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Abstract. In this paper an attempt is made to depict a clear picture of the overall
structure of nonoscillatory solutions of the first order half-linear differential system

x′ − p(t)ϕ1/α(y) = 0, y′ + q(t)ϕα(x) = 0, (A)

where α > 0 is a constant, p(t) and q(t) are positive continuous functions on [0, ∞),
and ϕγ(u) = |u|γsgn u, u ∈ R, γ > 0. A systematic analysis of the existence and
asymptotic behavior of solutions of (A) is proposed for this purpose. A special mention
should be made of the fact that all possible types of nonoscillatory solutions of (A) can
be constructed by solving the Riccati type differential equations associated with (A).
Worthy of attention is that all the results for (A) can be applied to the second order
half-linear differential equation

(p(t)ϕα(x′))′ + q(t)ϕα(x) = 0, (E)

to build automatically a nonoscillation theory for (E).
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1 Introduction

We consider first order cyclic differential systems of the form

x′ − p(t)ϕ1/α(y) = 0, y′ + q(t)ϕα(x) = 0, (A)

where α is a positive constant, p and q are positive continuous functions on [0, ∞), and ϕγ,
γ > 0, denotes the odd function

ϕγ(u) = |u|γsgn u, u ∈ R. (1.1)
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The nonlinearity of system (A) is referred to as half-linear. The qualitative study of half-linear
differential systems was initiated by Elbert [4] and Mirzov [12], who showed that though
system (A) with α 6= 1 is nonlinear, it has several significant properties in common with the
linear differential system x′ − p(t)y = 0, y′ + q(t)x = 0.

In this paper we are concerned exclusively with solutions of (A) which are defined and
nontrivial on intervals of the form [t0, ∞), t0 ≥ 0. Such a solution (x, y) is called oscillatory
or nonoscillatory according as both x and y are either oscillatory or nonoscillatory in the usual
sense, respectively. Worthy of note is the fact that all solutions of (A) are either oscillatory or
else nonoscillatory, that is, oscillatory solutions and nonoscillatory solutions cannot coexist for
system (A); see Jaroš and Kusano [6]. System (A) is simply said to be oscillatory (or nonoscil-
latory) if all of its solutions are oscillatory (or nonoscillatory). We will focus our attention
on the system (A) which is nonoscillatory and aim to acquire as much precise information as
possible about the existence and asymptotic behavior at infinity of its solutions, thereby mak-
ing it possible to depict a clear picture of the overall structure of the totality of nonoscillatory
solutions of (A).

Let (x, y) be a nonoscillatory solution of (A) on [t0, ∞). Since both x and y are eventually
one-signed, they are monotone for all large t so that there exist the limits x(∞) = limt→∞ x(t)
and y(∞) = limt→∞ y(t) in the extended real numbers. It follows that x(t)y(t) 6= 0 on [T, ∞)

for some T ≥ t0. We say that (x, y) is a solution of the first kind (resp. of the second kind) if
x(t)y(t) > 0 (resp. x(t)y(t) < 0) for t ≥ T.

Based on the expectation that the behavior of solutions of (A) depends heavily upon the
behavior of the coefficients p and q, more specifically, upon the convergence or divergence of
the integrals

Ip =
∫ ∞

0
p(t)dt, Iq =

∫ ∞

0
q(t)dt, (1.2)

we distinguish the four cases

Ip = ∞ ∧ Iq = ∞, Ip = ∞ ∧ Iq < ∞, Ip < ∞ ∧ Iq = ∞, Ip < ∞ ∧ Iq < ∞, (1.3)

in each of which an attempt is made to analyze how influential is the combination (Ip, Iq) on
the determination of specific types of nonoscillatory solutions system (A) may possess.

Our nonoscillation theory of system (A) is presented in Sections 2 and 3. It is shown that
all solutions of (A) are oscillatory in the first case of (1.3), and that nonoscillatory solutions
of (A) really exist in the remaining three cases. In the last case of (1.3) it turns out that all
solutions of (A) are bounded and their existence can be characterized with relative ease. So
our efforts should be focused on the analysis of the two cases in the middle of (1.3). As is
easily seen if (x, y) is a solution of (A), then (−x, y) and (x,−y) are solutions of the dual
differential system

x′ + p(t)ϕ1/α(y) = 0, y′ − q(t)ϕα(x) = 0, (B)

and vice versa. Observe that systems (A) and (B) are structurally the same except that the
roles of {x, y}, {p, q} and {α, 1/α} are interchanged. This self-evident fact is what we call
the duality principle between (A) and (B). Suppose that the case Ip = ∞ ∧ Iq < ∞ of (A) has
been well analyzed. We now want to study the new system (A) in the case Ip < ∞ ∧ Iq = ∞.
Consider the dual system (B) of this new (A). Then, (B) can be regarded as the same old system
(A) in the sense specified above. So, to each result for the old system (A) there corresponds
its counterpart for the new system (A). The correspondence is automatic, and the new result
thus obtained via the duality principle is correct if so is the old one. This is why our efforts
are devoted for the most part to the analysis of system (A) in the case Ip = ∞ ∧ Iq < ∞.
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What is required of us in this paper is an in-depth study of the existence and asymptotic
behavior of nonoscillatory solutions of system (A) with special emphasis on the cases Ip =

∞ ∧ Iq < ∞ and Ip < ∞ ∧ Iq = ∞. First, we classify the totality of nonoscillatory solutions
of (A) into the three subsets, the classes of maximal solutions, minimal solutions and intermediate
solutions, and then make attempts to characterize the membership of all the solution classes
put in the classification list. As a result, the membership of the classes of maximal and
minimal solutions can be completely characterized, in other words, necessary and sufficient
conditions can be found for (A) to have maximal and minimal solutions. The results on
maximal and minimal solutions are presented in Section 2 along with those on bounded
solutions of system (A) in the case Ip < ∞ ∧ Iq < ∞. As for intermediate solutions of (A), a
few sufficient conditions for their existence are provided in Section 3. Examples are given to
illustrate the main results.

Of central importance to the development of our theory for (A) is an effective utilization
of the Riccati type differential equations

u′ + αp(t)|u| 1α+1 + q(t) = 0, (R1)

v′ =
1
α

q(t)|v|α+1 + p(t), (R2)

in establishing the existence of all types of nonoscillatory solutions of (A). Equations (R1)
and (R2), which are known as the Riccati differential equations associated with system (A),
were discovered by Mirzov [12], who proved that system (A) is nonoscillatory if and only if
both (R1) and (R2) possess global solutions, that is, solutions which are continued to t = ∞.
Mirzov used the Riccati equations to prove a comparison theorem regarding two half-linear
differential systems of the form (A). To the best of our knowledge no attempts have been
made to apply (R1) and (R2) to the solution of other qualitative problems for (A). The main
aim of this paper is to demonstrate that all types of nonoscillatory solutions of system (A) can
actually be constructed by means of suitably chosen global solutions of the Riccati equations.

An important by-product of Sections 2 and 3 is that the theory developed therein can
exhaustively be applied to second order scalar half-linear differential equations of the form

(p(t)ϕα(x′))′ + q(t)ϕα(x) = 0, (E)

where α > 0 is a constant and p and q are positive continuous functions on [0, ∞). Given a
solution x of equation (E), we call the function p(t)ϕα(x′) the quasi-derivative of x and denote
it by Dx. By a nonoscillatory solution of (E) we mean a solution x which is defined in some
neighborhood of infinity and satisfies x(t)Dx(t) 6= 0 for all large t. As a consequence of ap-
plication of the results for system (A) the class of nonoscillatory solutions x of equation (E)
is divided systematically into several subclasses according to the patterns of joint asymptotic
behavior of x and Dx at infinity, and criteria for all of these solution subclasses to have mem-
bers are established. In particular, the existence of the so-called intermediate solutions of (E) is
ascertained. The contents of Section 4 seem to underscore the importance and effectiveness of
the asymptotic analysis of simple first order half-linear differential systems such as (A).

We note that some results of Sections 2 and 4 are known (see [2, 3, 5, 7–10, 16]), but the
derivation is essentially different. The results of Section 3 and their applications in Section 4
are new.
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2 Maximal and minimal solutions of (A)

2.1 Classification of nonoscillatory solutions

We start with a rudimentary fact which is underlying throughout the subsequent discussions.

Proposition 2.1.

(i) If Ip = ∞, then any nonoscillatory solution (x, y) of (A) is of the first kind such that |x| is
increasing and |y| is decreasing for all large t.

(ii) If Iq = ∞, then any nonoscillatory solution (x, y) of (A) is of the second kind such that |x| is
decreasing and |y| is increasing for all large t.

