ) ∈ H1(Rn)× H1(Rn) : Q(φ, ψ) = N, |φ|22, |ψ|22 > 0} for some N > 0, and
the minimizing problem

IN = inf{I(φ, ψ); (φ, ψ) ∈ MN}. (2.1)

Besides, for every N > 0, let PN denote the set of bound states of System (1.4), that is,

PN = {(φ, ψ) ∈ H1(Rn)× H1(Rn); I(φ, ψ) = IN and (φ, ψ) ∈ MN},

which generates the solitary waves of System (1.1).

Theorem 2.1. Let n = 2, 3. Then we have:

(1) For all N > 0, there exists (φN , ψN) ∈ H1(Rn)× H1(Rn) a solution of

(φN , ψN) ∈ MN ,
I(φN , ψN) = min{I(φ, ψ); (φ, ψ) ∈ MN}.

(2.2)

(2) If (φN , ψN) is a solution of the minimizing problem (2.2), then there exists a Lagrange multiplier
σN > 0 such that {

− ∆φ + σNωφ = 2φψ, x ∈ Rn,

− κ∆ψ + 2σNωψ = φ2, x ∈ Rn,
(2.3)

where σN is given by

σN =
2
n J(φN , ψN)− IN

N
. (2.4)

(3) The set

Σ := {(N, σN); N > 0, σN is a Lagrange multiplier of the minimizing problem (2.2)}

is a closed graph in (0,+∞)× (0,+∞). In particular, if Σ is a function, then it is continuous and
there exists N0 > 0 such that σN0 = 1. So, (φN0 , ψN0) is a bound state of System (1.4).

Next, we define the set

Mα,β = {(φ, ψ) ∈ H1(Rn)× H1(Rn) : |φ|22 = α, |ψ|22 = β}

for any α, β > 0, and the minimizing problem

Iα,β = inf{I(φ, ψ); (φ, ψ) ∈ Mα,β}.

Besides, for any α, β > 0, let

Gα,β = {(φ, ψ) ∈ Mα,β; I(φ, ψ) = Iα,β},

which denotes the set of ground states of System (1.5).
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Theorem 2.2.

(1) For any α, β > 0, any minimizing sequence {(φn, ψn)}n≥1 ⊂ H1(Rn)× H1(Rn) with respect to
Iα,β is pre-compact. That is, taking a subsequence, there exist (φ, ψ) ∈ Mα,β and {yn}n≥1 ⊂ Rn

such that φn(· − yn)→ φ, ψn(· − yn)→ ψ in H1(Rn) as n→ ∞.

(2) Let (λ1, λ2) be the Lagrange multiplier associated with (φ, ψ) on Mα,β, we have λ1 > 0.

(3) If (φ, ψ) ∈ Gα,β, we have (|φ|, |ψ|) ∈ Gα,β. One also has (φ∗, ψ∗) ∈ Gα,β whenever (φ, ψ) ∈ Gα,β

and φ∗, ψ∗ > 0, where f ∗ represents the symmetric decreasing rearrangement of the function f .

Definition 2.3. For any N > 0, the set PN is stable if for any ε > 0 there exists a δ(ε) > 0 such
that if (φ0, ψ0) ∈ H1(Rn)× H1(Rn) verifies

inf
(φN ,ψN)∈PN

‖(φ0, ψ0)− (φN , ψN)‖H1(Rn)×H1(Rn) < δ(ε),

then the solution (φ(t), ψ(t)) of the System (1.1) with φ(0) = φ0, ψ(0) = ψ0 satisfies

sup
t∈R

inf
(φN ,ψN)∈PN

‖(φ(t), ψ(t))− (φN , ψN)‖H1(Rn)×H1(Rn) < ε.

Besides, we can also define the set Gα,β is stable in the same way.

Theorem 2.4. Let n = 2, 3, the sets PN and Gα,β are stable.

Now, we recall the rearrangement results of Shibata [13] as presented in [9]. Let u be a Borel
measureable function on Rn. Then u is said to vanish at infinity if |{x ∈ Rn; |u(x)| > s}| < ∞
for every s > 0. Here | · | stands for the n-dimensional Lebesgue measure. Considering two
Borel functions u, v which vanish at infinity in Rn, we define for s > 0, set A?(u, v; s) :=
{x ∈ Rn; |x| < r} where r ≥ 0 is chosen so that

|Br(0)| = |{x ∈ Rn; |u(x)| > s}|+ |x ∈ Rn; |v(x)| > s}|,

and {u, v}? by

{u, v}?(x) :=
∫ ∞

0
χA?(u,v;s)(x)ds,

where χA(x) is a characteristic function of the set A ⊂ Rn.

