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Abstract. This paper is dedicated to studying the following fractional Choquard equa-
tion

(−4)su + V(x)u =

(∫
RN

Q(y)F(u(y))
|x− y|µ dy

)
Q(x) f (u), u ∈ Hs(RN),

where s ∈ (0, 1), N ≥ 3, µ ∈ (0, N), V(x) and Q(x) are periodic or asymptotically
periodic, and F(t) =

∫ t
0 f (s)ds. By combining the non-Nehari manifold approach with

some new inequalities, we establish the existence of Nehari type ground state solutions
for the above problem in the periodic and asymptotically periodic cases under mild as-
sumptions on f . Our results generalize and improve the ones in [Y. H. Chen, C. G. Liu,
Nonlinearity 29(2016), 1827–1842] and some related literature.
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1 Introduction

In this paper, we are concerned with the following fractional Choquard equation

(−4)su + V(x)u =

(∫
RN

Q(y)F(u(y))
|x− y|µ dy

)
Q(x) f (u), u ∈ Hs(RN), (1.1)

where s ∈ (0, 1), N ≥ 3, µ ∈ (0, N), F(t) =
∫ t

0 f (s)ds, V, Q and f satisfy

(VQ) V, Q ∈ L∞(RN , R), ess infx∈RN V(x) > 0 and ess infx∈RN Q(x) > 0;

(F1) f ∈ C(R, R), and there exist constants C0 > 0 and 2− µ
N < p1 ≤ p2 < 2∗s

2 (2−
µ
N ) such

that
| f (t)| ≤ C0

(
|t|p1−1 + |t|p2−1

)
, ∀ t ∈ R,

where 2∗s := 2N/(N − 2s);
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(F2) f (t) is nondecreasing on R;

(F3) lim|t|→∞
F(t)
|t| = +∞.

The fractional Laplacian (−4)s in RN is a nonlocal pseudo-differential operator taking the
form

(−4)su(x) = CN,s lim
ε→0

∫
RN\Bε(0)

u(x)− u(y)
|x− y|N+2s dy,

where CN,s is a normalization constant, see [3, 21]. In this paper, we consider the fractional
Laplacian in the weak sense. For any N ≥ 3 and s ∈ (0, 1), under (VQ), the fractional Sobolev
space Hs(RN) can be defined as

Hs(RN) =
{

u ∈ L2(RN) : (−4)
s
2 u ∈ L2(RN)

}
endowed with scalar product and norm

(u, v) =
∫

RN

[
(−4)

s
2 u(−4)

s
2 v + V(x)uv

]
dx, ‖u‖ =

(∫
RN

[
|(−4)

s
2 u|2 + V(x)u2

]
dx
)1/2

.

From [16, Lemma 2.1], Hs(RN) is continuously embedded into Lq(RN) for 2 ≤ q ≤ 2∗s
and compactly embedded into Lq

loc(R
N) for 2 ≤ q < 2∗s . Define the energy functional

Φ : Hs(RN)→ R by

Φ(u) =
1
2

∫
RN

[
|(−4)

s
2 u|2 + V(x)u2

]
dx− 1

2

∫
RN

∫
RN

Q(x)Q(y)F(u(x))F(u(y))
|x− y|µ dxdy. (1.2)

As we shall see in Section 2, 2∗s
2

(
2 − µ

N

)
is the critical exponent in the sense of Hardy–

Littlewood–Sobolev inequality, (VQ) and (F1) imply that Φ ∈ C1(Hs(RN), R). Let

N := {u ∈ Hs(RN) \ {0} : 〈Φ′(u), u〉 = 0},

which is the Nehari mainfold of Φ.
Problem (1.1) presents nonlocal characteristics in the nonlinearity as well as in the (frac-

tional) diffusion. Such a problem has a strong physical meaning because the fractional Lapla-
cian appears in anomalous diffusions in plasmas, flames propagation and chemical reactions
in liquids, population dynamics, geographical fluid dynamics, and American options in fi-
nance, see [3, 5, 21]; and the nonlocal nonlinearities were also used to model the dynamics of
pseudo-relativistic boson stars, see [15, 18].

