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1 Introduction

The theory of boundary-value problems with integral boundary conditions for ordinary differential
equations arises in different areas of applied mathematics and physics. For example, heat conduc-
tion, chemical engineering,underground water flow, thermo-elasticity, and plasma physics can be
reduced to the nonlocal problems with integral boundary conditions. In recent years, the theory
of ordinary differential equations in Banach space has become a new important branch of investi-
gation (see, for example, [1-4] and references therein). In a recent paper [7], using the cone theory
and monotone iterative technique, Zhang et al investigated the existence of minimal nonnegative
solution of the following nonlocal boundary value problems for second-order nonlinear impulsive
differential equations on an infinite interval with an infinite number of impulsive times

—z(t) = f(t,2(t),2'(t)), teJt 7& L,

Axli—, = Ir(z(ty)), k:—l 2,

AL =y, = Tr(2(tr)), k=
)

m<o>:/0 se)eli)ts 2(o0) =0,
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where J = [0,+00), f € C(J x Rt x R",R"), Rt = [0, +o0], 0<t1 <ta<...<tp<... tp—
oo, Iy € C[RY,R*], I}, € CI[RT,RT], g(t) € C[RT,RT), with fo t)dt < 1.

Very recently, by using Schauder fixed point theorem, Guo [6] obtamed the existence of positive
solutions for a class of nth-order nonlinear impulsive singular integro-differential equations in a
Banach space. Motivated by Guo’s work, in this paper, we shall use the cone theory and the
Monch fixed point theorem to investigate the positive solutions for a class of second-order nonlinear
impulsive integro-differential equations in a Banach space.

Consider the following boundary value problem with integral boundary conditions for second-

order nonlinear impulsive integro-differential equation of mixed type in a real Banach space E:

—a"(t) = f(t,x(t),2'(t), tE€Jt# 1y,
Az, = Lok (z(tr), 2'(tr)),
Ax ey, = Lip(x(ty), 2" (t)), k=1,2,---, (1)

20) = [ g, (o0) = i
0

where J = [0,00), Jp = (0,00), 0<t) <ty < ... <tp < ... ,tpg — 00, Jp = (tk,tk+1] (/{? =

1,2,--4), Jo = J\{t1...,tk...}, f may be singular at t = 0 and = 0 or 2’ = 6. Io; and Iy

may be singular at © = 6 or 2’ = 0, 0 is the zero element of E, ¢(t) € L[0,00) With/ g(t)dt <
0

o
1,/ tg(t)dt < oo, z(00) = tlim 2/ (t), To0o > x5, xly € Py, Py is the same as that defined in Section
0 —00

2. Azli—y, denotes the jump of z(t) at t = ty, i.e., Azl—y, = x(t) — 2(t;), where z(t]), z(t;)
represent the right and left limits of x(t) at ¢ = ¢, respectively. Az'|;—;, has a similar meaning for
2'(t).

The main features of the present paper are as follows: Firstly, compared with [7], the second-
order boundary value problem we discussed here is in Banach spaces and nonlinear term permits
singularity not only at t = 0 but also at x, 2’ = . Secondly, compared with [6], the relative compact
conditions we used are weaker.

2 Preliminaries and several lemmas

Let PC[J,E] = {z|z(t) : J — E, z is continuous at ¢ # t; and left continuous at t = ¢y, z(t;)
exists, k = 1,2,---}. PC[J,E] = {z|z € PC[J,E], 2/(t) exists at ¢t # t; and z/(t]"), 2/(t; ) exist
k=1,2,--}.

_ H Il
FPC[J,E| = {& € PC[J, F] :5 sup =5 < oo 3
DPCYJ,E] = {x € PCYJ E]:s H ®)l < 400, and sup ||2'(t)]| < —i—oo}.
eyt 1 teJ

Obviously, FPC|J, E] is a Banach space with norm

llz@1

el = sup 255,

and DPC1[J, E] is also a Banach space with norm
|zl = max{[|z(|#, [l+[l1},
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where
|2 [|y = sup [|z"(t)].
ted

The basic space using in this paper is DPC![J, E].

Let P be a normal cone in E with normal constant N which defines a partial ordering in E by
x<y. Ifr<yandz #y, we write x < y. Let P = P\{0}. So, x € P, if and only if z > 6. For
details on cone theory, see [4].

Let Poy = {x € P :z > Az}, (A > 0). Obviously, Py C P for any A > 0. When A =1, we
write Py = Po1, i.e. Pp={x € P:xz > z}}. Let P(F)={x € FPC|[J,E] : 2(t) >0, Yt € J}, and
P(D) = {z € DPC[J,E] : z(t) > 0, 2/(t) > 0, ¥Vt € J}. It is clear, P(F), P(D) are cones in
FPC[J,E] and DPC[J, E], respectively. A map x € DPC'[J, E] N C?[J/ , E] is called a positive
solution of BVP (1) if x € P(D) and x(t) satisfies BVP (1).