Lemma 2.5 ([9, Lemma A.1]).

(1) The function {u, v}?(x) is radially symmetric, non-increasing and lower semi-continuous. More-
over, for each s > 0 there holds {x ∈ Rn; {u, v}? > s} = A?(u, v; s).

(2) Let Φ : [0, ∞)→ [0, ∞) be non-decreasing, lower semi-continuous, continuous at 0 and Φ(0) = 0.
Then {Φ(u), Φ(v)}? = Φ ({u, v}?).

(3) |{u, v}?|pp = |u|pp + |v|
p
p for 1 ≤ p < ∞.

(4) If u, v ∈ H1(Rn), then {u, v}? ∈ H1(Rn) and |∇{u, v}?|22 ≤ |∇u|22 + |∇v|22. In addition, if
u, v ∈ (H1(Rn) ∩ C1(Rn))\{0} are radially symmetric, positive and non-increasing, then we
have ∫

Rn
|∇{u, v}?|2 dx <

∫
Rn
|∇u|2dx +

∫
Rn
|∇v|2dx.

(5) Let u1, u2, v1, v2 ≥ 0 be Borel measurable functions which vanish at infinity, then we have∫
Rn
(u1u2 + v1v2)dx ≤

∫
Rn
{u1, v1}?{u2, v2}?dx.
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3 Bound states

Let {(φn, ψn)}n≥1 be a minimizing sequence for the minimizing problem (2.1), that is, the
sequence {(φn, ψn)}n≥1 ∈ H1(Rn)× H1(Rn) satisfies Q(φn, ψn) → N and I(φn, ψn) → IN , as
n→ ∞. Then, we have

Lemma 3.1. As n = 2, 3, there exists B > 0 such that ‖(φn, ψn)‖H1(Rn)×H1(Rn) ≤ B for all n, and
the functional I is bounded below on MN .

Proof. By the Gagliardo–Nirenberg inequality, we have

(∫
Rn
|φ|3dx

) 1
3

≤ C
(∫

Rn
|∇φ|2dx

) n
12
(∫

Rn
|φ|2dx

) 1
2−

n
12

.

Hence, we have

∫
Rn

φ2ψdx ≤
(∫

Rn
(φ2)

3
2 dx
) 2

3
(∫

Rn
|ψ|3dx

) 1
3

=

(∫
Rn
|φ|3dx

) 2
3
(∫

Rn
|ψ|3dx

) 1
3

≤ C
(∫

Rn
|∇φ|2dx

) n
6
(∫

Rn
|∇ψ|2dx

) n
12

.

Since n = 2, 3, we have n
6 + n

12 < 1. Thus, I is coercive and in particular IN > −∞. By the
coerciveness of I on MN , the sequence {(φn, ψn)}n≥1 is bounded in H1(Rn)× H1(Rn). Thus,
there exists B > 0 such that ‖(φn, ψn)‖H1(Rn)×H1(Rn) ≤ B for all n.

Lemma 3.2. For any N > 0, IN < 0 and IN is continuous with respect to N.

Proof. Let A(φ) = 1
2

∫
Rn |∇φ|2dx, B(ψ) = κ

2

∫
Rn |∇ψ|2dx, and C(φ, ψ) =

∫
Rn φ2ψdx, hence,

I(φ, ψ) = A(φ) + B(ψ)− C(φ, ψ).

Now let (φ(x), ψ(x)) ∈ MN be fixed. For any b > 0, we define φθ(x) = θ
bn
2 φ(θbx), ψθ(x) =

θ
bn
2 ψ(θbx), then (φθ(x), ψθ(x)) ∈ MN as well. We have the following scaling laws:

A(φθ(x)) =
1
2

∫
Rn
|θ bn

2 ∇φ(θbx)|2dx = θ2b A(φ(x)),

B(ψθ(x)) =
κ

2

∫
Rn
|θ bn

2 ∇ψ(θbx)|2dx = θ2bB(ψ(x)),

and

C(φθ(x), ψθ(x)) =
∫

Rn
θbnφ2(θbx)θ

bn
2 ψ(θbx)dx = θ

bn
2 C(φ(x), ψ(x)).

So, we get

I(φθ(x), ψθ(x)) = θ2b A + θ2bB− θ
bn
2 C.