If s = 1, then (1.1) formally reduces to the following generalized Choquard equation:

−4u + V(x)u =

(∫
RN

Q(y)F(u(y))
|x− y|µ dy

)
Q(x) f (u), u ∈ H1(RN), (1.3)

which goes back to the description of the quantum theory of a polaron at rest by Pekar [30]
in the case N = 3, µ = 1 and f (u) = u, see [22, 31] for more details in the physical aspects. In
the last decades, there have been many results on nontrivial solutions, ground state solutions
and multiple solutions for (1.3), see e.g. [7,22,24,26–28] for the case where V = Q = 1; see e.g.
[1,2,19,40] for V or Q is nonconstant. In particular, when N = 3, Q = 1, µ = 1, f (u) = u and V
is a continuous periodic function, Ackermann [2] proved the existence of nontrivial solutions
by reduction methods. When V and Q are asymptotically periodic, Zhang, Xu and Zhang
[40] proved that (1.3) has a ground state solution, based on the generalized Nehari manifold
method, developed by Szulkin and Weth in [34], if f satisfies (F1), (F3) and the following
monotonicity assumption:
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(Ne) f (t) is increasing on R.

We point out that (Ne) is very crucial in the arguments of [40]. In fact, the starting point of
their approach is to show that for each u ∈ H1(RN) \ {0}, the Nehari manifold N intersects
H1(RN) in exactly one point m̂(u) = tuu with tu > 0. The uniqueness of m̂(u) enables one to
define a map u 7→ m̂(u), which is important in the remaining arguments.

Recently, many researchers began to focus on problems like (1.1). The greatest part of
the literature focuses on the study of (1.1) with V = Q = 1, see e.g. [17, 22, 25] for the
case where N = 3, s = 1/2, µ = 1 and f (u) = u; see [13] for the case where N ≥ 3,
s ∈ (0, 1) and f (u) = |u|p−2u with 2− µ

N < p < 2∗s
2 (2−

µ
N ); see [33] for the case where N ≥ 3,

s ∈ (0, 1) and f satisfies the assumption of Berestycki–Lions type [4, 29]. Since (1.1) with
V = Q = 1 is autonomous, d’Avenia, Siciliano and Squassina [13] showed that the following
two minimizing problems:

inf
u∈N

Φ(u) and inf
u∈Hs(RN)
‖u‖2=ρ

[
Φ(u)− 1

2
‖u‖2

2

]
with ρ > 0

are equivalent; Shen, Gao and Yang [33], inspired by Jeanjean [20] and Moroz and Van
Schaftingen [29], constructed a Pohozaev–Palais–Smale sequence. With these facts in hand,
they can easily prove that (1.1) has a ground state solution. However, the methods used in
[13, 33] are invalid for (1.1) when V or Q is nonconstant.

When V = 1, f (u) = |u|p−2u with 2 ≤ p < 2∗s
2

(
2− µ

N

)
, and Q(x) = 1 + a(x) satisfies

(Q1) a ∈ L∞(RN) ∩ L2N/(2N−µ−Np+2sp)(RN) and lim|x|→∞ a(x) = 0;
a(x) ≥ 0 and a(x) > 0 on a positive measure set,

Chen and Liu [8] proved that (1.1) has a Nehari type ground state solution by using the Nehari
manifold method and comparing the critical level with the one of the problem at infinity. The
main idea comes from Cerami and Vaira [6]. Note that this approach relies heavily on the
special form V = 1 and f (u) = |u|p−2u. Moreover the assumption a ∈ L2N/(2N−µ−Np+2sp)(RN)

also plays an important role. When V(x) and Q(x) are asymptotically periodic and f is
continuous but not differentiable, the approach used in [8] is no longer applicable for (1.1). To
the best of our knowledge, there seems to be no paper dealing with this case.