Let a, ap, ap denote the Kuratowski measure of non-compactness in E, FPC[J, E], DPC!|[J, E].
For details on the definition and properties of the measure of non-compactness, the reader is referred
to references [1-4].

Denote o

A* = min {—fo tg(t()d)t ,1}.

1— [ g(t)dt

Let us list the following assumptions, which will stand throughout this paper.

(Hy) f € C[J4 % Pyxx Py, P] for any A > 0 and there exist a,b,c € L[J;,J] and z € C[Jy x J4, J]

such that

£t 2, )| < a(t) +b@)z(lzl. llyl), ¥t € Jy, € Poxe, y € Poxe
and

c@”)ﬁifff@m — 0, asx € Py, y € Poxs, ]| + |lyl] — oo,

uniformly for ¢t € J,, and

/ a(t)dt = a™ < oo, / t)dt = b* < oo, / 1+t)dt =" < 0.
0

(Ha) L € C[Pyy X Pyy, P] for any A > 0 and there exist F; € L[Jy x Jy,Jy]| and constants
Niks Vik, (1 =0,1,k =1,2---) such that

Miw (2, Il < mirFi(llzll, yl)), 2 € Pox-5 y € Pox- (i = 0,1),

and
| i (t, z, )|

Yie(llzll + llyll)
uniformly for (i =0,1,k=1,2---), here

— 0, asz € Py, y € Poxs, ||z + [lyll — oo,

oo oo
0<77;k:2mk<oo, O<7§“:Z%k(1+tk)<oo
k=1
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(Hz) For any ¢t € J,, R > 0 and countable bounded set V; ¢ DPC'[J, Pyy+g] (i = 0,1), there
exist h;(t) € L[J,J] (i =0,1) and positive constants m;x; (4,7 = 0,1,k =1,2---) such that

1 1

(f(t ‘/0 Z 7 ( lk(‘/() Z lk]

i=0 j=

1

o / ho(t)(1 +t) 4+ hy (t)dt < 0o, m* = ZZ mio(1 4 tg) + mig1) < oo,
0 k=1 i=0

where
Poxrr ={x € P:az > Xz, ||z|| < R}.

(H4) le J+7 )\*.%'6 <z <7 (Z = 07 1)7 lmply f(t7x07x1) < f(tafmfl)'

In what follows, we write Q = {& € DPC'[J, P] : 29 (t) > Xz}, Vt € J, i = 0,1}. Evidently, Q is
a closed convex set in DPC![J, E]. We shall reduce BVP (1) to an impulsive integral equations in
E. To this end, we first consider operator A defined by

(Az)(t) = m{xm /000 tg(t)dt + /000 g(t) {/000 G(t,s)f(s,x(s),2'(s))ds

+ 3G ) (), 2 (1) + 3 Gt ) Ton (e (1), m’(tk))] dt} Ftra
k=1

k=1
+/ G(t,s)f(s,2(s),2'(s))ds + Y G(t,ti) T (x(te), 7' () (2)
0 k=1
+> Gt te) Lo (2(tr), 2 (),
k=1
where
t, 0<t<s< 400, 0, 0<t<s< oo,
G(t, S) = G;(ta 8) =

s, 0<s<t < +o0, 1, 0<s<t < +4o0.

Lemma 1 If conditions (Hy) — (Hs) are satisfied, then operator A defined by (2) is a continuous
operator from @ into Q.

Proof. Let
1
X Jo° g(t)dt
Be <1 + 17(}0°°g(t>dt>
and
aEA
— 22 ol 4
N >0 (4)

By (H;p), there exists a R > r such that

1z 9)l < eoc)(llzll + lyl), VE €Ty, @€ Poxes y € Poas, 2]l +[lyll > R,
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and
£t 2, y)ll <a(t)+ Mb(t), Vte i, € Pox, y € Por, |zl + |lyll < R,

where
M = max{z(ug,u1) :r <u; <R (i =0,1)}.