Since n = 2, 3, we have bn
2 < 2b. Letting θ → 0, then I(φθ(x), ψθ(x)) → 0−. Hence, we prove

IN < 0.
In order to prove that IN is a continuous function, we assume Nn = N + o(1). From the

definition of INn , for any ε > 0, there exists (φn, ψn) ∈ MNn such that

I(φn, ψn) ≤ INn + ε. (3.1)
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Setting

(un, vn) :=

(√
N
Nn

φn,
√

N
Nn

ψn

)
,

we have that (un, vn) ∈ MN and

IN ≤ I(un, vn) = I(φn, ψn) + o(1). (3.2)

Combining (3.1) and (3.2), we obtain

IN ≤ INn + ε + o(1).

Reversing the argument, we obtain similarly that

INn ≤ IN + ε + o(1).

Therefore, since ε > 0 is arbitrary, we deduce that INn = IN + o(1).

Lemma 3.3. IN
N is decreasing in (0,+∞).

Proof. For (φ, ψ) ∈ H1(Rn) × H1(Rn), we define (φθ(x), ψθ(x)) :=
(
θbφ(θax), θbψ(θax)

)
,

∀θ > 0. Choosing a, b > 0, such that 2b− na = 1, it follows that Q (φθ(x), ψθ(x)) = θQ(φ, ψ)

and we can write

I (φθ(x), ψθ(x)) = θ2a+1 I(φ, ψ) + θ2a+1
∫

Rn
φ2ψdx− θb+1

∫
Rn

φ2ψdx. (3.3)

We can choose a, b > 0 such that 2b− na = 1, b > 2a and it follows from (3.3) that

I (φθ(x), ψθ(x)) < θ2a+1 I(φ, ψ), ∀θ > 1.

Since (φ(x), ψ(x)) ∈ MN ⇔ (φθ(x), ψθ(x)) ∈ MθN , ∀θ, N > 0, it follows that

IθN < θ2a+1 IN < θ IN , ∀θ > 1.

Thus,
IθN

θN
<

IN

N
, ∀θ > 1.

Lemma 3.4. For any N > 0 and λ ∈ (0, N), we have IN < Iλ + IN−λ.

Proof. Thanks to the following well-known inequality: ∀a, b, A, B > 0,

min
{

a
A

,
b
B

}
≤ a + b

A + B
≤ max

{
a
A

,
b
B

}
,

where the equalities hold if and only if a
A = b

B , we get

(−Iλ) + (−IN−λ)

λ + N − λ
≤ max

{
−Iλ

λ
,
−IN−λ

N − λ

}
.

Without loss of generality, we assume −Iλ
λ is larger than −IN−λ

N−λ , then

(−Iλ) + (−IN−λ)

N
≤ −Iλ

λ
.

By Lemma 3.3, we have

Iλ + IN−λ ≥
N
λ

Iλ > IN .
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Proof of Theorem 2.1. Our proof is divided into five steps:

Step 1. The minimizing problem (2.2) has a solution. By Lemma 3.1, the sequence {(φn, ψn)}
is bounded in H1(Rn)× H1(Rn). If

sup
y∈Rn

∫
BR(y)

(|φn|2 + |ψn|2)dx = o(1),

for some R > 0, the φn → 0, ψn → 0 in Lp(Rn) for 2 < p < 2∗, see [11, 12]. This is in-
compatible with the fact that IN < 0, see Lemma 3.2. Thus, the vanishing of minimizing
sequence {(φn, ψn)} does not exist. Besides, Lemma 3.4 prevents their dichotomy. Accord-
ing to Concentration-compactness Lemma, only concentration exists, and we get a solution
(φN , ψN) of the minimizing problem (2.2).

Step 2. There exists a positive Lagrange multiplier σN . Let (φN , ψN) a solution of the mini-
mizing problem (2.2). From the Lagrange Multiplier Theorem, there exists θ ∈ R such that
I′(φN , ψN) = θQ′(φN , ψN), that means

−∆φN − 2φNψN = θωφN ,

−κ∆ψN − φ2
N = 2θωψN .