Motivated by the above works and [9, 10], in the present paper, by combining the non-
Nehari manifold approach used in [35, 38, 39] with some new inequalities, we shall establish
the existence of Nehari type ground state solutions for (1.1) under (F1)–(F3) in the periodic
and asymptotically periodic cases.

To state our results, we first introduce a notation and some assumptions on V and Q. Let

B = {u ∈ L∞(RN , R) : meas{x ∈ RN : |u(x)| ≥ ε} < ∞, ∀ ε > 0}.

(VQ1) V, Q ∈ C(RN , (0, ∞)) are 1-periodic in each xj with x = (x1, x2, . . . , xN);

(VQ2) V(x) = V0(x) + V1(x) > 0, Q(x) = Q0(x) + Q1(x) > 0, ∀ x ∈ RN , and

i) V0, Q0 ∈ C(RN , R), V0(x) and Q0(x) are 1-periodic in each xj with x =

(x1, x2, . . . , xN);

ii) V1 ∈ C(RN , (−∞, 0]) ∩ B, Q1 ∈ C(RN , [0,+∞)) ∩ B.

Now, we state our results of this paper.
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Theorem 1.1. Assume that (VQ1) and (F1)–(F3) hold. Then (1.1) has a ground state solution ū ∈
Hs(RN) such that Φ(ū) = infN Φ > 0.

Theorem 1.2. Assume that (VQ2) and (F1)-(F3) hold. Then (1.1) has a ground state solution ū ∈
Hs(RN) such that Φ(ū) = infN Φ > 0.

Based on the mountain pass theorem due to Rabinowitz [32], we shall prove the above
results by applying the non-Nehari manifold approach, which lies on finding a minimizing
Cerami sequence for Φ outside N by using the diagonal method (see Lemma 2.8), different
from the Nehari manifold method and the generalized Nehari manifold method used in [8,13,
33, 40]. To this end, we establish some new inequalities (see Lemmas 2.3 and 2.4). With these
inequalities in hand, we verify the boundedness of Cerami sequences (see Lemma 2.9), and
overcome the difficulties caused by the lose of ZN-translation invariance in the asymptotically
periodic case.

Remark 1.3. Applying Theorem 1.2 to the equation in Chen and Liu [8], i.e. (1.1) with V = 1,
f (u) = |u|p−2u and Q(x) = 1 + a(x), we can weaken (Q1) to the following condition:

(Q2) a ∈ L∞(RN), a(x) ≥ 0 and lim|x|→∞ a(x) = 0.

Therefore, our results generalize and improve the existing ones in literature.

Remark 1.4. Our results are available for Choquard equation (1.3) with slight modification.
From this point of view, we give an extension of the corresponding result in [40].

The paper is organized as follows. In Section 2, we give some preliminaries. We complete
the proofs of Theorems 1.1 and 1.2 in Sections 3 and 4 respectively.

Throughout this paper, we denote the norm of Lq(RN) by ‖u‖q =
(∫

RN |u|qdx
)1/q for

q ∈ [2, ∞), Br(x) = {y ∈ RN : |y − x| < r}, and positive constants possibly different in
different places, by C1, C2, . . .

2 Preliminaries

In this section, we give some preliminaries which are crucial for proving our results. Firstly,
to establish the variational setting, we present the following Hardy–Littlewood–Sobolev in-
equality.

Proposition 2.1 (Hardy–Littlewood–Sobolev inequality, [23]). Let t, r > 1 and 0 < µ < N with
1/t + 1/r + µ/N = 2, f ∈ Lt(RN) and h ∈ Lr(RN). There exists a sharp constant C(t, N, µ, r)
independent of f and h such that∫

RN

∫
RN

f (x)h(y)
|x− y|µ dxdy ≤ C(t, N, µ, r)‖ f ‖t‖h‖r.