Proof. Suppose first that Ip = ∞. Let (x, y) be a nonoscillatory of (A) such that x(t)y(t) 6= 0 on
[t0, ∞). We may assume that x(t) > 0 for t ≥ t0. The second equation of (A) shows that y(t) is
decreasing for t ≥ t0. If there exists T ≥ t0 such that y(t) ≤ y(T) < 0, t ≥ T, then integrating
the first equation of (A) on [T, t], we obtain

x(t)− x(T) = −
∫ t

T
p(s)|y(s)|1/αds ≤ −|y(T)|1/α

∫ t

T
p(s)ds→ −∞, t→ ∞,

which contradicts the assumed positivity of x(t). Therefore, we see that y(t) must be posi-
tive throughout [t0, ∞), concluding that (x, y) is a solution of the first kind. This proves the
statement (i).

Turning to the case Iq = ∞, let (x, y) be a solution of (A) such that x(t)y(t) 6= 0 on [t0, ∞).
Consider the function (−x, y). By the duality principle stated in the Introduction this function
is a solution of the dual system (B), which is structurally the same system as (A) with Ip = ∞,
and so from the statement (i) it follows that −x(t)y(t) > 0, i.e., x(t)y(t) < 0 for t ≥ t0. This
means that (x, y) is a solution of the second kind of (A). Thus we are allowed to assert that the
statement (ii) follows from (i) automatically via the duality principle (between (A) and (B)).
This completes the proof.

An immediate consequence of Proposition 2.1 is that if p and q satisfy Ip = ∞ and Iq = ∞,
then system (A) admits no nonoscillatory solutions.

Theorem 2.2 (Mirzov [12]). If Ip = ∞ ∧ Iq = ∞, then all solutions of system (A) are oscillatory.

Suppose now that p and q satisfy Ip = ∞ ∧ Iq < ∞. By Proposition 2.1 all nonoscillatory
solutions (x, y) of (A) are of the first kind, and both components x and y are eventually
monotone, more precisely, |x| are increasing and |y| are decreasing for all large t. As is easily
seen, the following three types or patterns of asymptotic behavior at infinity are possible for
them:

I(i): |x(∞)| = ∞, 0 < |y(∞)| < ∞,

I(ii): |x(∞)| = ∞, y(∞) = 0,

I(iii): 0 < |x(∞)| < ∞, y(∞) = 0.

On the other hand, if p and q satisfy Ip < ∞ ∧ Iq = ∞, then we see that all nonoscillatory
solutions (x, y) of (A) are of the second kind, and |x| are decreasing and |y| are increasing for
all large t, and that their asymptotic behaviors at infinity are restricted to the following three
types



Nonoscillatory solutions of half-linear differential systems 5

II(i): 0 < |x(∞)| < ∞, |y(∞)| = ∞,

II(ii): x(∞) = 0, |y(∞)| = ∞,

II(iii): x(∞) = 0, 0 < |y(∞)| < ∞.

Finally, if p and q satisfy Ip < ∞ and Iq < ∞, then the possible asymptotic behavior of any
nonoscillatory solution of the first kind (resp. of the second kind) of (A) is either of the type
I(iii) (resp. of the type II(iii)) or

III: 0 < |x(∞)| < ∞, 0 < |y(∞)| < ∞.

Nonoscillatory solutions of the types I(i) and II(i) (resp. I(iii) and II(iii)) are called maximal
solutions (resp. minimal solutions) of (A), while solutions of the types I(ii) and II(ii) are termed
intermediate solutions of (A). Solutions with the terminal states of the type III are called bounded
solutions of non-minimal type of (A).

2.2 Characterization of maximal and minimal solutions of (A)

It is shown that the situations for the existence of maximal and minimal nonoscillatory so-
lutions of (A) can be completely characterized in both of the cases Ip = ∞ ∧ Iq < ∞ and
Ip < ∞ ∧ Iq = ∞.

In what follows use is made of the functions

P(t) =
∫ t

0
p(s)ds if Ip = ∞, π(t) =

∫ ∞

t
p(s)ds if Ip < ∞, (2.1)

Q(t) =
∫ t

0
q(s)ds if Iq = ∞, ρ(t) =

∫ ∞

t
q(s)ds if Iq < ∞. (2.2)

Our main results of this section read as follows.

Theorem 2.3.

(i) Assume that Ip = ∞. System (A) has maximal nonoscillatory solutions of the first kind if and
only if ∫ ∞

0
q(t)P(t)αdt < ∞. (2.3)

In this case, for any given constant d 6= 0 there exists a solution (x, y) such that

lim
t→∞

y(t) = d, lim
t→∞

x(t)
P(t)

= ϕ1/α(d). (2.4)

(ii) Assume that Iq < ∞. System (A) has minimal nonoscillatory solutions of the first kind if and
only if ∫ ∞

0
p(t)ρ(t)1/αdt < ∞. (2.5)

In this case, for any given constant c 6= 0 there exists a solution (x, y) such that

lim
t→∞

x(t) = c, lim
t→∞

y(t)
ρ(t)

= ϕα(c). (2.6)
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Proof of the “only if” parts. (i) Suppose that (A) has a maximal solution (x, y) of the first kind.
We may assume that x(t) > 0, y(t) > 0 for all large t, and x(∞) = ∞ and y(∞) = d for some
constant d > 0. Applying L’Hospital’s rule to the first equation of (A), we see that

lim
t→∞

x(t)
P(t)

= lim
t→∞

y(t)1/α = d1/α, (2.7)

which implies that the precise asymptotic formula for (x, y) is known in advance. In view of
(2.7) there exist constants k > 0 and t0 ≥ 0 such that x(t) ≥ kP(t) for t ≥ t0. Combining this
inequality with

y(t0)− y(t) =
∫ t

t0

q(s)x(s)αds, t ≥ t0,

following from the second equation of (A), we obtain

kα
∫ t

t0

q(s)P(s)αds ≤ y(t0), t ≥ t0.

This clearly implies the truth of (2.3).
(ii) Suppose that (A) has a minimal solution (x, y) of the first kind such that x(t) > 0,

y(t) > 0 for all large t, and x(∞) = c and y(∞) = 0 for some constant c > 0. L’Hospital’s rule
applied to the second equation of (A) implies that

lim
t→∞

y(t)
ρ(t)

= lim
t→∞

x(t)α = cα. (2.8)

Thus the precise asymptotic behavior of (x, y) at infinity is explicitly determined in advance.
Because of (2.8) there exist constants k > 0 and t0 ≥ 0 such that y(t) ≥ kρ(t) for t ≥ t0. This
inequality combined with

c− x(t) =
∫ ∞

t
p(s)y(s)1/αds, t ≥ t0,

following from the first equation of (A) gives

k1/α
∫ ∞

t
p(s)ρ(s)1/αds ≤ c, t ≥ t0,

which verifies the validity of (2.5).

Proof of the “if” parts. It suffices to prove the existence of positive maximal and minimal solu-
tions of (A) under the conditions (2.3) and (2.5), respectively. The main tool we employ is the
Riccati equations

u′ + αp(t)u
1
α+1 + q(t) = 0, (R1)

and
v′ =

1
α

q(t)vα+1 + p(t), (R2)

whose positive solutions should give rise to the desired positive solutions of (A).
A close connection between system (A) and the associated Riccati equations (R1) and (R2)

is explained below. Let (x, y) be a positive solution of system (A) on J = [t0, ∞). Then, the
functions

u(t) =
y(t)
x(t)α

and v(t) =
x(t)

y(t)1/α
, (2.9)
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satisfy equations (R1) and (R2), respectively, on J. Conversely, assume that (R1) and (R2) have,
respectively, positive solutions u and v on J. Then, from (2.9) combined with the first equation
x′ = p(t)y1/α of (A) we obtain x′(t)/x(t) = p(t)u(t)1/α and x′(t)/x(t) = q(t)v(t)−1, and so x
should be expressed in terms of u or v as follows

x(t) = a exp
(∫ t

t0

p(s)u(s)1/αds
)

or x(t) = b exp
(∫ t

t0

q(s)v(s)−1ds
)

, t ∈ J, (2.10)

where a and b are any positive constants. So, let us form the vector functions(
a exp

(∫ t

t0

p(s)u(s)1/αds
)

, aαu(t) exp
(

α
∫ t

t0

p(s)u(s)1/αds
))

, (2.11)

and (
b exp

(∫ t

t0

q(s)v(s)−1ds
)

, bαv(t)−α exp
(

α
∫ t

t0

q(s)v(s)−1ds
))

. (2.12)

Then, these functions become positive solutions of system (A) on J. The verification of this
fact may be omitted. It should be remarked that if u is such that p(t)u(t)1/α is integrable on J,
then using the function

x(t) = ω exp
(
−
∫ ∞

t
p(s)u(s)1/αds

)
,

ω being any positive constant, instead of x in (2.10), one obtains a positive solution of (A)(
ω exp

(
−
∫ ∞

t
p(s)u(s)1/αds

)
, ωαu(t) exp

(
−α

∫ ∞

t
p(s)u(s)1/αds

))
. (2.13)

A similar remark applies to the case where v has the property that q(t)v(t)−1 is integrable
on J.