(3.4)

By multiply the above equations respectively by φN , ψN and integrating on Rn, we get

IN −
1
2

∫
Rn

φ2
NψNdx = θN. (3.5)

Since IN < 0, ∀N > 0, we obtain easily from (3.5) that θ < 0.
For any λ, c > 0, we consider

(φλ(x), ψλ(x)) :=
(

λ
cn
2 φN(λ

cx), λ
cn
2 ψN(λ

cx)
)

,

then (φλ(x), ψλ(x)) ∈ MN and I(φN , ψN) = minλ>0 I (φλ(x), ψλ(x)). In particular,

0 =
d

dλ
I (φλ(x), ψλ(x))

∣∣∣∣
λ=1

= 2cJ(φN , ψN)−
cn
2

∫
Rn

φ2
NψNdx. (3.6)

Merging (3.5) and (3.6), we get

IN −
2
n

J(φN , ψN) = θN,

which implies that θ < 0 and the Lagrange multiplier

σN = −θ =
2
n J(φN , ψN)− IN

N
> 0. (3.7)

Step 3. There exist γ(n) > 0 such that

− IN

N
< σN < γ(n)− IN

N
. (3.8)

Since I(φN , ψN) < 0, we get from Hölder’s inequality and the Gagliardo–Nirenberg inequality
that

J(φN , ψN) <
∫

Rn
φ2

NψNdx ≤ 1
2

(
|φN |43 + |ψN |32

)
≤ C

(
|∇φN |

2n
3

2 |φN |
4− 2n

3
2 + |∇ψN |

n
3
2 |ψN |

2− n
3

2

)
≤ C

(
J(φN , ψN)

n
3 + J(φN , ψN)

n
6

)
ρ(N),

(3.9)
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where C > 0 and ρ(N) := max
{

N(2− n
3 ), N(1− n

6 )
}

.
Let f : (0, ∞)→ R the function defined by

f (s) :=
s

s
n
3 + s

n
6

,

and we know f ′(s) > 0, ∀s > 0 and lims→0+ f (s) = 0. So, we can rewrite (3.9) as

J(φN , ψN) < f−1 (Cρ(N)) . (3.10)

Note that
ρ(s) = s(1−

n
6 ) if s ≤ 1, and f (s) ≥ 1

2
s(1−

n
6 ) if s ≤ 1,

ρ(s) = s(2−
n
3 ) if s ≥ 1, and f (s) ≥ 1

2
s(1−

n
3 ) if s ≥ 1.

By a straightforward calculation we see that there exists C1 > 0 such that

f−1 (Cρ(N)) ≤ C1N if N ≤ 1,

f−1 (Cρ(N)) ≤ C1N( 6−n
3−n ) if N ≥ 1.

Hence, we obtain from (3.10) that

J(φN , ψN) < C1N, ∀N > 0.

Let γ(n) = 2C1
n , (3.8) holds.

Step 4. Σ is closed in (0,+∞)× (0,+∞). For all (φN , ψN) solution of the minimizing problem
(2.2), we define

σ(φN , ψN) :=
1
N

(
2
n

J(φN , ψN)− IN

)
,

ΣN := {σ(φN , ψN); (φN , ψN) solution of the minimizing problem (2.2)}.

Then it is easy to see that Σ = {(N, σN); N > 0, σN ∈ ΣN}.
Let (Nn, σn) ∈ Σ such that (Nn, σn) → (N, σ), N > 0. By definition, there exists (φn, ψn) ∈

H1(Rn)× H1(Rn) such that Q(φn, ψn) = Nn, I(φn, ψn) = INn and

σn =
1

Nn

(
2
n

J(φn, ψn)− INn

)
.

By Lemmas 3.1 and 3.2, {(φn, ψn)} is bounded in H1(Rn)× H1(Rn). If we define

(un, vn) :=

(√
N
Nn

φn,
√

N
Nn

ψn

)
,

then {(un, vn)} is also bounded in H1(Rn) × H1(Rn) and Q(un, vn) = N. By using the
Concentration-compactness Lemma, there exists a subsequence satisfying only one of the
following three cases: 1) concentration; 2) vanishing; 3) dichotomy.

By using the argument as in step 1, only concentration exists. Therefore, there exists
{yn}n≥1 ⊂ Rn and (φ, ψ) ∈ H1(Rn)× H1(Rn) such that

φn(· − yn) ⇀ φ, ψn(· − yn) ⇀ ψ weakly in H1(Rn),
φn(· − yn)→ φ, ψn(· − yn)→ ψ in L2(Rn),∫

Rn
φ2

n(· − yn)ψn(· − yn)dx =
∫

Rn
φ2

nψndx →
∫

Rn
φ2ψdx.
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In particular, Q(φ, ψ) = N and I(φ, ψ) ≥ IN . On the other hand,

I(φN , ψN) ≤ lim inf
n→∞

I (φn(· − yn), ψn(· − yn)) = lim
n→∞

I(φn, ψn) = IN .