Set r = 2N/(2N− µ), then 2 < rp1 ≤ rp2 < 2∗s . By (VQ), (F1) and Proposition 2.1, one has∫
RN

∫
RN

Q(x)Q(y)F(u(x))F(u(y))
|x− y|µ dxdy

≤ C1‖F(u)‖2
r ≤ C2

(
‖u‖2p1

rp1 + ‖u‖
2p2
rp2

)
, ∀ u ∈ Hs(RN). (2.1)
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Similarly, we have∫
RN

∫
RN

Q(x)Q(y)F(u(x)) f (u(y))u(y)
|x− y|µ dxdy ≤ C3

(
‖u‖2p1

rp1 + ‖u‖
2p2
rp2

)
, ∀ u ∈ Hs(RN). (2.2)

By (1.2), one has

Φ(u) =
1
2
‖u‖2 − 1

2

∫
RN

∫
RN

Q(x)Q(y)F(u(x))F(u(y))
|x− y|µ dxdy, ∀ u ∈ Hs(RN). (2.3)

Clearly, Φ is well defined on Hs(RN). A standard argument shows that Φ ∈ C1(Hs(RN), R)

and

〈Φ′(u), v〉 =
∫

RN

[
(−4)

s
2 u(−4)

s
2 v + V(x)uv

]
dx

−
∫

RN

∫
RN

Q(x)Q(y)F(u(x)) f (u(y))v(y)
|x− y|µ dxdy. (2.4)

Hence, the solutions of (1.1) are the critical points of (1.2).
Secondly, we state a version of Lions’ concentration-compactness lemma for fractional

Laplacian, which is an adaptation of a classical lemma of Lions [26].

Lemma 2.2 ([13, Lemma 2.3]). Let r > 0 and 2 ≤ σ < 2∗s . If {un} is bounded in Hs(RN), and if

sup
y∈RN

∫
Br(y)
|un|σdx → 0, n→ ∞,

then un → 0 in Lq(RN) for 2 < q < 2∗s .

Now, inspired by [11, 12, 36, 37], we establish some new inequalities, which are key points
in the present paper.

Lemma 2.3. Assume that (F1) and (F2) hold. Then for all t ≥ 0 and τ1, τ2 ∈ R,

g(t, τ1, τ2) := F(tτ1)F(tτ2)− F(τ1)F(τ2) +
1− t2

2
[F(τ1) f (τ2)τ2 + F(τ2) f (τ1)τ1] ≥ 0. (2.5)

Proof. It is evident that (2.5) holds for t = 0. Noting that f (0) = 0 due to (F1), it follows from
(F2) that

f (τ)τ ≥ F(τ) ≥ 0, ∀ τ ∈ R. (2.6)

By (2.6), one has
F(τ)

τ
is nondecreasing on (−∞, 0) ∪ (0,+∞). (2.7)

For every τ1, τ2 ∈ R, we deduce from (F2), (2.6) and (2.7) that

d
dt

g(t, τ1, τ2) = τ1τ2t
[

f (tτ2)
F(tτ1)

tτ1
− f (τ2)

F(τ1)

τ1
+ f (tτ1)

F(tτ2)

tτ2
− f (τ1)

F(τ2)

τ2

]
{
≥ 0, t ≥ 1,

≤ 0, 0 < t < 1,

which implies that g(t, τ1, τ2) ≥ g(1, τ1, τ2) = 0 for all t > 0 and τ1, τ2 ∈ R.
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Lemma 2.4. Assume that (VQ), (F1) and (F2) hold. Then

Φ(u) ≥ Φ(tu) +
1− t2

2
〈Φ′(u), u〉, ∀ u ∈ Hs(RN), t ≥ 0. (2.8)

Proof. By (2.3), (2.4) and (2.5), one has

Φ(u)−Φ(tu)