An alternative way of finding solutions (x, y) of (A) by means of solutions u and v of (R1)
and (R2) is to first construct y from u and v by using the relations y′(t)/y(t) = −q(t)u(t)−1

and y′(t)/y(t) = −q(t)v(t)α. We then obtain

y(t) = a exp
(
−
∫ t

t0

q(s)u(s)−1ds
)

or y(t) = ω exp
(∫ ∞

t
q(s)u(s)−1ds

)
,

from the first equation, and

y(t) = a exp
(
−
∫ t

t0

q(s)v(s)αds
)

or y(t) = ω exp
(∫ ∞

t
q(s)v(s)αds

)
,

from the second equation, where a and ω are arbitrary positive constants. For example, if
q(t)v(t)α is integrable on [t0, ∞), then the function(

ω1/αv(t) exp
(

1
α

∫ ∞

t
q(s)v(s)αds

)
, ω exp

(∫ ∞

t
q(s)v(s)αds

))
, (2.14)

gives a solution of system (A).

It should be remarked that in constructing a solution of (A) we do not need to solve both
of (R1) and (R2) since they are interdependent (v = u−1/α). We need only to select either one
of them whichever is convenient and look for its solution u or v which gives rise to a solution
(x, y) of (A) with the desired asymptotic behavior at infinity.

Before proving the “if” parts of Theorem 2.3 we mention an important necessary condition
for nonoscillation of system (A) which is derived from the Riccati equation (R1).
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Proposition 2.4. Let Ip = ∞ ∧ Iq < ∞. If system (A) is nonoscillatory, then it holds that∫ ∞

0
p(t)ρ(t)

1
α+1dt < ∞. (2.15)

Proof. In fact, suppose that (A) has a nonoscillatory solution (x, y) on [t0, ∞). We may assume
that x(t) > 0 and y(t) > 0 for t ≥ t0. The function u(t) = y(t)/x(t)α satisfies (R1) on [t0, ∞).
Since u(t) > 0 is nonincreasing and tends to a finite limit u(∞) ≥ 0 as t → ∞, integration of
(R1) on [t, ∞) gives

u(t) = u(∞) + α
∫ ∞

t
p(s)u(s)

1
α+1ds + ρ(t), t ≥ t0.

We must have u(∞) = 0, since otherwise we would have∫ t

t0

p(s)u(s)
1
α+1ds ≥ u(∞)

1
α+1

∫ t

t0

p(s)ds→ ∞, t→ ∞,

which contradicts the integrability of p(t)u(t)
1
α+1 on [t0, ∞). It follows that u(t) satisfies the

integral equation

u(t) = α
∫ ∞

t
p(s)u(s)

1
α+1ds + ρ(t), t ≥ t0. (2.16)

Noting that the inequality u(t) ≥ ρ(t) follows from (2.16), we conclude that

∞ >
∫ ∞

t0

p(s)u(s)
1
α+1ds ≥

∫ ∞

t0

p(s)ρ(s)
1
α+1ds,

which clearly implies (2.15).

The “if” part of (i) is proved if one assumes (2.3) and confirms the existence of a positive
solution (x, y) of (A) which satisfies (2.4) for any given constant d > 0. To this end we need a
positive solution v of (R2) satisfying limt→∞ v(t)/P(t) = 1 to be obtained as a solution of the
integral equation

v(t) =
1
α

∫ t

T
q(s)v(s)α+1ds + P(t), (2.17)

on some interval [T, ∞). We are going to solve the equation

w(t) = 1 +
1

αP(t)

∫ t

T
q(s)(P(s)w(s))α+1ds, (2.18)

to which (2.17) is reduced by the substitution v = P(t)w.
Let A be any constant such that 1 < A < 1 + 1

α . Choose T > 0 so large that∫ ∞

T
q(s)P(s)αds ≤ α(A− 1)A−α−1, (2.19)

and consider the setW defined by

W = {w ∈ Cb[T, ∞) : 1 ≤ w(t) ≤ A, t ≥ T}, (2.20)

where Cb[T, ∞) denotes the Banach space of all bounded continuous functions on [T, ∞) with
the sup-norm ‖w‖b = sup{|w(t)| : t ≥ T}. Consider the integral operator

Fw(t) = 1 +
1

αP(t)

∫ t

T
q(s)(P(s)w(s))α+1ds, t ≥ T, (2.21)
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and let it act on the closed set W. Using (2.19)–(2.21), we see that if w ∈W, then

1 ≤ Fw(t) ≤ 1 + Aα+1 1
αP(t)

∫ t

T
q(s)P(s)α+1ds

≤ 1 + Aα+1 1
α

∫ t

T
q(s)P(s)αds ≤ 1 + (A− 1) = A,

for t ≥ T. This shows that Fw ∈ W, that is, F maps W into itself. Moreover, if w2, w2 ∈ W,
then using the inequality

|w1(t)α+1 − w2(t)α+1| ≤
(
α + 1

)
Aα|w1(t)− w2(t)|, t ≥ T,

we find that

|Fw1(t)− Fw2(t)| ≤
1

αP(t)

∫ t

T
q(s)P(s)α+1|w1(s)α+1 − w2(s)α+1|ds

≤
(

1
α
+ 1
)

Aα
∫ t

T
q(s)P(s)αds‖w1 − w2‖b ≤ γ‖w1 − w2‖b, t ≥ T,

where

γ =
(
1 + α

) (
1− 1

A

)
< 1.

This implies that

‖Fw1 − Fw2‖b ≤ γ‖w1 − w2‖b for any w1, w2 ∈W,

so that F is a contraction on W. Therefore by the contraction principle F has a unique fixed
point w in W which gives a positive solution of (2.18) on [T, ∞). It remains to show that
w(∞) = 1. Let ε > 0 be given arbitrarily. Choose tε > T so that

Aα+1

α

∫ ∞

tε

q(s)P(s)αds <
ε

2
. (2.22)

Since P(t)→ ∞ as t→ ∞, there exists Tε > tε such that

Aα+1

αP(t)

∫ tε

T
q(s)P(s)α+1ds <

ε

2
, t ≥ Tε. (2.23)

We then see that

1 ≤ w(t) ≤ 1 +
Aα+1

αP(t)

∫ t

T
q(s)P(s)α+1ds

≤ 1 +
Aα+1

αP(t)

∫ tε

T
q(s)P(s)α+1ds +

Aα+1

α

∫ ∞

tε

q(s)P(s)αds < 1 + ε,

for t ≥ Tε. Since ε is arbitrary, it follows that 1 ≤ lim inft→∞ w(t) ≤ lim supt→∞ w(t) ≤ 1, i.e.,
limt→∞ w(t) = 1.

We now put v(t) = P(t)w(t), t ≥ T. Then, v is a solution of (2.17), and hence of the Riccati
equation (R2) on [T, ∞) and satisfies v(t)/P(t) → 1 as t → ∞. Observing that q(t)v(t)α is
integrable over [T, ∞), form the vector function (x, y) by

(x(t), y(t)) =
(

d1/αv(t) exp
(

1
α

∫ ∞

t
q(s)v(s)αds

)
, d exp

(∫ ∞

t
q(s)v(s)αds

))
. (2.24)
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Then, it is confirmed that (x, y) is a solution of system (A) satisfying (2.4): x(t)/P(t) → d1/α

and y(t) → d as t → ∞. This finishes the proof of the “if” part of the statement (i) of
Theorem 2.3.

The “if” part of the statement (ii) is proved with the help of the Riccati equation (R1).
Assume that (2.5) holds. Let B be any constant such that 1 < B < 1 + α and choose T > 0 so
that ∫ ∞

T
p(s)ρ(s)1/αds ≤ 1

α
(B− 1)B−(

1
α+1). (2.25)

Consider the set U and the integral operator G defined by

U = {u ∈ Cb[T, ∞) : ρ(t) ≤ u(t) ≤ Bρ(t), t ≥ T}, (2.26)

and
Gu(t) = α

∫ ∞

t
p(s)u(s)

1
α+1ds + ρ(t), t ≥ T. (2.27)

Using (2.25)–(2.27), we see that if u ∈ U, then

ρ(t) ≤ Gu(t) ≤ αB
1
α+1

∫ ∞

t
p(s)ρ(s)

1
α+1ds + ρ(t)

≤
(

αB
1
α+1

∫ ∞

t
p(s)ρ(s)

1
α ds + 1

)
ρ(t) ≤ Bρ(t), t ≥ T,

and that if u1, u2 ∈ U, then

|Gu1(t)− Gu2(t)| ≤ α
∫ ∞

t
p(s)|u1(s)

1
α+1 − u2(s)

1
α+1|ds

≤ (α + 1)B
1
α

∫ ∞

t
p(s)ρ(s)

1
α |u1(s)− u2(s)|ds

≤ (α + 1)B
1
α

∫ ∞

T
p(s)ρ(s)

1
α ds‖u1 − u2‖b ≤ δ‖u1 − u2‖b,

where

δ =

(
1 +

1
α

)(
1− 1

B

)
< 1.