So, I(φN , ψN) = IN and (φN , ψN) is a solution of the minimizing problem (2.2). Moreover,
since

J(φn, ψn) = I(φn, ψn) +
∫

Rn
φ2

nψndx → I(φN , ψN) +
∫

Rn
φ2

NψN = J(φN , ψN),

we conclude that

σ =
1
N

(
2
n

J(φN , ψN)− IN

)
∈ ΣN .

Step 5. If Σ is a function, then it is continuous and there exists N0 > 0 such that σN0 = 1. In
particular, (φN0 , ψN0) is a bound state of System (1.4). This follows easily from Step 4, (3.8)
and Lemma 3.3.

4 Ground states

Lemma 4.1. The energy Iα,β satisfies that

(i) For any α, β > 0, −∞ < Iα,β < 0.

(ii) Iα,β is continuous with respect to α, β ≥ 0.

(iii) Iα+α′,β+β′ ≤ Iα,β + Iα′,β′ for α, α′, β, β′ ≥ 0.

Proof. The proofs of (i) and (ii) use the same arguments as in Lemmas 3.1 and 3.2. Next, we
prove (iii). Indeed, for ε > 0, there exists (u, v) ∈ Mα,β ∩C∞

0 (Rn) and (φ, ψ) ∈ Mα′,β′ ∩C∞
0 (Rn).

By using parallel transformation, we can assume that (supp u ∪ supp v)∩ (supp φ ∪ supp ψ) =

∅. Therefore (u + φ, v + ψ) ∈ Mα+α′,β+β′ and

Iα+α′,β+β′ ≤ I(u + φ, v + ψ) = I(u, v) + I(φ, ψ) ≤ Iα,β + Iα′,β′ + 2ε.

Since ε > 0 is arbitrarily, it asserts (iii).

Lemma 4.2. For any minimizing sequence {(φn, ψn)}n≥1 of Iα,β, if (φn, ψn) ⇀ (φ, ψ) weakly in
H1(Rn)× H1(Rn), then∫

Rn
φ2

nψn − (φn − φ)2(ψn − ψ)dx =
∫

Rn
φ2ψdx + o(1).

Proof. The idea of its proof comes from [5] (see also Lemma 2.3 of [4]). For any a1, a2, b1,
b2 ∈ R and ε > 0, we deduce from the mean value theorem and Young’s inequality that

|(a1 + a2)
2(b1 + b2)− a2

1b1| ≤ Cε(|a1|3 + |a2|3 + |b1|3 + |b2|3) + Cε(|a2|3 + |b2|3).

Denote a1 := φn − φ, b1 := ψn − ψ, a2 := φ, b2 := ψ. Then

f ε
n :=

[
|φ2

nψn − (φn − φ)2(ψn − ψ)− φ2ψ| − Cε(|φn − φ|3 + |φ|3 + |ψn − ψ|3 + |ψ|3|)
]
+

≤ |φ2ψ|+ Cε(|φ|3 + |ψ|3),

and the dominated convergence theorem yields∫
Rn

f ε
ndx → 0, as n→ ∞. (4.1)
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Since

|φ2
nψn − (φn − φ)2(ψn − ψ)− φ2ψ| ≤ f ε

n + Cε(|φn − φ|3 + |ψn − ψ|3 + |φ|3 + |ψ|3|),

by the boundedness of {(φn, ψn)}n≥1 in H1(Rn)× H1(Rn) and (4.1), it follows that∫
Rn

φ2
nψn − (φn − φ)2(ψn − ψ)dx =

∫
Rn

φ2ψdx + o(1).

Lemma 4.3. Any minimizing sequence {(φn, ψn)}n≥1 ⊂ H1(Rn)× H1(Rn) with respect to Iα,β is,
up to translation, strongly convergent in Lp(Rn)× Lp(Rn) for 2 < p < 2∗.

Proof. Similar to the Step 1 of the proof of Theorem 2.1, we can know that there exists a β0 > 0
and a sequence {yn} ⊂ Rn such that

sup
y∈Rn

∫
BR(yn)

(|φn|2 + |ψn|2)dx ≥ β0 > 0,

and we deduce from the weak convergence in H1(Rn)× H1(Rn) and the local compactness in
Lp(Rn)× Lp(Rn) that (φn(x− yn), ψn(x− yn)) ⇀ (φ, ψ) 6= (0, 0) weakly in H1(Rn)× H1(Rn).
In order to prove that un(x) := φn(x)− φ(x + yn) → 0, vn(x) := ψn(x)− ψ(x + yn) → 0 in
Lp(Rn) for 2 < p < 2∗, we suppose that there exists a 2 < q < 2∗ such that (un, vn) 9 (0, 0) in
Lp(Rn)× Lp(Rn). Note that under this assumption by contradiction there exists a sequence
{zn} ⊂ Rn such that