=
1− t2

2
‖u‖2 +

1
2

∫
RN

∫
RN

Q(x)Q(y) [F(tu(x))F(tu(y))− F(u(x))F(u(y))]
|x− y|µ dxdy

=
1− t2

2
〈Φ′(u), u〉+ 1

2

∫
RN

∫
RN

Q(x)Q(y)
|x− y|µ

[
F(tu(x))F(tu(y))− F(u(x))F(u(y))

+
1− t2

2
F(u(x)) f (u(y))u(y) +

1− t2

2
F(u(y)) f (u(x))u(x)

]
dxdy

≥ 1− t2

2
〈Φ′(u), u〉, ∀ u ∈ Hs(RN), t ≥ 0.

This shows that (2.8) holds.

Corollary 2.5. Assume that (VQ), (F1) and (F2) hold. Then

Φ(u) = max
t≥0

Φ(tu), ∀ u ∈ N . (2.9)

Lemma 2.6. Assume that (VQ) and (F1)–(F3) hold. Then, for any u ∈ Hs(RN) \ {0}, there exists
tu > 0 such that tuu ∈ N .

Proof. By (2.1), (2.3) and the Sobolev embedding theorem, one has

Φ(u) ≥ 1
2
‖u‖2 − C4

2
(
‖u‖2p1 + ‖u‖2p2

)
, ∀ u ∈ Hs(RN),

which, together with 2 < 2(2− µ/N) < 2p1 ≤ 2p2 ≤ 2∗s (2− µ/N), implies that there exists
ρ0 > 0 such that

δ0 := inf
‖u‖=ρ0

Φ(u) > 0. (2.10)

For any fixed u ∈ Hs(RN) \ {0}, we define a function ψ(t) = Φ(tu) on [0, ∞). Clearly, by (2.3)
and (2.4), one has

ψ′(t) = 0 ⇔ 〈Φ′(tu), tu〉 = 0 ⇔ tu ∈ N . (2.11)

Using (F3), (2.3) and (2.10), it is easy to verify that ψ(t) > 0 for small t > 0 and ψ(t) < 0 for
large t. Therefore, maxt≥0 ψ(t) is achieved at some tu > 0 so that ψ′(tu) = 0. This, together
with (2.11), shows that tuu ∈ N .

Lemma 2.7. Assume that (VQ) and (F1)–(F3) hold. Then

inf
u∈N

Φ(u) := m = inf
u∈Hs(RN)\{0}

max
t≥0

Φ(tu) > 0.

Proof. Corollary 2.5 and Lemma 2.6 imply that m = infu∈Hs(RN)\{0}maxt≥0 Φ(tu). Moreover,
from (2.10) and Corollary 2.5, we conclude that m ≥ inf‖u‖=ρ0

Φ(u) > 0.
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In the following, based on the mountain pass theorem due to P. H. Rabinowitz [32] in
1992, we will find a minimizing Cerami sequence for Φ outside N by the diagonal method,
this idea goes back to [35, 38], which is essential in the proofs of Theorems 1.1 and 1.2.

Lemma 2.8. Assume that (VQ) and (F1)–(F3) hold. Then there exist a constant c∗ ∈ (0, m] and a
sequence {un} ⊂ Hs(RN) satisfying

Φ(un)→ c∗, ‖Φ′(un)‖(1 + ‖un‖)→ 0. (2.12)

Proof. In view of the definition of m, we choose vk ∈ N such that

m ≤ Φ(vk) < m +
1
k

, k ∈N. (2.13)

By (F3) and (2.10), we have Φ(tkvk) < 0 for some tk > ρ0/‖vk‖, and Φ(u) ≥ δ0 > 0 for all
u ∈ Sρ0 := {u ∈ Hs(RN) : ‖u‖ = ρ0}. Applying the Mountain pass lemma to {Sρ0 , tkvk}, there
exists a sequence {uk,n}n∈N ⊂ Hs(RN) satisfying

