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Abstract. The notion of p : −q resonant center was introduced recently and studied
by several authors. In this paper we generalize the notion of a persistent center to a
persistent p : −q resonant center and find conditions for existence of a persistent p : −q
resonant center for several p : −q resonant systems with quadratic nonlinearities. To
prove the sufficiency of the obtained conditions we use either the Darboux theory of
integrability or look for a formal first integral of the required form or we use the method
based on the blow-up transformation.
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1 Introduction

An essential part of the theory of systems of ODE’s is devoted to studying the so-called center-
focus problem of two dimensional analytic systems of ordinary differential equations of the
form

u̇ = −v + P(u, v), v̇ = u + Q(u, v), (1.1)

where u, v are real variables and P(u, v), Q(u, v) are analytic functions whose series expansions
start from terms of degree at least two. This is the problem of distinguishing between a center
(all trajectories in a neighborhood of the singular point at the origin are ovals) and a focus (all
trajectories in a neighborhood of the singular point at the origin are spirals). Most works on
the subject are devoted to investigation of polynomial vector fields. By the Poincaré–Lyapunov
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theorem [29, 34], system (1.1) has a center at the origin if and only if there exists an analytic
first integral of the form

Φ(u, v) = u2 + v2 + ∑
j+k≥3

φj,kujvk. (1.2)

The theorem says that the qualitative picture of trajectories in a neighborhood of the singular
point is related to local integrability of the system: the singular point is a center if and only if
there exists an analytic first integral of the form (1.2).

Although the problem of distinguishing between a center and a focus has been studied in
many works (see [3, 20, 35, 37, 42] and the references therein) it is completely solved only for
quadratic systems (P and Q in (1.1) are homogeneous quadratic polynomials [13, 28]) and for
systems with P and Q being homogeneous cubic polynomials [36]. An extensive bibliography
about the center problem can be found in [21].

One of the tools to study the problem of distinguishing between a center and a focus is
the Poincaré return map, which we compute after introducing polar coordinates in system
(1.1). The difficulty in the study of the center problem using this method arises from the
complexity in computing the irreducible decomposition of the variety of the ideal generated
by the Lyapunov quantities that are the coefficients of the Poincaré first return map. Since it
is easier to study complex varieties than real ones we complexify the real system as follows.

Setting x = u + iv system (1.1) becomes the equation

ẋ = ix + F̃(x, x̄).

Adjoining to this equation its complex conjugate we have the system

ẋ = ix + F̃(x, x̄), ˙̄x = −ix̄ + F̃(x, x̄).

Consider y := x̄ as a new variable and G̃ = F̃ as a new function. Then, from the latter system
we obtain the system of two complex differential equations which we can write in the form

ẋ = ix + F̃(x, y), ẏ = −iy + G̃(x, y), (1.3)

where x, y are complex variables and F̃(x, y) and G̃(x, y) are complex analytic functions whose
series expansions start from degree at least two. After the change of time τ = it and rewriting
t instead of τ, system (1.3) becomes

ẋ = x + F(x, y), ẏ = −y + G(x, y). (1.4)

Following the Poincaré–Lyapunov theorem and [13] we can extend the concept of a center to
complex systems of the form (1.4). We say that system (1.4) has center at the origin if it admits
a formal first integral of the form

Φ(x, y) = xy + ∑
j+k≥3

ϕj,kxjyk.

In such case we also say that system (1.4) has 1 : −1 resonant center. In [19] the following
generalization of the center problem was proposed. Consider differential systems in C2 with
a p : −q resonant elementary singular point, i.e.,

ẋ = px + P(x, y), ẏ = −qy + Q(x, y), (1.5)
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where p, q ∈N and P(x, y) and Q(x, y) are polynomials of the form

P(x, y) = ∑
j+k≥1

j≥−1, k≥0

ajkxj+1yk

and

Q(x, y) = ∑
j+k≥1

j≥−1, k≥0

bkjxkyj+1.

Determine when the elementary singular point located at the origin is a resonant center where
the definition of a resonant center comes from Dulac [13].