(un(x− zn), vn(x− zn)) ⇀ (u, v) 6= (0, 0)

weakly in H1(Rn)× H1(Rn).
Now, combining the Brézis–Lieb Lemma ([10]), Lemma 4.2 and the translational invari-

ance, we conclude

I(φn, ψn) = I(un(x− yn), vn(x− yn)) + I(φ, ψ) + o(1)

= I(un(x− zn)− u, vn(x− zn)− v) + I(u, v) + I(φ, ψ) + o(1),
(4.2)

|φn(x− yn)|22 = |un(x− zn)− u|22 + |u|22 + |φ|22 + o(1),

and
|ψn(x− yn)|22 = |vn(x− zn)− v|22 + |v|22 + |ψ|22 + o(1).

Let α′ := α− |u|22 − |φ|22, β′ := α− |v|22 − |ψ|22, then

|un(x− zn)− u|22 = α′ + o(1), |vn(x− zn)− v|22 = β′ + o(1). (4.3)

Noting that

|u|22 ≤ lim inf
n→∞

|un(x− zn)|22 = lim inf
n→∞

|φn(x− yn)− φ|22 = α− |φ|22,

then α′ ≥ 0. Similarly, β′ ≥ 0. Recording that I(φn, ψn) → Iα,β, in consideration of (4.3),
Lemma 4.1 (ii) and (4.2), we get

Iα,β ≥ Iα′,β′ + I(u, v) + I(φ, ψ). (4.4)

We know from the front that (φ, ψ) 6= (0, 0) and (u, v) 6= (0, 0). As for φ, ψ, u, v, if one of
them is identically zero, we have

Iα,β ≥ Iα′,β′ + I(u, v) + I(φ, ψ) > Iα′,β′ + I|u|22,|v|22
+ I|φ|22,|ψ|22

≥ Iα,β,
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which is impossible. So, φ, ψ, u, v 6≡ 0. If I(u, v) > I|u|22,|v|22
or I(φ, ψ) > I|φ|22,|ψ|22

, we also have a
contradiction. Hence I(u, v) = I|u|22,|v|22

and I(φ, ψ) = I|φ|22,|ψ|22
. We denote by φ∗, ψ∗, u∗, v∗ the

classical Schwarz symmetric-decreasing rearrangement of φ, ψ, u, v. Since

|φ∗|22 = |φ|22, |ψ∗|22 = |ψ|22, |u∗|22 = |u|22, |v∗|22 = |v|22,

I(φ∗, ψ∗) ≤ I(φ, ψ), I(u∗, v∗) ≤ I(u, v)

see [10], we conclude that

I(φ∗, ψ∗) = I|φ|22,|ψ|22
, I(u∗, v∗) = I|u|22,|v|22

.

Therefore, (φ∗, ψ∗), (u∗, v∗) are solutions of the System (1.1) and from standard regularity
results we have that φ∗, ψ∗, u∗, v∗ ∈ C2(Rn).

By Lemma 2.5, we have∫
Rn

∣∣∇{φ∗, u∗}?
∣∣2 dx <

∫
Rn

(
|∇φ∗|2 + |∇u∗|2

)
dx ≤

∫
Rn

(
|∇φ|2 + |∇u|2

)
dx,∫

Rn

∣∣∇{ψ∗, v∗}?
∣∣2 dx <

∫
Rn

(
|∇ψ∗|2 + |∇v∗|2

)
dx ≤

∫
Rn

(
|∇ψ|2 + |∇v|2

)
dx,

and ∫
Rn

(
{φ∗, u∗}?

)2 {ψ∗, v∗}? dx ≥
∫

Rn

(
(φ∗)2 ψ∗ + (u∗)2 v∗

)
dx ≥

∫
Rn

(
φ2ψ + u2v

)
dx.

Thus,
I(φ, ψ) + I(u, v) > I

(
{φ∗, u∗}? , {ψ∗, v∗}?

)
, (4.5)

and ∫
Rn

∣∣{φ∗, u∗}?
∣∣2 dx =

∫
Rn

(
|φ∗|2 + |u∗|2

)
dx =

∫
Rn

(
|φ|2 + |u|2

)
dx = α− α′,∫

Rn

∣∣{ψ∗, v∗}?
∣∣2 dx =

∫
Rn

(
|ψ∗|2 + |v∗|2

)
dx =

∫
Rn

(
|ψ|2 + |v|2

)
dx = β− β′.