Φ(uk,n)→ ck, ‖Φ′(uk,n)‖(1 + ‖uk,n‖)→ 0, k ∈N, (2.14)

where ck ∈ [δ0, supt≥0 Φ(tvk)]. By virtue of Corollary 2.5, one has Φ(vk) = supt≥0 Φ(tvk).
Thus, from (2.13) and (2.14), one has

Φ(uk,n)→ ck ∈
[

δ0, m +
1
k

)
, ‖Φ′(uk,n)‖(1 + ‖uk,n‖)→ 0, k ∈N. (2.15)

Now, we can choose a sequence {nk} ⊂N such that

Φ(uk,nk) ∈
[

δ0, m +
1
k

)
, ‖Φ′(uk,nk)‖(1 + ‖uk,nk‖) <

1
k

, k ∈N. (2.16)

Let uk = uk,nk , k ∈N. Then, going if necessary to a subsequence, we have

Φ(un)→ c∗ ∈ [δ0, m], ‖Φ′(un)‖(1 + ‖un‖)→ 0.

Lemma 2.9. Assume that (VQ) and (F1)–(F3) hold. Then any sequence {un} ⊂ Hs(RN) satisfying

Φ(un)→ c ≥ 0, 〈Φ′(un), un〉 → 0 (2.17)

is bounded.

Proof. To prove the boundedness of {‖un‖}, arguing by contradiction, suppose that ‖un‖ → ∞.
Let vn = un

‖un‖ , then ‖vn‖ = 1. If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)
|vn|2dx = 0,

then by Lemma 2.2, one has vn → 0 in Lq(RN) for 2 < q < 2∗s , and so ‖vn‖rp1 → 0 and
‖vn‖rp2 → 0 due to 2 < rp1 ≤ rp2 < 2∗s . Let tn = 2

√
c + 1/‖un‖, it follows from (2.1), (2.3),

(2.8) and (2.17) that

c + o(1) = Φ(un) ≥ Φ (tnun) +
1− t2

n
2
〈Φ′(un), un〉

= Φ(2
√

c + 1vn) + o(1)

≥ 2(c + 1)− C5

(
‖vn‖2p1

rp1 + ‖vn‖2p2
rp2

)
= 2(c + 1) + o(1), (2.18)
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This contradiction shows that δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ ZN such that∫

B1+
√

N(kn)
|vn|2dx >

δ

2
. (2.19)

Let ṽn(x) = vn(x + kn), then passing to a subsequence, we have ṽn ⇀ ṽ in Hs(RN), ṽn → ṽ
in Lp

loc(R
N) for 2 ≤ p < 2∗s , and ṽn → ṽ a.e. in RN . Thus, (2.19) implies that ṽ 6= 0. Denote

ũn(x) = un(x + kn), then |ũn| = |ṽn|‖un‖ and ũn/‖un‖ → ṽ a.e. in RN . For x ∈ {y ∈ RN :
ṽ(x) 6= 0}, we have limn→∞ |ũn(x)| = ∞. Thus, it follows from (VQ), (F3), (2.3), (2.17) and
Fatou’s lemma that

0 = lim
n→∞

c + o(1)
‖un‖2 = lim

n→∞

Φ(un)

‖un‖2

=
1
2
− 1

2
lim
n→∞

∫
RN

∫
RN

Q(x)Q(y)
|x− y|µ

F(un(x))F(un(y))
‖un‖2 dxdy

≤ 1
2
− 1

2
lim inf

n→∞

∫
RN

∫
RN

Q(x + kn)Q(y + kn)

|x− y|µ
F(ũn(x))
|ũn(x)| |ṽn(x)|F(ũn(y))

|ũn(y)|
|ṽn(y)|dxdy

≤ 1
2
− 1

2

∫
RN

∫
RN

lim inf
n→∞

[
Q(x + kn)Q(y + kn)

|x− y|µ
F(ũn(x))
|ũn(x)| |ṽn(x)|F(ũn(y))

|ũn(y)|
|ṽn(y)|

]
dxdy

= −∞. (2.20)

This contradiction shows that {un} is bounded in Hs(RN).