Hence
£tz y)ll < eoct)(z] + [lyll) +al(t) + Mb(t), Vi€ Ji, © € Porr, y € Pox- (5)

On the other hand, let
z = ! (i=0,1) (6)
! o= 9(t)dt S
i (1+ it w)

We see that, by condition (Hg), there exists a R; > r such that

ik (z, )| < Evie(llzll + llyl), ¥V = € Poxe, y € Pox=, [zl + llyll > By (i = 0,1,k =1,2--+),

and
ik (2, 9)|| < iy, ¥ & € Poxs, y € Pox=, |lz|| + [yl <R (i =0,1,k=1,2---),
where
My = max{F;(up,u1) : 7 <u; <R (i=0,1)}.
Hence

ik (2, Il < Evir(llzll + lylD) + mirdy, ¥V 2 € Poxe, y € Poxs, i =0,1, k=1,2---. (7)

Let z € Q, by (5), we can get

700 < o+ (L ON o) L ang)

= t+1 t+1 (8)
< Eoc(t)( +8)(lzllr + ll2'll) + a(t) + Mb()
< 2e0c(t) (1 +t)||x||p + a(t) + Mb(t),V t € Jo,

which together with condition (H;) implies the convergence of the infinite integral

/0 T f (s, x(s), 2 (5)) [ ds. (9)

On the other hand, by (7), we have

_ ()l | ")l
(1t ( ) M
6272/6( + k) tk+1 tk+1 +772k 1

g%k (L +ti) (|2 7 + |2[]1) + nar M
ngf)’ik(l + tk)”xHD + 77@'le (Z =0, 1)7

[ ik (2(tx), ' (te))

IN

(10)

IN A
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which together with (2), (Hl) and (Hg) implies that

(4n)@)] < ﬁ {lewll [ttt [ o] [ 6t 5155 a(e). () s
0

3 Gl ko). 2’ ()] + 3 Gt ) e olte). o <tk>>u} t}
k=1

+t| 7o +/OOO G(t, )| (s.2(s), 2" (9))llds + Y Gt b1 (tr), 2 (t)] (11)

k=1

+ Gt ) [ How (2 (), 2 (t)-

k=1

Therefore,

J(An) )
< fo i ||xoo||/ to(t dt+/ / 1 (5,2(5), 2'(5))||ds

+Zuflk 2 (1)) u+2u10k >>u]dt}+uxoou
/ 1£(5,2(5) )ds + 3 [ie(alte). o' (80)]

OOO k=1
+ 3 Mow(a(ti), @' (0))]

k=1

g(t)dt
@+_iLﬂl_—ﬁ%Mme+f+wﬂﬂ+<L+

- fo 1
(142 dt) ZZ st o' (1) |

Okl
h

o tal( dtfo Udt)(
g(t
—0 )zl

—Jo 9(t)d

Jo tg(t)dt 12

W)H N

IN

IN

Slzlp + (1 + o+ MY 5 My + 0 My)
+(1+5
Differentiating (2), we get

:/toof(s,x( dS+Z-’1k tk)) + Too- (13)

>t

Hence,

I(A"z) ()]

IN

/ 1f (s, 2(s), 2" (s))[[ds + [[zeo]| +ZHhk (tk), 2 (te))

k=1
2e0¢"||zllp + a” + MY + ||zoo|| + 26177 || 2] D + 11 My

1
§HxHD +a" + Mb* + ||xo|| + mi My, ViteJ

(14)

IN A

It follows from (12) and (14) that
fooo g(t)dt
— Jo g(t)dt
Iy~ tg(t)dt
0 el

Jo~ 9(t)d

1 * > * *
lAelno < Slelp+ (1+ 7 )(@* + MY + 55 My + i My)

+(1 + (15)
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So, Ax € DPC[J, E]. On the other hand, it can be easily seen that

(Az)(t) (fo—>moo > N > N, Ve,

L=Jo

(A'2)(t) > Too = Moo > Nxf, VEEJ

Hence, Az € ). Thus, we have proved that A maps @ into @ and (15) holds.

Finally, we show that A is continuous. Let (z,,,T) € Q, ||z —Z||p — 0 (m — o0). Then {z,,}
is a bounded subset of ). Thus, there exists r > 0 such that ||2,,||p < r for m > 1 and ||Z||p < 7.

Similar to (12) and (14), it is easy to get

| Az — AT < t)(df ) [ (o)t () = £, 7)) s
Jo7 g(t)dt N
o Bt s

It is clear that,
F (st (£), (1)) — F(4,T(2), 7 (1) a5 m — 00, ¥ £ € T,
By (8), we get

1f(t zm(t), 20, () — f(£T@), T (1) < deoc(t)(1 +t)r + 2a(t) + 2Mb(t)

= o(t)eL[J,J, m=1,2,3,---, Vit e Jy.

It follows from (17), (18) and the dominated convergence theorem that

e e}

lim [ [1f(s,2m(s), 2l (s)) — £(s,7(s),(s)l|ds = 0.

m—0o0 0

It is clear that,
Il-k(mm(tk),m;l(tk)) — ik(f(tk),y(tk)), as m — 0Q, 1= 0, 1, k= 1, 2.