(4.6)

Taking (4.4)–(4.6) and Lemma 4.1 (iii) into consideration, one obtains the contradiction

Iα,β > Iα′,β′ + Iα−α′,β−β′ ≥ Iα,β.

The contradiction indicates that un(x) := φn(x) − φ(x + yn) → 0 and vn(x) := ψn(x)−
ψ(x + yn)→ 0 in Lp(Rn) for 2 < p < 2∗.

Proof of Theorem 2.2. (1) Let {(φn, ψn)} be a minimizing sequence for the functional I on Mα,β.
In light of Lemma 4.3, we know that there exists {yn} ⊂ Rn such that φn(x − yn) → φ,
ψn(x− yn)→ ψ in Lp(Rn) for 2 < p < 2∗. Hence, by weak convergence, we get

I(φ, ψ) ≤ Iα,β. (4.7)

Now, we let |φ|22 = α′, |ψ|22 = β′. To show that |φ|22 = α and |ψ|22 = β, we assume by
contradiction that α′ < α or β′ < β. We consider the following three cases: (1) 0 ≤ α′ < α,
0 ≤ β′ < β and α′ + β′ 6= 0; (2) 0 ≤ α′ < α, β′ = β; and (3) 0 ≤ β′ < β, α′ = α.

Case 1. 0 ≤ α′ < α, 0 ≤ β′ < β and α′+ β′ 6= 0. By definition I(φ, ψ) ≥ Iα′,β′ and thus it results
from (4.7) that Iα′,β′ ≤ Iα,β. From Lemma 4.1 (iii), Iα,β ≤ Iα′,β′ + Iα−α′,β−β′ and by Lemma 4.1 (i),
Iα−α′,β−β′ < 0, we obtain Iα,β < Iα′,β′ and it is a contradiction.
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Case 2. 0 ≤ α′ < α, β′ = β. By definition I(φ, ψ) ≥ Iα′,β, we get Iα′,β ≤ Iα,β. From Lemma 4.1
(iii) Iα,β ≤ Iα′,β + Iα−α′,0, we have Iα′,β ≤ Iα,β ≤ Iα′,β. Thus Iα′,β = Iα,β. Let |ψ|22 = β, and β is
fixed. From the above, we know that N = ω

2 (|φ|22 + 2β), then N is only related to |φ|22. By

Lemma 3.3,
IN(|φ|22)

N(|φ|22)
is decreasing in (0,+∞), when |φ|22 gradually increases. If |φ|22 = α′, we

have IN(α′) = Iα′,β. Similarly, IN(α) = Iα,β. Since
IN(α′)
N(α′) >

IN(α)

N(α)
, we have IN(α′) >

N(α)
N(α′) IN(α′) >

IN(α). So, we obtain that Iα′,β > Iα,β, and it is a contradiction. As for the case (3), we can prove
by the same argument.

Now we have un(x) = φn(x)− φ(x + yn) → 0, vn(x) = ψn(x)− ψ(x + yn) → 0 in L2(Rn).
By using the P.-L. Lions Lemma, un(x), vn(x)→ 0 in L3(Rn). According to Hölder inequality,
we have

∣∣∫
Rn u2

nvndx
∣∣ ≤ |un|23|vn|3. Hence

∫
Rn u2

nvndx → 0. By the Brézis–Lieb Lemma,

I(φn, ψn) = I(φ, ψ) + I(un, vn) + o(1)

= Iα,β +
1
2

∫
Rn
|∇un|2 + κ|∇vn|2dx + o(1) as n→ ∞.

Taking n → ∞, we obtain limn→∞
∫

Rn |∇un|2 + κ|∇vn|2dx = 0. Thus we get limn→∞ un =

limn→∞ vn = 0 in H1(Rn).
(2) Let (φ, ψ) ∈ Gα,β for any α, β > 0. By the Lagrange multiplier method, there exists a

pair (λ1, λ2) ∈ R2 such that (λ1, λ2, φ, ψ) satisfies System (1.5). By multiply the first equation
of (1.5) by φ, we get ∫

Rn
|∇φ|2dx− 2

∫
Rn

φ2ψdx = −λ1|φ|22.

Since I(φ, ψ) < 0 (see Lemma 4.1 (i)), we get∫
Rn
|∇φ|2dx− 2

∫
Rn

φ2ψdx < 2I(φ, ψ) < 0.