This shows that G is a contraction on the closed subset U of Cb[T, ∞). Therefore, there exists
a unique fixed point u ∈ U which satisfies

u(t) = α
∫ ∞

t
p(s)u(s)

1
α+1ds + ρ(t), t ≥ T, (2.28)

and hence gives a solution of the Riccati equation (R1) on [T, ∞). With this u construct the
function (cf. (2.13))

(x(t), y(t)) =
(

c exp
(
−
∫ ∞

t
p(s)u(s)

1
α ds
)

, cαu(t) exp
(
−α

∫ ∞

t
p(s)u(s)

1
α ds
))

, (2.29)

for t ≥ T, where c > 0 is any given constant. Then, (x, y) is a solution of system (A) on
[T, ∞). From (2.29) we see that limt→∞ x(t) = c and limt→∞ y(t)/ρ(t) = cα. The latter follows
immediately from

1 ≤ u(t)
ρ(t)

≤ 1 + αB
1
α+1

∫ ∞

t
p(s)ρ(s)

1
α ds, t ≥ T, =⇒ lim

t→∞

u(t)
ρ(t)

= 1.

Thus (x, y) given by (2.29) satisfies (2.6) and gives a minimal solution of (A) on [T, ∞). This
completes the proof of Theorem 2.3.
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As regards maximal and minimal solutions the second kind of (A), owing to the duality
principle, necessary and sufficient conditions for their existence can be formulated automati-
cally from Theorem 2.3.

Theorem 2.5.

(i) Assume that Iq = ∞. System (A) has maximal nonoscillatory solutions of the second kind if and
only if ∫ ∞

0
p(t)Q(t)1/αdt < ∞. (2.30)

In this case, for any given constant c 6= 0 there exists a solution (x, y) such that

lim
t→∞

x(t) = c, lim
t→∞

y(t)
Q(t)

= −ϕα(c). (2.31)

(ii) Assume that Ip < ∞. System (A) has minimal nonoscillatory solutions of the second kind if and
only if ∫ ∞

0
q(t)π(t)αdt < ∞. (2.32)

In this case, for any given constant d 6= 0 there exists a solution (x, y) such that

lim
t→∞

y(t) = d, lim
t→∞

x(t)
π(t)

= −ϕ1/α(d). (2.33)

2.3 Bounded nonoscillatory solutions of the non-minimal type

Suppose that Ip < ∞ ∧ Iq < ∞. Then it is easy to see that both condition (2.5) of Theo-
rem 2.3(ii) and condition (2.32) of Theorem 2.5(ii) are satisfied, and so system (A) always has
minimal nonoscillatory solutions of the first and of the second kinds. Moreover, as is demon-
strated below, under the assumption of the convergence of both integrals Ip and Iq system (A)
possesses also bounded nonoscillatory solutions of the non-minimal type. Thus, in this case
the structure of the set of nonoscillatory solutions of (A) is simple because all subclasses of
bounded solutions appearing in its “apriori” classification scheme are always nonempty.

Theorem 2.6. If Ip < ∞ ∧ Iq < ∞, then all nonoscillatory solutions of system (A) are bounded, and
for any given constants c and d with cd 6= 0 there exists a solution (x, y) of (A) satisfying x(∞) = c
and y(∞) = d.

Proof. We need only to prove the second half of the theorem. First we deal with solutions
of the first kind of (A). Given any pair of constants (c, d) such that cd > 0, we construct
a solution (x, y) of (A) such that x(t)y(t) > 0 for all large t and tends to (c, d) as t → ∞.
The Riccati equation (R1) is used for this purpose. Remembering that (R1) is the differential
equation to be satisfied by u = y/ϕα(x), it is natural to expect that a positive solution u of
(R1) satisfying u(∞) = d/ϕα(c) should give rise to a solution (x, y) of the first kind of (A)
such that (x(∞), y(∞)) = (c, d). To verify the truth of this expectation we proceed as follows.

For simplicity we put

ω =
d

ϕα(c)
. (2.34)

Choose T > 0 so that∫ ∞

T
p(s)ds ≤ 1

2ω1/α

(
α + 1

) 1
α+1,

∫ ∞

T
q(s)ds ≤ αω

2
. (2.35)
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Define the integral operator

Hw(t) = ω + α
∫ ∞

t
p(s)w(s)

1
α+1ds + ρ(t), t ≥ T, (2.36)

and let it act on the set

W = {w ∈ Cb[T, ∞) : ω ≤ w(t) ≤ (1 + α)ω, t ≥ T}. (2.37)

Since it easy to show that H(W) ⊂ W and that w1, w2 ∈ W implies

‖Hw1 − Hw2‖b ≤
1
2
‖w1 − w2‖b,

by the contraction mapping principle there exists a unique w ∈ W such that w = Hw, i.e.,

w(t) = ω + α
∫ ∞

t
p(s)w(s)

1
α+1ds + ρ(t), t ≥ T. (2.38)

Differentiating (2.38), we see that w is a solution of (R1) on [T, ∞) satisfying w(∞) = ω > 0.
We now form the function (cf. (2.13))

(x(t), y(t)) =
(

c exp
(
−
∫ ∞

t
p(s)w(s)

1
α ds
)

, ϕα(c)w(t) exp
(
−α

∫ ∞

t
p(s)w(s)

1
α ds
))

, (2.39)

for t ≥ T. Then, (x, y) is a solution of the first kind of system (A) such that (x(t), y(t))→ (c, d)
as t→ ∞.

We next deal with solutions of the second kind of (A). For any given pair (c, d) such
that cd < 0 we have to confirm the existence of solutions (x, y) of (A) tending to (c, d) as
t → ∞. As the duality principle shows this problem is equivalent to proving that the dual
system (B) possesses a solution (X, Y) of the first kind such that (X(∞), Y(∞)) = (−c, d) (or
(X(∞), Y(∞)) = (c,−d)). The latter problem, however, has already been resolved above by
solving the differential equation

W ′ +
1
α

q(t)Wα+1 + p(t) = 0, (2.40)

which is the Riccati equation of the type (R1) for system (B). This completes the proof.

3 Existence of intermediate solutions of (A)

We turn to the question of constructing intermediate nonoscillatory solutions of system (A)
via the Riccati equations. This question seems to be more difficult than we imagine, and
we have to be content with giving a partial answer, eight theorems ensuring the existence of
intermediate solutions of (A), presented below.

Theorem 3.1. Assume that Ip = ∞ ∧ Iq < ∞. System (A) possesses intermediate nonoscillatory
solutions of the first kind if the conditions∫ ∞

0
p(t)ρ(t)1/αdt = ∞ and

∫ ∞

0
q(t)P(t)αdt < ∞ (3.1)

are satisfied.
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Proof. We intend to solve the Riccati equation (R1) so that the obtained solution u gives birth
to an intermediate solution (x, y) of (A). This time we employ the Schauder–Tychonoff fixed
point theorem instead of the contraction mapping principle.

Let T > 0 be large enough so that∫ ∞

T
q(s)P(s)αds ≤ (A− 1)α A−α−1, (3.2)

where A > 1 is any fixed constant. This is possible by the second condition of (3.1). We use
the abbreviation

r(t) =
∫ ∞

t
q(s)P(s)αds. (3.3)

It is clear that r(t) ≤ 1 for t ≥ T. Noting that

ρ(t) =
∫ ∞

t
q(s)P(s)α·P(s)−αds ≤ r(t)P(t)−α, t ≥ T,

we define
U = {u ∈ C[T, ∞) : ρ(t) ≤ u(t) ≤ Ar(t)P(t)−α, t ≥ T}, (3.4)

and prove that the integral operator

Gu(t) = α
∫ ∞

t
p(s)u(s)

1
α+1ds + ρ(t), t ≥ T, (3.5)

is a continuous self-map of U and sends U into a relatively compact subset of the locally
convex space C[T, ∞).

(i) If u ∈ U , then

α
∫ ∞

t
p(s)u(s)

1
α+1ds ≤ αA

1
α+1

∫ ∞

t
p(s)r(s)

1
α+1P(s)−α−1ds

≤ αA
1
α+1r(t)

1
α+1

∫ ∞

t
p(s)P(s)−α−1ds = A

1
α+1r(t)

1
α+1P(t)−α,

for t ≥ T, and so we have

ρ(t) ≤ Gu(t) ≤ A
1
α+1r(t)

1
α+1P(t)−α + r(t)P(t)−α

=
(

A
1
α+1r(t)

1
α + 1

)
r(t)P(t)−α ≤

(
A

1
α+1r(T)

1
α + 1

)
r(t)P(t)−α

≤ Ar(t)P(t)−α, t ≥ T,

where we have used (3.2) at the first step. This means that G is a self-map of U .