So,

m—00

1 o
lim (ZZ | L (2 (t1), 20 (E1)) — Izk(f(tk%y(tk))”) =
i=0 k=1

(16)

(18)

(21)

It follows from (16), (19) and (21) that ||Az,, — AZ||p — 0 as m — oo. Therefore, the continuity

of A is proved.

Lemma 2 If condition (Hi) and (Hy) are satisfied, then v € Q N C?[J/, E] is a solution of BVP

(1) if and only if x € Q is a solution of the following impulsive integral equation:
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2(t) = W{xm/j dt+/ /Gts s, 2(s), 2 (s))ds

3 Gl ) Tnlolte). o' (1) + 3 Gt ) o o). 2/t >>}dt}+moo (22)

k=1

+ /00 G(t,s)f(s,x(s),2'(s))ds + Z G(t, te) 1k (z(te), 2/ (t))
0 k=1

+ > Gt t) Tor((tk), ' ().

k=1

Proof. Suppose that z € Q@ NC?[J', E] is a solution of BVP (1). For ¢ € J, integrating (1) from 0
to t, we have

:/0 f(s, (), 2/(s))ds + 3 Tiea(t), o/ (8)). (23)
Taking limit for ¢ — oo, we get
—Too + 2'(0) = /00 f(s,x(s),2'(s))ds + Z[lk(x(tk),x’(tk)). (24)
0 k=1
Thus,
0) = oo + /OO f(s,2(s),2'(s))ds + lek(x(tk),x'(tk)). (25)
0 k=1

¥'(t) = xoo—i-/o f(s,x(s),x'(s))ds—l—;[lk(x(tk),x'(tk)) —/0 f(s,2(s),2'(s))d
= > T (te)' (1)) (26)

tp<t

(t) = Too + /OO Fs,a(s), 2 (s))ds + > Iiglw(tn), o' (b)) = > T (te), &' (t))- (27)
t k=1

te<t
Integrating (27) from 0 to ¢, we obtain

£(t) = 2(0)+ tro + /O TG 5) (s, 2(5), 2 () ds + 3 Gt ) T (1), 2 ()

k=1

+ 3 Gt t) Tor((tk), 2 (), (28)

k=1

which together with the boundary value condition implies that

2(0) = /0 T gWa(t)dt = 2(0) /O T () dt + o /O T gt + 3 Gl t) T (), 7' (1)

k=1

+ /000 g(t) {/000 G(t,s)f(s,x(s),2'(s))ds + Z Gt  ti) ok (z(tr), 2 (tg)) | dt. (29)

k=1
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Thus,

z(0) = W{xm /Oootg(t)dt—i—/ooog(t)[/ooo G(t,s)f(s,x(s),2'(s))ds

+ 37 Gt ) Lla(t), ' (0) + S Gt t) Ton (e (ty), m'(tk))] dt}. (30)

k=1 k=1

Substituting (30) into (28), we have

x(t) = W{xw /Oootg(t)dt—i—/ooog(t)[/ooo G(t,s)f(s,x(s),2'(s))ds

+ZG (t, te) Tie (2 (t), ’(tk))+ZG;(t,tk)IOk(x(tk),x’(tk))}dt} Ftre  (31)
k=1

/ G(t,s)f(s,z(s),x (5))d5—|—ZG(t,tk)hk(x(tk),iﬂl(tk))

k=1
+ Z Gls(t, tk)IOk(x(tk)a m'(tk)).
k=1

t o)

Obviously, integral f(r,z(r),2'(r))drds is convergent.

0 Js
Conversely, if x a solution of integral equation, then direct differentiation gives the proof.

Lemma 3 Let (H;) be satisfied, V C Q be a bounded set. Then ( 1+)t() and (A'V)(t) are equicon-
tinuous on any finite subinterval Ji of J and for any € > 0, there exists N > 0 such that

H (Az)(t')  (Az)(t")
14+¢ 14t

| <& lAa)t) - (A)(E)] <= (2)
uniformly with respect to x € V ast’, t' > N.

Proof. Forz e V, t" > t', "t € Ji, we have
H(Al“)(t') _ (Az)(t") ‘
T+¢ 147

P I3 tg(t)dt [ g(t)dt
<[t =" <1+W)wall+<1+%>

Hl—i—t’/ f(s,x(s ))ds—m/lfsx s),x s)dsH

+H/ l—i—t’ (s,z(s), 2’ (5))d:;—/0 1 jt”f(s,x(s),x s))dsH} (33)
75)[ZG(f,tk)||11k(ﬂf(fk),ﬂf/(fk))||
k=1