Then λ1 > 0.
(3) Using the fact

|∇|φ||2 ≤ |∇φ|2, |∇|ψ||2 ≤ |∇ψ|2 and
∫

Rn
|φ|2|ψ|dx ≥

∫
Rn

φ2ψdx

it follows that (φ, ψ) ∈ H1(Rn)× H1(Rn) ⇒ (|φ|, |ψ|) ∈ H1(Rn)× H1(Rn) and I(|φ|, |ψ|) ≤
I(φ, ψ). Thus, Gα,β contains (|φ|, |ψ|) and hence, the minimizer (φ, ψ) can be chosen to be
R-valued.

To prove (φ∗, ψ∗) ∈ Gα,β, we need the following fact

|∇φ∗|2 ≤ |∇φ|2, |∇ψ∗|2 ≤ |∇ψ|2 (4.8)

see [10, Theorem 7.17]. Moreover, it is well-know that the symmetric decreasing rearrange-
ment preserves the Lp norm, that is,

|φ∗|p = |φ|p, |ψ∗|p = |ψ|p, 1 ≤ p ≤ ∞. (4.9)

Furthermore, we have ∫
Rn
(φ∗)2ψ∗dx ≥

∫
Rn

φ2ψdx (4.10)

(see for example, Theorem 3.4 of [10]). Taking into account of (4.8), (4.9) and (4.10), it follows
that

|φ∗|22 = |φ|22, |ψ∗|22 = |ψ|22 and I(φ∗, ψ∗) ≤ I(φ, ψ), ∀(φ, ψ) ∈ H1(Rn)× H1(Rn),
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which shows that Gα,β contains (φ∗, ψ∗) whenever it does (φ, ψ).
To show that φ∗ > 0 on Rn, observe that (|φ|, |ψ|) ∈ Gα,β satisfies the Euler–Lagrange

differential equations {
− ∆|φ|+ λ1|φ| = 2|φ||ψ|, x ∈ Rn,

− κ∆|ψ|+ λ2|ψ| = |φ|2, x ∈ Rn,

where (λ1, λ2) is the same pair of numbers as in System (1.5). Letting f1(|φ|, |ψ|) = 2|φ||ψ|.
Since λ1 > 0, we have

|φ| = G
√

λ1(x) ∗ f1(|φ|, |ψ|) =
∫

Rn
G
√

λ1(x− y) f1(|φ|, |ψ|)(y)dy,

where Gµ(x) is defined by

Gµ(x) =
∫ ∞

0
(4πτ)−

n
2 exp

{
−|x|

2

4τ
− µ2τ

}
dτ,

for x ∈ Rn, µ > 0. Since the function f1 is everywhere nonnegative and not identically zero, it
follows that |φ| > 0. So, we obtain φ∗ > 0. Besides, by the maximum principle, we get ψ∗ > 0.
This concludes the proof of statement (3).

5 Orbital stability

In this section, we proceed as in [3] to prove the orbital stability of bound state and ground
state solitary waves.

Proof of Theorem 2.4. We assume that the set PN is not stable, then there is a ε0 > 0,
{(φn(0), ψn(0))} ⊂ H1(Rn)× H1(Rn) and {tn} ⊂ R+ such that

inf
(φN ,ψN)∈PN

‖(φn(0), ψn(0))− (φN , ψN)‖H1(Rn)×H1(Rn) → 0 as n→ ∞, (5.1)

and
inf

(φN ,ψN)∈PN

‖(φn(tn), ψn(tn))− (φN , ψN)‖H1(Rn)×H1(Rn) ≥ ε0, (5.2)

Since by the conservation laws, we have

|φn(tn)|22 = |φn(0)|22, |ψn(tn)|22 = |ψn(0)|22,

and
I(φn(tn), ψn(tn)) = I(φn(0), ψn(0)).

If we define

(φ̂n, ψ̂n) =

(
φn(tn)

|φn(tn)|2
√

η,
ψn(tn)

|ψn(tn)|2

√
2N −ωη

2ω

)
,

where 0 < η < 2N
ω , we get that

Q(φ̂n, ψ̂n) = N and I(φ̂n, ψ̂n) = IN + o(1).

Namely {(φ̂n, ψ̂n)} is a minimizing sequence for the minimizing problem (2.1). From Theo-
rem 2.1 (1), it follows that it is precompact in H1(Rn)× H1(Rn) thus (5.2) fails.

The proof of the orbital stability of Gα,β is similar to the above proof.
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