(ii) Let {un}∞
n=1 be a sequence in U converging to u ∈ U uniformly on compact subinter-

vals of [T, ∞). Noting that

|un(t)
1
α+1 − u(t)

1
α+1| ≤ 2

(
1
α
+ 1
)

A
1
α+1r(t)

1
α+1P(t)−α−1 ≤ 2

(
1
α
+ 1
)

A
1
α+1P(t)−α−1

for all n, we conclude from the Lebesgue convergence theorem that Gun(t) → Gu(t), n → ∞,
uniformly on compact subintervals of [T, ∞). This shows that G is a continuous map.

(iii) The inclusion G(U ) ⊂ U implies the local uniform boundedness of G(U ) on [T, ∞).
The local equicontinuity of G(U ) follows from the fact that any u ∈ U satisfies

0 ≤ −(Gu)′(t) = αp(t)u(t)
1
α+1 + q(t) ≤ αA

1
α+1 p(t)P(t)−α−1 + q(t),
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for t ≥ T. It follows that U is relatively compact in C[T, ∞).
Thus all the hypotheses of the Schauder–Tychonoff fixed point theorem are fulfilled (see

e.g. Coppel [1]), and hence there exists u ∈ U such that u = Gu, that is,

u(t) = α
∫ ∞

t
p(s)u(s)

1
α+1ds + ρ(t), t ≥ T,

which means that u(t) is a positive solution of (R1) on [T, ∞). With this u(t) construct the
function (cf. (2.11))

(X(t), Y(t)) =
(

a exp
(∫ t

T
p(s)u(s)

1
α ds
)

, aαu(t) exp
(

α
∫ t

T
p(s)u(s)

1
α ds
))

, (3.6)

where a > 0 is any constant. The x-component of (3.6) satisfies

X(t) ≥ a exp
(∫ t

T
p(s)ρ(s)

1
α ds
)
→ ∞, t→ ∞,

because of the first condition of (3.1). We notice, however, that

lim sup
t→∞

X(t)
P(t)

< ∞.

In fact, choosing T1 > T so that P(T1) ≥ 1 and

u(t) ≤ Ar(t)P(t)−α ≤ P(t)−α, t ≥ T1,

we obtain ∫ t

T1

p(s)u(s)
1
α ds ≤

∫ t

T1

p(s)P(s)−1ds ≤ log P(t), t ≥ T1.

The boundedness of X(t)/P(t) then follows from (3.6) immediately. Using (3.4), we see that
the y component of (3.6) satisfies

Y(t) = u(t)X(t)α ≤ Ar(t)
(

X(t)
P(t)

)α

→ 0, t→ ∞.

Thus it is assured that the function (X, Y) given by (3.6) is an intermediate solution of the first
kind of system (A) on [T, ∞). This completes the proof.

Remark 3.2. From the generalization of Fubini’s theorem obtained by Došlá et al. [2] it follows
that integral conditions in (3.1) are consistent only if α > 1.

The counterpart of Theorem 3.1 in the case Ip < ∞ ∧ Iq = ∞ is formulated as follows. Its
truth is ensured by the duality principle.

Theorem 3.3. Assume that Ip < ∞ ∧ Iq = ∞. System (A) possesses intermediate nonoscillatory
solutions of the second kind if the following conditions are satisfied:∫ ∞

0
q(t)π(t)αdt = ∞ and

∫ ∞

0
p(t)Q(t)1/αdt < ∞. (3.7)

System (A) may have intermediate solutions in the case where p and q satisfy∫ ∞

0
p(t)ρ(t)

1
α dt = ∞ and

∫ ∞

0
q(t)P(t)αdt = ∞. (3.8)
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Theorem 3.4. Assume that Ip = ∞ ∧ Iq < ∞. System (A) possesses intermediate nonoscillatory
solutions of the first kind if in addition to (3.8) the condition∫ ∞

t
p(s)ρ(s)

1
α+1ds = o(ρ(t)), t→ ∞, (3.9)

is satisfied.

Proof. Because of (3.9) there is a positive continuous function ω such that ω(t) → 0 as t → ∞
and ∫ ∞

t
q(s)ρ(s)

1
α+1ds = ω(t)ρ(t), (3.10)

for all large t. Let B > 1 be any given constant and choose T > 0 so that

ω(t) ≤ 1
α
(B− 1)B−

1
α−1, t ≥ T. (3.11)

We now let the integral operator G defined by (3.5) act on the set

U = {u ∈ C[T, ∞) : ρ(t) ≤ u(t) ≤ Bρ(t), t ≥ T}. (3.12)

If u ∈ U , then from (3.10) and (3.11) one easily sees that

ρ(t) ≤ Gu(t) ≤ αB
1
α+1

∫ ∞

t
p(s)ρ(s)

1
α+1ds + ρ(t)

= αB
1
α+1ω(t)ρ(t) + ρ(t) ≤ Bρ(t), t ≥ T.

This shows that G maps U into itself. The continuity of G and the relative compactness of
G(U ) can be proved routinely (as in the proof of Theorem 3.1). It follows that G has a fixed
point u ∈ U which gives a global solution of equation (R1) on [T, ∞). Using this u we define
the function (X, Y) by (3.6). Then, it is a solution of the first kind of (A) on [T, ∞). It is clear
that X(t)→ ∞ as t→ ∞. It can be shown that the growth order of X as t→ ∞ is smaller than
that of P, i.e.,

lim
t→∞

X(t)
P(t, T)

= 0, where P(t, T) =
∫ t

T
p(s)ds. (3.13)

In fact, from the equation(
X(t)

P(t, T)

)′
=

p(t)
P(t, T)2 (P(t, T)Y(t)

1
α − X(t)),

and the inequality

X(t) ≥
∫ t

T
p(s)Y(s)

1
α ds ≥ P(t, T)Y(t)

1
α ,

holding for t > T, we see that X(t)/P(t, T) is nonincreasing for t > T and tends to a finite
limit k ≥ 0 as t→ ∞. If k > 0, then

lim
t→∞

X(t)
P(t, T)

= lim
t→∞

X′(t)
p(t)

= lim
t→∞

Y(t)
1
α = k

1
α > 0.

This implies that (X, Y) is a maximal solution of (A). By Theorem 2.3 such a situation occurs
only if

∫ ∞
0 q(t)P(t)αdt < ∞, which contradicts the second condition of (3.8). Thus we must

have (3.13).
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It remains to verify that Y(t) → 0 as t → ∞. Let u be the solution of (R1) obtained as a
fixed point of G. Put v = u−1/α. Then, v is a solution of the second Riccati equation (R2).
Integrating (R2) on [T, t] gives

v(t) = v(T) +
1
α

∫ t

T
q(s)v(s)α+1ds + P(t, T), t ≥ T,

which implies in particular that

v(t) ≥ P(t, T), t ≥ T, =⇒ u(t)P(t, T)α ≤ 1, t ≥ T.

Using the last inequality along with (3.13), we find that

Y(t) = u(t)X(t)α = u(t)P(t, T)α

(
X(t)

P(t, T)

)α

→ 0, t→ ∞.

It is concluded therefore that (X, Y) is an intermediate solution of system (A). This completes
the proof.

The duality principle applied to Theorem 3.4 guarantees the validity of the following
result.

Theorem 3.5. Assume that Ip < ∞ ∧ Iq = ∞. System (A) possesses intermediate nonoscillatory
solutions of the second kind if the following conditions are satisfied:∫ ∞

0
q(t)π(t)αdt = ∞,

∫ ∞

0
p(t)Q(t)

1
α dt = ∞, (3.14)

and ∫ ∞

0
q(t)π(t)α+1dt = o(π(t)), t→ ∞. (3.15)

Example 3.6. Consider the half-linear system (A) in which p and q are continuous regularly
varying functions given by

p(t) = tλl(t), q(t) = tµm(t),

where λ and µ are constants and l and m are slowly varying functions on (0, ∞). We assume
that λ and µ satisfy

λ > −1, µ < −1, λ + 1 +
1
α
(µ + 1) = 0. (3.16)

Such a system is referred to as system (A1). Note that this system (A1) is in the case Ip =

∞ ∧ Iq < ∞ for which we have

P(t) ∼ tλ+1l(t)
λ + 1

, ρ(t) ∼ tµ+1m(t)
−(µ + 1)

, t→ ∞. (3.17)

Here the symbol ∼ is used to denote the asymptotic equivalence between two positive func-
tions

f (t) ∼ g(t), t→ ∞ ⇐⇒ lim
t→∞

f (t)
g(t)

= 1.
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For the definition and basic properties of slowly and regularly varying functions the reader is
referred to Marić [11, Appendix].