+‘1+t/_ 1+t

1 1
Gl (¢, te) || Lok (x(tr), 2/ (¢ dt ‘———
+ij1 Lt 0k<x<k>,x<k>>u] oy T

> G )|k (tr), 2 (k)|
k=1

1 - / / /
-7 ;Gs@ ) ok (2(t), @' (1) |
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/ " > ()d ),
§|t_t|.(1+%)nxmn+(l f°fo—>

H/ s, (s ds‘+”/ sf(s, 2(s), 2 (s))ds
H/ sf(s,x(s),x (s))ds“

H1+ﬂ_1+ﬂ
tl/
I oot d814+11+t/—1+t~

T
| / oo,

/ g(f)[ZG(f t) 1 (@ (tr), 2 (t) L+ GLt, 1) | Tow (x(tk), 27 (t) ||| dt

k=1 k=1

+‘1+t/_ 1+t”

+‘1+t/_ 1+t

e )] 30 Gt et ()] + 3 GoE ) oo, .

k=1 k=1

which implies that { T +t : & € V'} is equicontinuous on any finite subinterval Jj of J.
Since V' C @ is bounded, there exists » > 0 such that for any = € V, ||z|[p < r. By (13),
t" e Jg, we get

laa)w) = o] = || [ a2 6)ds+ 3 el a'(0) + s
=3 Dya(t), @' (t) —moo\ (34)

In the following, we are in position to show that for any & > 0, there exists N > 0 such that

H @) (Ax)(t")

1+t’ 1+t”

| <& lA2)r) - (Aa)t")]| <e

uniformly with respect to x € V as t/,¢" > N.
Combining with (33), we need only to show that for any € > 0, there exists sufficiently large
N > 0 such that

| pstostnstnas - [ gt sto. o] <

for all x € V as t/,t” > N. The rest part of the proof is very similar to Lemma 2.3 in [5], we omit
the details.

Lemma 4 Let (Hy) and (Hy) are satisfied, V be a bounded set in DPC[J, E]. Then

ap(AV) = max { ig?a<(141L—i—)§€t))’ ig}])a((AV)'(t))}.

Proof. The proof is similar to that of Lemma 2.4 in [5], we omit it.

Lemma 5 ([1,2])Mdnch Fized-Point Theorem. Let Q be a closed convex set of E and u € Q.
Assume that the continuous operator F' : () — @ has the following property: V C @ countable,
V ceo({u} U F(V)) =V is relatively compact. Then F has a fized point in Q.
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Lemma 6 If (Hy) is satisfied, then for z, y € Q, ) <y® te J (i =0,1) imply that (Az)® <
(Ay)D, te J (i=0,1).

Proof. It is easy to see that this lemma follows from (2), (13) and condition (Hy4). The proof is
obvious.

3 Main results

> g(t)dt
Theorem 1 Assume conditions (Hy), (Ha) and (Hs) are satisfied. If <1 + %) -(2h* +
—Jo

m*) < 1, then BVP (1) has a positive solution T € DPCY[J, E] N C?[J'., E] satisfying (7)) (t) >
xf forte J (i=0,1).

Proof. By Lemma 1, operator A defined by (2) is a continuous operator from @ into @, and by
Lemma 2, we need only to show that A has a fixed point T in ). Choose

o0
R> 2{ (1 + %)(a* + MY+t My + 0 My) + (1 + %) |z OOH} (35)
and let @1 = {z € @ : ||z[|[p < R}. Obviously, @1 is a bounded closed convex set in space
DPC![J, E]. Tt is easy to see that Q1 is not empty since \*(1+t)xo € Q1. It follows from (15) and
(35) that = € @)1 implies that Az € @1, i.e., A maps @7 into 1. Now, we are in position to show
that A(Q1) is relatively compact. Let V = {x,,, :m =1,2,- } C @ satisfying V C co{{u} U AV}
for some u € Q1. Then ||z, ||p < R. We have, by (2) and (13

1 o
(Azy,)(t) = W{mw/o tg(t)dt+/ / G(t,8)f(s,xm(s),20,(s))ds
+ 37 Gl ) L (wn(th), 2, (1)) + Z G (t, ) Lok (2m (tr), m(tk))} dt} + 2o
k=1 k=1
/ G(t,s)f(s,zm(s), 2. (s)) ds+ZG t ) e (2 (1), 21 (t1) (36)
k=1
+ZG;(tatk)IOk(wm(tk%x;n(tk)%
k=1
and
(A'xp, / f(s,xm(s), 2}, (s))ds + Z Lk (xm(tk)) + Too- (37)
tp>t
By Lemma 4, we have
ap(AV) = max { sup a((AV)' (1)) supa((AV)(t)) } (38)
teJ " ted 1+4+1¢ ’
Where (AV)(t) = {(Azp)(t) :m=1,2,3,---}, and (AV)'(t) = {(A'z,)(t) : m=1,2,3,---}.
y (9), we know that the infinite integral [;°||f(¢,z(t),2'(t))[|dt is convergent uniformly for
1, 2,3,---. So, for any € > 0, we can choose a sufficiently large T' > 0 such that
| Istea. @) < (39)