3 The periodic case

In this section, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. In view of Lemmas 2.8 and 2.9, there exists a bounded sequence {un} ⊂
Hs(RN) such that (2.12) holds. If

δ := lim sup
n→∞

sup
y∈RN

∫
B1(y)
|un|2dx = 0,

then by Lemma 2.2, one has un → 0 in Lq(RN) for 2 < q < 2∗s , and so ‖un‖rp1 → 0 and
‖un‖rp2 → 0 due to 2 < rp1 ≤ rp2 < 2∗s . Hence, it follows from (2.1), (2.2), (2.3), (2.4) and
(2.12) that

c∗ + o(1) = Φ(un)−
1
2
〈Φ′(un), un〉

=
1
2

∫
RN

∫
RN

Q(x)Q(y)
|x− y|µ F(un(x)) [ f (un(y))un(y)− F(un(y))]dxdy

≤ C6

(
‖un‖2p1

rp1 + ‖un‖2p2
rp2

)
= o(1). (3.1)

This contradiction shows that δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ ZN such that∫

B1+
√

N(kn)
|un|2dx >

δ

2
. (3.2)
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Let ūn(x) = un(x + kn), then ∫
B1+

√
N(0)
|ūn|2dx >

δ

2
. (3.3)

Since V(x) and Q(x) are periodic on x, we have

Φ(ūn)→ c∗ ∈ (0, m], ‖Φ′(ūn)‖(1 + ‖ūn‖)→ 0. (3.4)

Passing to a subsequence, we have ūn ⇀ ū in Hs(RN), ūn → ū in Lp
loc(R

N) for 2 ≤ p < 2∗s ,
and ūn → ū a.e. in RN . Thus, (3.3) implies that ū 6= 0. It is easy to verify that Φ′(ū) = 0.
Since f (t) = 0 for all t ≤ 0, as in [8], by minor modification of [13, Theorem 3.2] and using the
maximum principle for fractional Laplacian in [14], we have ū > 0. This shows that ū ∈ N is
a solution of (1.1) and so Φ(ū) ≥ m. From (2.3), (2.4), (2.6), (3.4) and Fatou’s lemma, we have

m ≥ c∗ = lim
n→∞

[
Φ(ūn)−

1
2
〈Φ′(ūn), ūn〉

]
= lim

n→∞

{
1
2

∫
RN

∫
RN

Q(x)Q(y)
|x− y|µ F(ūn(x)) [ f (ūn(y))ūn(y)− F(ūn(y))]dxdy

}
≥ 1

2

∫
RN

∫
RN

Q(x)Q(y)
|x− y|µ F(ū(x)) [ f (ū(y))ū(y)− F(ū(y))]dxdy

= Φ(ū)− 1
2
〈Φ′(ū), ū〉 = Φ(ū).

This shows that Φ(ū) ≤ m and so Φ(ū) = m = infN Φ > 0.

4 The asymptotically periodic case

In this section, we have V(x) = V0(x) + V1(x) and Q(x) = Q0(x) + Q1(x). Define functional
Φ0 : Hs(RN)→ R as follows:

Φ0(u) =
1
2

∫
RN

[
|(−4)

s
2 u|2 + V0(x)u2

]
dx

− 1
2

∫
RN

∫
RN

Q0(x)Q0(y)F(u(x))F(u(y))
|x− y|µ dxdy. (4.1)

By (VQ2), (F1) and Proposition 2.1, we have Φ0 ∈ C1(Hs(RN), R) and

〈Φ′0(u), v〉 =
∫

RN

[
(−4)

s
2 u(−4)

s
2 v + V0(x)uv

]
dx

−
∫

RN

∫
RN

Q0(x)Q0(y)F(u(x))
|x− y|µ f (u(y))v(y)dxdy. (4.2)

Similar to the proof of [40, Lemma 4.3], we can obtain the following lemma.