Using the Karamata integration theorem, we see that the following asymptotic relations
hold:

∫ ∞

t
p(s)ρ(s)

1
α+1ds ∼ tµ+1l(t)m(t)

1
α+1(

− (µ + 1)
) 1

α+2
, (3.18)

∫ t

0
p(s)ρ(s)

1
α ds ∼ 1

(−(µ + 1))
1
α

∫ t

a
s−1l(s)m(s)

1
α ds, (3.19)

∫ t

0
q(s)P(s)αds ∼ 1

(λ + 1)α

∫ t

a
s−1l(s)αm(s)ds, (3.20)

where a > 0 is any fixed constant.
We see that (3.18) implies (3.15), and that (3.19) and (3.20) imply (3.1) if both∫ ∞

a
t−1l(t)m(t)

1
α dt = ∞, (3.21)

and ∫ ∞

a
t−1l(t)αm(t)dt < ∞ (3.22)

are satisfied. Further, since (3.18) is rewritten as
∫ ∞

t p(s)ρ(s)
1
α+1ds ∼ ω(t)ρ(t) with ω(t) =

l(t)m(t)
1
α /(−(µ + 1)

1
α+1), condition (3.9) is fulfilled if

lim
t→∞

l(t)m(t)
1
α = 0. (3.23)

Therefore, under (3.16) system (A1) possesses an intermediate solution of the first kind if (3.21)
and (3.22) are satisfied (by Theorem 3.1), or if (3.21) and (3.23), plus the condition∫ ∞

a
t−1l(t)αm(t)dt = ∞, (3.24)

are satisfied (by Theorem 3.4).

The condition (3.9) in Theorem 3.4 requires the integral
∫ ∞

t p(s)ρ(s)
1
α+1ds to decrease faster

than ρ(t) as t→ ∞. This requirement can be relaxed to a significant degree as follows.

Theorem 3.7. Assume that Ip = ∞ ∧ Iq < ∞. System (A) possesses intermediate nonoscillatory
solutions of the first kind if in addition to (3.8) the condition∫ ∞

t
p(s)ρ(s)

1
α+1ds ≤ γρ(t) for all large t, (3.25)

holds for some positive constant γ such that

γ ≤
(
α + 1

)− 1
α−1. (3.26)
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Proof. Let T > 0 be so large that (3.25) holds for t ≥ T. Because of (3.26) there exists a constant
C > 1 such that

γ ≤ 1
α
(C− 1)C−

1
α−1. (3.27)

This follows from the fact that (α + 1)−
1
α−1 = maxC>1

1
α (C − 1)C−

1
α−1. (Note that the maxi-

mum is attained at C = α + 1.) With this C define the set U by

U =
{

u ∈ C[T, ∞) : ρ(t) ≤ u(t) ≤ Cρ(t), t ≥ T
}

,

and let the integral operator G given by (3.5) act on U . G is a self-map of U since u ∈ U
implies that

Gu(t) ≤ αC
1
α+1

∫ ∞

t
p(s)ρ(s)

1
α+1ds + ρ(t)

≤
(

αC
1
α+1γ + 1

)
ρ(t) ≤ Cρ(t), t ≥ T.

Since it is shown routinely that G is continuous and sends U into a relatively compact subset
of C[T, ∞), the Schauder–Tychonoff theorem guarantees the existence of a fixed point u ∈ U
of G which gives a global solution of the Riccati equation (R1). From this point on proceeding
exactly as in the proof of Theorem 3.4, we can construct the intermediate solution (X, Y) of
(A) according to the formula (3.6) by making use of the solution u of (R1) mentioned above.
This completes the proof.

Example 3.8. Consider the differential system

x′ − p(t)ϕ1/α(y) = 0, y′ +
kp(t)

P(t)α+1 ϕα(x) = 0, (A2)

where Ip = ∞, P(t) =
∫ t

0 p(s)ds and k is a positive constant. For this system we have

ρ(t) =
∫ ∞

t

kp(s)
P(s)α+1 ds =

k
α

P(t)−α,

∫ ∞

0
p(s)ρ(s)

1
α ds =

(
k
α

) 1
α
∫ ∞

0
p(s)P(s)−1ds = ∞,∫ ∞

0
q(s)P(s)αds = k

∫ ∞

0
p(s)P(s)−1ds = ∞,

and ∫ ∞

t
p(s)ρ(s)

1
α+1ds =

1
α

(
k
α

) 1
α

ρ(t).

From Theorem 3.7 it follows that system (A2) possesses an intermediate solution of the first
kind if

1
α

(
k
α

) 1
α

≤ (α + 1)−
1
α−1 , i.e., k ≤

(
α

α + 1

)α+1

.

If in particular k =
(

α
α+1

)α+1, then (A2) has an exact intermediate solution (x, y) with

x(t) = P(t)
α

α+1 , y(t) =
(

α

α + 1

)α

P(t)−
α

α+1 .
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The duality principle ensures the truth of the following theorem as a counterpart of Theo-
rem 3.7.

Theorem 3.9. Assume that Ip < ∞ ∧ Iq = ∞. System (A) possesses intermediate nonoscillatory
solutions of the second kind if in addition to (3.14) the condition∫ ∞

t
q(s)π(s)α+1ds ≤ δπ(t) for all large t, (3.28)

is satisfied for some positive constant δ such that

δ ≤
(

α

α + 1

)α+1

. (3.29)

An alternative way to formulate and prove the existence results on intermediate solutions
under condition Ip = ∞ ∧ Iq < ∞ is to use the function P(t) and the Riccati equation (R2)
instead of ρ(t) and (R1), respectively.

Theorem 3.10. Assume that Ip = ∞ ∧ Iq < ∞. System (A) possesses intermediate nonoscillatory
solutions of the first kind if in addition to (3.8) the condition∫ t

0
q(s)P(s)α+1ds = o(P(t)), t→ ∞, (3.30)

is satisfied.

Proof. The relation (3.30) means that there exists a positive continuous function ε such that
ε(t)→ 0 as t→ ∞ and ∫ t

0
q(s)P(s)α+1ds = ε(t)P(t) (3.31)

for all large t. For any given constant A > 1 we can choose T > 0 so large that

ε(t) ≤ α(A− 1)A−α−1 (3.32)

for t ≥ T. We now define the set V and the mapping G by

V = {v ∈ C[T, ∞) : P(t) ≤ v(t) ≤ AP(t), t ≥ T}

and

Gv(t) = P(t) +
1
α

∫ t

T
q(s)v(s)α+1ds, t ≥ T. (3.33)

It is clear that V is a closed convex subset of the Fréchet space C[T, ∞) with the topology of
uniform convergence of functions on compact subintervals of [T, ∞).

If v ∈ V , then from (3.31) and (3.32) it follows that

P(t) ≤ Gv(t) ≤ P(t) +
1
α

Aα+1
∫ t

T
q(s)P(s)α+1ds ≤ P(t) +

1
α

Aα+1ε(t)P(t) ≤ AP(t)

for t ≥ T, which proves that G maps V into itself. It can be shown routinely that G is a
continuous mapping and that G(V) is a relatively compact subset of C[T, ∞). Therefore it
follows from the Schauder–Tychonoff fixed point theorem that there is an element v ∈ V such
that v = Gv. In view of the definition of G this function v = v(t) satisfies the integral equation

v(t) = P(t) +
1
α

∫ t

T
q(s)v(s)α+1ds, t ≥ T.
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Using this v we define the function (X, Y) by

(X(t), Y(t)) =
(

b
1
α v(t) exp

(
−1

α

∫ t

T
q(s)v(s)αds

)
, b exp

(
−
∫ t

T
q(s)v(s)αds

))
, (3.34)

where t ≥ T and b is any positive constant. Then, it is a nonoscillatory solution of the first
kind of (A) on [T, ∞). It is clear that Y(t)→ 0 as t→ ∞. It remains to prove that X(t)→ ∞ as
t→ ∞. For this purpose we first show that

lim
t→∞

Y(t)
ρ(t)

= ∞. (3.35)

In fact, from the equation [
Y(t)
ρ(t)

]′
=

q(t)
ρ(t)2

[
Y(t)− ρ(t)X(t)α

]
,

and the inequality

Y(t) =
∫ ∞

t
q(s)X(s)αds ≥ X(t)αρ(t),

which holds for t > T, we see that the function Y(t)/ρ(t) is nondecreasing for t ≥ T and
tends to a positive limit K(≤ ∞) as t→ ∞. If K < ∞, then

lim
t→∞

Y(t)
ρ(t)

= lim
t→∞

Y′(t)
−q(t)

= lim
t→∞

X(t)α < ∞.

This implies that (X, Y) is a minimal solution of (A). But this contradicts the first condition of
(3.8) (cf. Theorem 2.3(ii)). Thus we must have (3.35).

Now, let v be the function obtained as a fixed point of G and put u = v−α. Then, u is a
solution of the first Riccati equation (R1) and integration of (R1) from t to ∞ yields

u(t) = α
∫ ∞

t
p(s)u(s)

1
α+1ds + ρ(t), t ≥ T,

which implies, in particular, that

u(t) ≥ ρ(t), t ≥ T =⇒ v(t)ρ(t)
1
α ≤ 1, t ≥ T.