EJQTDE, 2011 No. 28, p. 11



Then, by Guo et al. [1, Theorem 1.2.3], (2), (36), (37), (39) and (Hs), we obtain

o(W0) < (1 o ZO N [ v vioya )
)

1+t 141t 1— [y g(t)dt
o] co 1
P (1 T ) DS eV (). V()
0 k=1 i=0
< o140 fi(;)((:;dt) /O Q£ (8, V (1), V' (£))dt + 2¢
0
Jo7gdt \ o :
+ <1 g g(t)dt) 2D alli(V(tr). V' (1)) “0)
=0 k=1
< 2<1 + T —Ofi(z)((j;dt>al)(v) ; ho(t)(1 +t) + hy(t)dt
0
fooo g(t)dt S
+<1 t1o = g(t)dt)aD(V) DO (maro(1+ t) +migr) + 2.
0 k=1 =0
g(t)dt . . I3 g(t)dt

and
Jo~ g(t)dt

a((AVY(1)) < 2 /OOO a(f(5,V(s), V(s))ds + 22 < 2(1+ 1= [ g(dt
0

)h*aD(V) +2e (41)

By (38), (40) and (41) that

Jo g(t)dt
1—- fooo g(t)dt
On the other hand, ap(V) < ap{co({u} U (AV))} = ap(AV). Then, (42) implies ap(V) =0, i.e.,
V is relatively compact in DPC![J, E]. Hence, the Mdnch fixed point theorem guarantees that A

ap(AV) < (1 + )(2h* +m®ap(V). (42)

has a fixed point T in )1. Thus, Theorem 1 is proved.

Theorem 2 Let cone P be normal and conditions (Hy) — (Hy) be satisfied. Then BVP (1) has a
positive solution y € QN [J',, E] which is minimal in the sense that xV(t) >y (t), t € J (i =0,1)
for any positive solution x € Q N [J', E] of BVP (1). Moreover, ||y|p < 2v + ||xo||p, where
Jo g(t)dt Jo_ ta(t)dt
{1 IOy iy (10 JOY Y
1= { (1 T2 g (@ + MY M+ M) + (14 7 Tl
and there exists a monotone iterative sequence {x,,(t)} such that ) (t) — D (t) as m — oo (i =
0,1) uniformly on J and x},(t) — y"(t) as m — oo for any t € Jy, where
1

xo(t) = W{xm /000 tg(t)dt + /000 g(t) [/000 G(t, s)f(s, N xg, N x5)ds

+ 3" Gt t) L (N, o) + > Gt 1) Tos (N, )\*xa)} dt} +tro
k=1 k=1
+/ G(t,s)f(s, \" x5, A" xg)ds + Z G(t, tx) 1 (N x5, A xg) (43)
0 k=1
+ DGt i) ok (N2, A ),
k=1

EJQTDE, 2011 No. 28, p. 12



o) = — fol o= [t [T [T 616 a0t (s)s

+2Gt tk)Ilk(xm 1(tk), L1 tk —i—ZG t tk)IOk:(xm 1(tk), Lo 1(tk))}dt}+tm'oo
k=1 k=1

/ G(t,s)f(s,zm-1(s ), Ty 1(8) dS—FZG (t, t) L1 (T — l(tk)’ Trn—1 (k) (44)

k=1

+ZG's(t?tk)IOk(wm—l(tk%9%-1(%))7 VieJ (m=1,23,--).
k=1

Proof. From (43), we can see that xg € C[J, E] and

/ (s, Nag, A ag)ds + Z I (N xh, A ag) + Zoo- (45)

tp >t

By (43) and (45), we have that x(()i) > Moo > A (1 =0,1) and

lao(®)]l < {lewl [~ tattae+ [~ o] [ 150 X i as
fo t)dt 0
+k; H—rlk()\*%a )+ 3 MorVws, Xt | + el

+/0 1f (s, A, Al ds + D |1 Tue (N s, Al

k=1

+Z ([ Lok (A 25, A" zg) |

(1+ M ) /°°a<s>+b<s>z<||A*xz;u,||A*xa||>ds

<
B 1— [y g L.
H( )((j)tdt)gzw I3zl 13l)
footg(t)dt
+<1 + 5 _Ofooo g(t)dt)llwooll

and

lzo (] < /t 1F (s, A, ) s + D [ Tue (N, )| + Il

tp >t

< /0 a(s) + b(s)z(IN"a5|l, [N 25 )ds + > mF (I, [IN 2511 + [lzoo
k=1

which imply that ||zo||p < oo. Thus, 2o € DPC[J, E]. It follows from (2) and (44) that
Tm(t) = (Azpm—1)(t), YVte J, m=1,2,3,---. (46)
By Lemma 1, we have z,, € ( and