Lemma 4.1. Assume that (VQ2) and (F1) hold. If un ⇀ 0 in Hs(RN), then

lim
n→∞

∫
RN

V1(x)u2
ndx = 0, lim

n→∞

∫
RN

V1(x)unvdx = 0, ∀ v ∈ Hs(RN),

lim
n→∞

∫
RN

∫
RN

[Q(x)Q(y)−Q0(x)Q0(y)] F(un(x))F(un(y))
|x− y|µ dxdy = 0

and

lim
n→∞

∫
RN

∫
RN

[Q(x)Q(y)−Q0(x)Q0(y)] F(un(x))
|x− y|µ f (un(y))v(y)dxdy = 0, ∀ v ∈ Hs(RN).
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Proof of Theorem 1.2. If V1(x) ≡ 0 and Q1(x) ≡ 0, then Theorem 1.2 is contained in Theo-
rem 1.1. So we can assume that V1(x) ≤ 0 and Q1(x) ≥ 0 but |V1(x)| + |Q1(x)| 6≡ 0. In
view of Lemmas 2.8 and 2.9, there exists a bounded sequence {un} ⊂ Hs(RN) such that (2.12)
holds. Passing to a subsequence, we may assume that un ⇀ ū in Hs(RN), un → ū in Lp

loc(R
N)

for 2 ≤ p < 2∗s and un → ū a.e. in RN . Next, we prove that ū 6= 0.
Arguing by contradiction, suppose that ū = 0. Then un ⇀ 0 in Hs(RN), un → 0 in

Lp
loc(R

N) for 2 ≤ p < 2∗s and un → 0 a.e. in RN . From (1.2), (2.4), (2.12), (4.1), (4.2) and
Lemma 4.1, we deduce

Φ0(un)→ c∗ ∈ (0, m], ‖Φ′0(un)‖(1 + ‖un‖)→ 0. (4.3)

Analogous to the proof of (3.2), there exists kn ∈ ZN , going if necessary to a subsequence,
such that ∫

B1+
√

N(kn)
|un|2dx >

δ

2
> 0.

Define vn(x) = un(x + kn), then ∫
B1+

√
N(0)
|vn|2dx >

δ

2
. (4.4)

Since V0(x) and Q0(x) are periodic in x, it follows from (4.3) that

Φ0(vn)→ c∗ ∈ (0, m], ‖Φ′0(vn)‖(1 + ‖vn‖)→ 0. (4.5)

Passing to a subsequence, we have vn ⇀ v̄ in Hs(RN), vn → v̄ in Lp
loc(R

N) for 2 ≤ p < 2∗s
and vn → v̄ a.e. in RN . Thus, (4.4) implies that v̄ 6= 0. Arguing as in Theorem 1.1, we can
prove that Φ′0(v̄) = 0, Φ0(v̄) ≤ c∗ and v̄ > 0. In view of Lemma 2.6, there exists t̄ > 0 such
that t̄v̄ ∈ N and so Φ(t̄v̄) ≥ m. Noting that the conclusion of Lemma 2.4 holds for Φ0, from
(VQ2), (1.2), (4.1), (4.2) and (4.5), we derive

m ≥ c∗ ≥ Φ0(v̄)

≥ Φ0(t̄v̄)−
1− t̄2

2
〈Φ′0(v̄), v̄〉

= Φ(t̄v̄)− t̄2

2

∫
RN

V1(x)v̄2dx

+
1
2

∫
RN

∫
RN

[Q(x)Q(y)−Q0(x)Q0(y)]
|x− y|µ F(t̄v̄(x))F(t̄v̄(y))dxdy

> m. (4.6)

This contradiction shows that ū 6= 0. In the same way as the last part of the proof of
Theorem 1.1, we can prove that that ū ∈ Hs(RN) is a ground state solution for (1.1) with
Φ(ū) = m = infN Φ > 0.
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