Using this inequality along with (3.35) we get that

X(t) = v(t)Y(t)
1
α = v(t)ρ(t)

1
α

[
Y(t)
ρ(t)

] 1
α

→ ∞, t→ ∞.

Thus, (X, Y) is an intermediate solution of (A). This completes the proof.

Theorem 3.11. Assume that Ip = ∞ ∧ Iq < ∞. System (A) possesses intermediate nonoscillatory
solutions of the first kind if (3.8) is satisfied and there exist constants T > 0 and γT such that

0 < γT ≤
(

α

α + 1

)α+1

(3.36)

and ∫ t

T
q(s)P(s)α+1ds ≤ γTP(t) (3.37)

holds for t ≥ T.
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Proof. Choose T > 0 so large that (3.37) holds for t ≥ T and a positive constant γT satisfying
(3.36). From (3.36) it follows that there exists a constant C > 1 such that

γT ≤ α(C− 1)C−α−1. (3.38)

(This follows from the fact that(
α

α + 1

)α+1

= max
C>1

α(C− 1)C−α−1.

Note that the maximum is attained at C = 1
α + 1.) With this C define the set V by

V = {v ∈ C[T, ∞) : P(t) ≤ v(t) ≤ CP(t), t ≥ T},

and let the integral operator G given by (3.33) act on V . G is a self-map of V since v ∈ V
implies that

P(t) ≤ Gv(t) ≤ P(t) +
1
α

Cα+1
∫ t

T
q(s)P(s)α+1ds ≤

(
1 +

1
α

Cα+1γT

)
≤ CP(t), t ≥ T.

It can be shown routinely that G is continuous and sends V into a relatively compact subset
of C[T, ∞), and so the Schauder–Tychonoff fixed point theorem guarantees the existence of a
fixed point v ∈ V of G which gives a global solution of the Riccati equation (R2). From this
point on proceeding exactly as in the proof of Theorem 3.10, we can construct the intermediate
solution (X, Y) of (A) according to the formula (3.34) using the solution v of (R2) mentioned
above. This completes the proof.

Analogs of Theorems 3.10 and 3.11 concerning the case Ip < ∞ ∧ Iq = ∞ which can be
obtained easily using the duality principle are omitted here.

Example 3.12. Consider the system

x′ = p(t)ϕ1/α(y), y′ + λ
p(t)

P(t)α+1
(

log P(t)
)β

ϕα(x) = 0, (3.39)

where α 6= 1, β and λ are positive constants and P(t) :=
∫ t

0 p(s)ds→ ∞ as t→ ∞.

If α > 1 and β ∈ (1, α], then conditions (3.1) are satisfied (cf. with Example 4.1 in [5]) and
according to Theorem 2.3(ii) and Theorem 3.1 system (A) has both minimal and intermediate
nonoscillatory solutions of the first kind.

If β ≤ min{1, α}, then the condition (3.8) holds and system (A) has neither minimal nor
maximal nonoscillatory solutions. But if we choose T > 0 so large that P(T) > 1 and

λ
(

log P(T)
)−β ≤

(
α

α + 1

)α+1

, (3.40)

then∫ t

T
q(s)P(s)α+1ds =

∫ t

T

λp(s)

P(s)α+1
(

log P(s)
)β

P(s)α+1ds

= λ
∫ t

T
p(s)

(
log P(s)

)−βds ≤ λ
(

log P(T)
)−β

∫ t

T
p(s)ds ≤ λ

(
log P(T)

)−βP(t)

for t ≥ T, and Theorem 3.11 guarantees the existence of intermediate solutions of the first
kind for system (3.39).
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Remark 3.13. As an earlier work more or less related to ours we refer to Li and Cheng
[10] in which asymptotic analysis is made of the first order cyclic differential system x′ =
p(t) f (y), y′ = −q(t)g(x), which are structurally more general than our (A), from the view-
point of nonoscillation.

4 Application to scalar second order half-linear differential equa-
tions

The final section is devoted to the application of our theory for system (A) to scalar second
order half-linear differential equations of the type

(p(t)ϕα(x′))′ + q(t)ϕα(x) = 0, (E)

where α is a positive constant, and p and q are positive continuous functions on [0, ∞).
By a solution we here mean a function x which is defined in a neighborhood of infinity

and satisfies (E) at all large t. We call p(t)ϕα(x′) the quasi-derivative of x and denote it by
Dx. A solution x of (E) is called nonoscillatory if it satisfies x(t)Dx(t) 6= 0 for all large t. A
nonoscillatory solutions is said to be of the first kind (resp. of the second kind) if x(t)Dx(t) > 0
(resp. x(t)Dx(t) < 0) for all large t.

The key to the systematic analysis of equation (E) is a simple fact that the substitution
y = Dx transforms this equation into the first order cyclic differential system

x′ − p(t)−
1
α ϕ 1

α
(y) = 0, y′ + q(t)ϕα(x) = 0, (4.1)

which can be regarded as a special case of system (A). This fact makes it possible to trans-
late a nonoscillation problem to be solved for (E) into a problem for (4.1) to which a general
nonoscillation theory already established for (A) applies. Thus, in order to study (E) from the
viewpoint of nonoscillation it is not necessary for us to analyze the second order equation (E)
per se, but it suffices just to formulate automatically the desired results for (E) from the cor-
responding theorems for system (A) specialized to (4.1). The following notations are needed
for this purpose:

Pα(t) =
∫ t

0
p(s)−

1
α ds if

∫ ∞

0
p(t)−

1
α dt = ∞,

πα(t) =
∫ ∞

t
p(s)−

1
α ds if

∫ ∞

0
p(t)−

1
α dt < ∞,

Q(t) =
∫ t

0
q(s)ds if

∫ ∞

0
q(t)dt = ∞,

ρ(t) =
∫ ∞

t
q(s)ds if

∫ ∞

0
q(t)dt < ∞.

We first state a result which follows from Theorem 2.2 specialized to (4.1).

Theorem 4.1. All solutions of equation (E) are oscillatory if

∫ ∞

0
p(t)−

1
α dt = ∞ and

∫ ∞

0
q(t)dt = ∞. (4.2)
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To analyze the structure of nonoscillatory solutions of (E) it is necessary to distinguish the
three cases: ∫ ∞

0
p(t)−

1
α dt = ∞ and

∫ ∞

0
q(t)dt < ∞, (4.3)∫ ∞

0
p(t)−

1
α dt < ∞ and

∫ ∞

0
q(t)dt = ∞, (4.4)∫ ∞

0
p(t)−

1
α dt < ∞ and

∫ ∞

0
q(t)dt < ∞. (4.5)

According to the classification of solutions of system (A) applied to (4.1) we see that if
(4.3) holds, then a nonoscillatory solution x of (E) is of the first kind (x(t)Dx(t) > 0, |x(t)|
is increasing and |Dx(t)| is decreasing) and exhibits one of the following three patterns of
asymptotic behavior at infinity:

I(i) |x(∞)| = ∞, 0 < |Dx(∞)| < ∞,

I(ii) |x(∞)| = ∞, Dx(∞) = 0,

I(iii) 0 < |x(∞)| < ∞, Dx(∞) = 0,

and that if (4.4) holds, then a nonoscillatory solution x of (E) is of the second kind (x(t)Dx(t) <
0, |x(t)| is decreasing and |Dx(t)| is increasing) and exhibits one of the following three pat-
terns of asymptotic behavior at infinity:

II(i) 0 < |x(∞)| < ∞, |Dx(∞)| = ∞,

II(ii) x(∞) = 0, |Dx(∞)| = ∞,

II(iii) x(∞) = 0, 0 < |Dx(∞)| < ∞.

Finally, if (4.5) holds, then a nonoscillatory solution x of (A) is either of the first kind and
satisfies either I(iii) or

III: 0 < |x(∞)| < ∞, 0 < |Dx(∞)| < ∞,

or is of the second kind and satisfies either II(iii) or III.

Solutions of the types I(i) and II(i) (resp. I(iii) and II(iii)) are said to be maximal solutions
(resp. minimal solutions) of (E), while solutions of the types I(ii) and II(ii) are called intermediate
solutions of (E). Solutions of the last type III are termed bounded solutions of the non-minimal
type.

The existence of maximal and minimal solutions of (E) can be characterized completely,
but intermediate solutions are put in a different situation.

Sharp existence theorems of maximal and minimal solutions of (E) are obtained as a result
of specialization of Theorems 2.3 and 2.5 to system (4.1).

Theorem 4.2.