1
lzmllp = [|Azm-1llp < llem-1llp +7. (47)
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By Lemma 6 and (46), we get

Nap <al(t) <2y < <ald) <o, Vied (i=0,1). (48)

It follows from (47), by induction, that

1\m—1

1 - 1\m Y
lomln < v+ 5v++(5)" 7+ (5) laolo <

< 27 + HxOHD (’I’I’I, = 1,253,' : )

[1—(
1—

)"

+ [lzollp

NN

(49)

Let K = {z € Q : ||z|lp < 27+ ||zo|lp}. Then, K is a bounded closed convex set in space
DPC'[J, E] and operator A maps K into K. Clearly, K is not empty since zg € K. Let W =
{m :m=0,1,2,---}, AW = {Azx,, : m =0,1,2,---}. Obviously, W C K and W = {x¢} U A(W).
Similar to above proof of Theorem 1, we can obtain ap(AW) = 0, i.e., W is relatively compact
in DPC![J, E] So, there exists a y € DPC'[J, E] and a subsequence {z,, : j = 1,2,3,---} C W
such that {xl ( ):j=1,2,3,---} converges to y(t) uniformly on J (i = 0,1). Since that P is
normal and {x ( ) :m = 1,2,3,---} is nondecreasing, it is easy to see that the entire sequence
{xm)( t):m =1,2,3,---} converges to y®(t) uniformly on J (i = 0,1). Since z,, € K and K is a
closed convex set in space DPC[J, E], we have y € K. It is clear,

f(s,2m(s),27,() = f(s,y(s),9/(s)), asm — o0, Vs€Jy. (50)

By (Hp) and (49), we have

17 (5. 2am(), 20 () = F(5,5(5). 5/ ()| < deoe(s)(1+ 8) |l p + 2a(s) + 2Mb(s) (51)
< deoe(s)(1+)(2y + |wollp) + 2a(s) + 2Mb(s).
Noticing (50) and (51) and taking limit as m — oo in (44), we obtain
W) = e [ e [T [T 6 e,y e)as
0
+Zamumaw@m+2@ammum<mw§ﬁ%
k=1
+ [T G syl (s + Y Gl (8. o' () (52)
k=1

n Z Gt te) Tor (y (te), ¥/ (1)),

k=1
which implies by Lemma 2 that y € K N C?[J4, E] and y(t) is a positive solution of BVP (1).
Differentiating (44) twice, we get

T (t) = —f(t, Tm-1(t), 23, 1 (), VEE T, m=1,2,3,-

m

Hence, by (50), we obtain

lim all () = —F(t,y(8), ¥/ (1) = 4" (), ¥t € Jy.

m—00

Let u(t) be any positive solution of BVP (1). By Lemma 2, we have u € @ and u(t) = (Au)(t),
for t € J. Tt is clear that u((t) > Xz > 6 for any t € J (i = 0,1). So, by Lemma 6, we have
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u@(t) > x(()i)(t) for any t € J (i = 0,1). Assume that 49 (t) > :U() (@) fort e Jm >1(i=0,1).
Then, it follows from Lemma 6 that (Au)® () > Amfjl)_l(t) fort € J (i =0,1), i.e. u®(t) > Sn (t)
fort € J (i = 0,1). Hence, by induction, we get

uD)>20t)Vied (i=01m=0,1,2,---). (53)
Now, taking limits in (53), we get u(®(¢) > y@(¢t) for t € J (i = 0,1). The proof is proved.

Theorem 3 Let cone P be fully regular and conditions (Hy), (Ha) and (Hy) be satisfied. Then the
conclusion of Theorem 2 holds.

Proof. The proof is almost the same as that of Theorem 2. The only difference is that, instead
of using condition (Hjs), the conclusion ap(W) = 0 is implied directly by (48) and (49), the full
regularity of P and Lemma 4.

4 An example

Consider the infinite system of scalar second order impulsive singular integro-differential equations

1 2 4 3
—z(t 54 x,(t o (t
Zn(t) 4n3w3/e2t(2 + 5¢)9 < + Zn(t) + (1) + 3n2x,(t) + 7n5x’2n(t))
+—————In|(1 + 3t)x,(1)],
i a0 300
1k 1 5
A$|t=tk = E : W(m + mén(tk)) , k=12, (54)
A.%'/‘tft :i 1 ( 1 +.%', 2(tk)>; k=12 ---
=tk n4 (k + 1)3 xn-l—l(tk) n+ ) ) &y )
> 1
z,(0) = / eftzxn(t)dt, 7 (00)==, n=12,--
0 n

Proposition 1 Infinite system (54) has a minimal positive solution x,(t) satisfying x,(t),z, (t) >
% for0 <t < +oo (n=1,2,3,--+), and this minimal solution can be obtained by taking limits from

some iterative sequences.

Proof. Let F = ¢y = {z = (z1, -+, 2Zp, ) : ©, — 0} with the norm ||z|| = sup,, |x,|. Obviously,
(E,]| - ) is a real Banach space. Choose P = {z = (z,,) € ¢p : x,, > 0,n =1,2,3,---}. It is easy to
verify that P is a normal cone in F with normal constant 1. Now we consider infinite system (54),
which can be regarded as a BVP of form (1) in F with z = (1, ;, :15, -++). In this situation, = =
(21, w0y = W10t ) f = (oo )y and L = (g~ Iy +) (i = 0,1), in
which

Falt, z,7) ! <5+++2+4)%
’x’ = X
M B e (2 + 5ty n Y R, T by, (55)
1
t—— In[(1+ 3t)z,],
49/t(1 + 3t)2 I )]
and
Tokn = - g () B = s (e 2 )’ (50
Okn_ng 2]<:+1 y2n 9 lkn — n4 (k+1)3 xn—i—l yn+2 .
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Let 2§ = 20 = (1,%,%,---). Then Pyy = {z = (z1,22, , T, ) : Ty > %, n=123,--}, for

A > 0. It is clear, f € C[J, x Pyy x Pyy, P] for any A > 0. Noticing that v/e2t > ¥/t for t > 0, by
(55), we get

1 143 3
It < o (57 + el + i)+ (1 + 30) el (57)

1
= and

hich imply (H;) is satisfied f t)=0, b(t) =c(t) = —F————
which imply (Hy) is satisfied for a(t) (t) = c(t) Vi1 30

143 3
2
z(up,uy) = <H + up + ul) + In[(1 + 3t)ug).

On the other hand, for = € Pyy-,y € Py, we have, by (56)

k 3 1 3
oG, )l < s (1 Il s W)l < g (el +1)
which imply (Hs) is satisfied for

, Fi(ug,up) =(1 +uo)%,

S

Fo(ug,ur) = (1 +wu)

and

k 1 k 1
Mok = k1 Mk = ma Yok = ma Mk = k+ 131 +tp)

Let flz{fll’f%,""fnl,"'}a f2:{f12’f22’"'af72p"'}, where

it z,y) _ (54 2+ von+ 70—+ 75 )5 (58)
X = X
n\U, T, Y 4n3 3 th(2 + 5t)9 n Yan 3n2xn 7n5y2n ;
2 1
fn(taxay) ln[(l + 3t)1’n] (59)

T 4Yi(1 + 3t)?

Let t € J;, and R > 0 be given and {z(m)} be any sequence in f!(t x Pyx+gr, Pox=r), where
2(m) = (zgm), e ,zgm), --+). By (58), we have

< ! (143+2R>% ( 1,2,3,) (60)
o1 n,m=1,24,9,"--).

" T An3V/e2 (2 + 51)0 \ 21

So, {ng)} is bounded and by the diagonal method together with the method of constructing

subsequence, we can choose a subsequence {m;} C {m} such that

{Zr(Lm)}Hzn as i — 00 (’I’L:1,2,3,-"), (61)
which implies by (60)
1 143 3
0<%, < <—+2R) n=1,273,-.). 62
"7 4n3Y e2t(2 4 5t)9 \ 21 ( ) (6
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Hence z = (Z1,- -+, Zn, - *) € co. It is easy to see from (60)-(62) that

(m;)

W —Zp| — 0 as i — oo.

120" —2|| = sup|z
n

Thus, we have proved that f1(t x Pyy+g, Pox<r) is relatively compact in co.
Foranyte€ Jy, R>0, z, y, T, § € D C Pyy+r, we have by (59)

1
2t 2,9) — f2(4,7,7) = ———|In[(1 + 3t)z,] — In[(1 + 30)T,
F200) = BT = Jorat I+ 30)5,] ~ (L4 3)7,] .
1 |Tn — T (63)
4¥/t(1 + 3t) (14 3t)&,’
where &, is between z,, and T,,. By (63), we get
1
2 24 = = _ _
t) ) - t; ) Si - ) ) ) ) GD 64
I7202.0) = FEEDI € sl =7l 7 0 7 7 (69

Thus, by (64), it is easy to see that (Hs) holds for ho(t)
Theorem 2. This completes the proof.

= m. Our conclusion follows from
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