(i) Suppose that
∫ ∞

0 p(t)−
1
α dt = ∞. Equation (E) possesses maximal solutions of the first kind if

and only if ∫ ∞

0
q(t)Pα(t)αdt < ∞. (4.6)

In this case, for any constant d 6= 0 there exists a solution x of (E) such that

lim
t→∞

x(t)
Pα(t)

= d, lim
t→∞

Dx(t) = ϕα(d).
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(ii) Suppose that
∫ ∞

0 q(t)dt < ∞. Equation (E) possesses minimal solutions of the first kind if and
only if ∫ ∞

0
p(t)−

1
α ρ(t)

1
α dt < ∞. (4.7)

In this case, for any constant c 6= 0 there exists a solution x of (E) such that

lim
t→∞

x(t) = c, lim
t→∞

Dx(t)
ρ(t)

= ϕα(c).

Theorem 4.3.

(i) Suppose that
∫ ∞

0 q(t)dt = ∞. Equation (E) possesses maximal solutions of the second kind if
and only if ∫ ∞

0
p(t)−

1
α Q(t)

1
α dt < ∞. (4.8)

In this case, for any constant c 6= 0 there exists a solution x of (E) such that

lim
t→∞

x(t) = c, lim
t→∞

Dx(t)
Q(t)

= −ϕα(c).

(ii) Suppose that
∫ ∞

0 p(t)−
1
α dt < ∞. Equation (E) possesses minimal solutions of the second kind if

and only if ∫ ∞

0
q(t)πα(t)αdt < ∞. (4.9)

In this case, for any constant d 6= 0 there exists a solution x of (E) such that

lim
t→∞

x(t)
πα(t)

= d, lim
t→∞

Dx(t) = −ϕα(d).

In the case (4.5) the following theorem can be considered as a corollary of Theorem 2.6.

Theorem 4.4. Suppose that (4.5) holds. Then, for any given constants c and d with cd 6= 0 there exists
a solution x of (E) satisfying x(∞) = c and Dx(∞) = d.

The closing topic is the existence of intermediate solutions for equation (E). Recall that an
intermediate solution of the first kind (resp. of the second kind) of (E) may exist only in the
case where p and q satisfy (4.3) (resp. (4.4)), and that such a solution x behaves like

lim
t→∞
|x(t)| = ∞, lim

t→∞

x(t)
Pα(t)

= 0, lim
t→∞

Dx(t) = 0, lim
t→∞

|Dx(t)|
ρ(t)

= ∞,

if it is of the first kind, and like

lim
t→∞

x(t) = 0, lim
t→∞

|x(t)|
πα(t)

= ∞, lim
t→∞
|Dx(t)| = ∞, lim

t→∞

Dx(t)
Q(t)

= 0,

if it is of the second kind. All existence theorems of intermediate solutions of (E) produced
from the eight theorems of Section 3 can be summarized as follows.
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Theorem 4.5.

(i) Assume that (4.3) holds. Equation (E) possesses an intermediate solution of the first kind if the
following conditions are satisfied∫ ∞

0
p(t)−

1
α ρ(t)

1
α dt = ∞,

∫ ∞

0
q(t)Pα(t)αdt < ∞. (4.10)

(ii) Assume that (4.4) holds. Equation (E) possesses an intermediate solution of the second kind if
the following conditions are satisfied∫ ∞

0
q(t)πα(t)αdt = ∞,

∫ ∞

0
p(t)−

1
α Q(t)

1
α dt < ∞. (4.11)

Theorem 4.6.

(i) Assume that (4.3) holds. Equation (E) possesses an intermediate solution of the first kind if the
following conditions are satisfied∫ ∞

0
p(t)−

1
α ρ(t)

1
α dt = ∞,

∫ ∞

0
q(t)Pα(t)αdt = ∞, (4.12)

∫ ∞

t
p(s)−

1
α ρ(s)

1
α+1ds = o(ρ(t)), t→ ∞. (4.13)

(ii) Assume that (4.4) holds. Equation (E) possesses an intermediate solution of the second kind if
the following conditions are satisfied∫ ∞

0
q(t)πα(t)αdt = ∞,

∫ ∞

0
p(t)−

1
α Q(t)

1
α dt = ∞. (4.14)

∫ ∞

t
q(s)πα(s)α+1ds = o(πα(t)), t→ ∞. (4.15)

Theorem 4.7.

(i) Assume that (4.3) holds. Equation (E) possesses an intermediate solution of the first kind if in
addition to (4.12) the following condition is satisfied∫ ∞

t
p(s)−

1
α ρ(s)

1
α+1ds ≤ δρ(t) for all large t, (4.16)

where δ is a positive constant such that δ ≤ (α + 1)−(α+1)/α.

(ii) Assume that (4.4) holds. Equation (E) possesses an intermediate solution of the second kind if in
addition to (4.14) the the following condition is satisfied∫ ∞

t
q(s)πα(s)α+1ds ≤ γπα(t) for all large t, (4.17)

where γ is a positive constant satisfying (3.26).

Theorem 4.8. Assume that (4.3) holds. Equation (E) possesses an intermediate solution of the first
kind if in addition to (4.12) the condition∫ t

0
q(s)Pα(s)α+1ds = o(Pα(t)), t→ ∞ (4.18)

is satisfied.
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Theorem 4.9. Assume that (4.3) holds. Equation (E) possesses an intermediate solution of the first
kind if (4.12) is satisfied and there exist constants T > 0 and γT such that (3.36) and∫ t

T
q(s)Pα(s)α+1ds ≤ γTPα(t) (4.19)

holds for t ≥ T.

Example 4.10. Consider the half-linear differential equation

(e−αt ϕα(x′))′ + Ke−βt ϕα(x) = 0, t ≥ 0, (4.20)

where α, β and K are positive constants. The functions p(t) = e−αt and q(t) = Ke−βt satisfy
the condition (4.4). Since Pα(t) = et − 1 and ρ(t) = (K/β)e−βt, one obtains

p(t)−
1
α ρ(t)

1
α =

(
K
β

) 1
α

e(1−
β
α )t, q(t)Pα(t)α = Ke(α−β)t(1− e−t)α,

which implies that both maximal and minimal solutions of (4.20) exist if α < β, more precisely,
for any given positive constants c and d there exist solutions x and X of (4.20) such that

lim
t→∞

x(t) = c, lim
t→∞

eβtDx(t) = cα,

and

lim
t→∞

X(t)
et = d, lim

t→∞
DX(t) = d

1
α ,

and that (4.20) is deprived of those solutions if α ≥ β.
To gain an insight into intermediate solutions of (4.20) we have to limit our attention to

the case α ≥ β and compute the integral of p(s)−
1
α ρ(s)

1
α+1 on [t, ∞). As is easily checked, this

integral converges if β > α/(α + 1), in which case we obtain

∫ ∞

t
p(s)−

1
α ρ(s)

1
α+1ds =

(
K
β

) 1
α+1 α

(α + 1)β− α
e(1−

(α+1)β
α )t

=

(
K
β

) 1
α α

(α + 1)β− α
e(1−

β
α )tρ(t).

This shows that only the case α = β should be examined. In this case, since

∫ ∞

t
p(s)−

1
α ρ(s)

1
α+1ds =

K
1
α

α
1
α+1

ρ(t),

we conclude by (i) of Theorem 4.7 that equation (4.20) possesses an intermediate solution if

K ≤
(

α

α + 1

)α+1

.

Notice that equation (4.20) with K = (α/(α+ 1))α+1 has an exact intermediate solution x0(t) =
eαt/(α+1) whose quasi-derivative is Dx0(t) = (α/(α + 1))αe−αt/(α+1).
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Concluding remarks

(1) Qualitative theory of second order half-linear differential equations of the form (E) has
been the subject of intensive investigations in recent years. The reader is referred to Došlý
and Řehák [3] for a systematic exposition of a variety of topics regarding (E) and related
differential equations.

(2) The Riccati differential equations have a long history; see e.g., Sansone [14]. With time
their importance became known in connection with oscillation theory of second order linear
differential equations. A number of fundamental oscillation criteria for the linear equations
obtained through the analysis of the Riccati equations can be found in Swanson [15]. It has
turned out that a portion of oscillation theory for second order half-linear differential equa-
tions can be developed with the help of the associated Riccati-type differential equations; see
e.g., Kusano and Naito [7], Kusano and Yoshida [8], Li and Yeh [9], Opluštil [13] and Yang
and Lo [16].

(3) The present work was motivated by the question as to the possibility of constructing
all nonoscillatory solutions (x, y) of system (A) by utilizing global solutions u or v of the
associated Riccati-type equation (R1) or (R2). As far as we know, this kind of question has
never been raised in the existing literature on differential equations. Given that u (or v) is
a compound of x and y, at first it seemed difficult to draw accurate information on x and y
separately from u (or v), but a careful and close analysis of the half-linear law (A) governing
(x, y) and the nonlinear law (R1) (or (R2)) governing u (or v) has eventually enabled us to
establish the explicit representation formulas for almost all (x, y) in terms of u (or v).
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