Definition 1.1. The singular point O of a complex system (1.5) is a p : −q resonant center if
there exists a local analytic first integral of the form

Ψ(x, y) = xqyp + ∑
j+k≥p+q+1
j,k∈ Z, j,k≥0

φj−q,k−pxjyk. (1.6)

The simplest case is when P and Q in (1.5) are quadratic polynomials and this case has
been studied by several authors (see e.g. [4–6, 12, 17, 25, 31, 38, 40, 43] and references therein).
For P and Q being cubic polynomials some results can be found in [1, 5, 10, 22, 27, 32, 39, 41]
and for quartic polynomials in [11, 16, 30]. The case where P and Q are homogeneous quintic
polynomials has been studied in [14, 23, 24].

In this paper we will use the concept of (weakly) persistent center which was introduced in
[7]. In [2] the authors generalized the notion of persistent center and weakly persistent center
for complex planar differential systems. In [33] these notions were extended to linearizable
persistent centers and linearizable weakly persistent centers for complex planar differential
systems.

Definition 1.2. The origin O is a (weakly) persistent center of system (1.4) if it is a center of the
system

ẋ = x + λF(x, y), ẏ = −y + µG(x, y), x, y ∈ C

for all λ, µ ∈ C (λ = µ ∈ C).

We now extend the notion of (weakly) persistent center to a (weakly) persistent p : −q
resonant center and introduce the following generalization of a p : −q resonant center.

Definition 1.3. The origin O is called a persistent p : −q resonant center (weakly persistent p : −q
resonant center) of system (1.5) if it is a p : −q resonant center of the system

ẋ = px + λP(x, y), ẏ = −qy + µQ(x, y), (1.7)

for all λ, µ ∈ C (λ = µ ∈ C).

In [2, Theorem 2.1] the following Theorem was proven for p = q = 1.

Theorem 1.4 ([2]). The origin is a p : −q resonant center of system (1.7) for all λ, µ ∈ C satisfying
λµ = 0, if it is a p : −q resonant center of system (1.7) for all λ, µ ∈ C\{0}.
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To prove the above theorem one just has to rewrite the proof of [2, Proof of Theorem 2.1]
and change “center” to “p : −q resonant center”.

In this paper we seek for systems having p : −q resonant center within systems of the form
(1.7), where P and Q are quadratic polynomials and (p, q) is either (1, 2), (1, 3), (1, 4) or (2, 3).
Such systems are written as

ẋ = px + a10x2 + a01xy + a−12y2

ẏ = −qy + b2,−1x2 + b10xy + b01y2,
(1.8)

where x, y, aij, bji ∈ C. To find necessary conditions we use the approach described in the next
section. Then, using several methods we prove the existence of a first integral of the form
(1.6).

2 Preliminaries

To determine if system (1.5) has a resonant center at the origin, by Definition 1.1 we look for
a formal first integral of the form (1.6) satisfying the identity

Ψ̇ :=
∂Ψ
∂x

(px + P(x, y)) +
∂Ψ
∂y

(−qy + Q(x, y)) ≡ 0.

Similar as in case of a regular center the (formal) series for Ψ̇ reduces to

Ψ̇ = gq,p(xqyp)2 + g2q,2p(xqyp)3 + g3q,3p(xqyp)4 + · · · ,

where gkq,kp is called the k-th saddle quantity (or k-th focus quantity [35]). Saddle quantities
are polynomials in the coefficients aij, bji of system (1.5). We see that by Definition 1.1 system
(1.5) has a resonant center at the origin if and only if

gkq,kp(a, b) = 0, ∀k ∈N.

Thus, to obtain conditions for resonant center at the origin of system (1.5) we have to find
the set of all parameters (a, b) where all polynomials gkq,kp vanish, i.e. we need to find the
variety of the ideal 〈gkq,kp : k = 1, 2, . . . 〉1.

If we restrict our attention to the systems (1.7), then, for any fixed λ and µ we can easily
compute gkq,kp = gkq,kp (λ, µ, a, b) and obtain saddle quantities

gkq,kp = ∑
m,n

g(m,n)
kq,kp (a, b)λmµn,

which can be considered as polynomials in λ and µ. Furthermore, the coefficient g(m,n)
kq,kp (a, b) in

the term with λmµn plays an important role in the analysis of the persistent resonant centers.
We call it the k(m,n)-th persistent saddle quantity. If the origin is a center of system (1.7) for all
λ, µ ∈ C, then it is by Definition 1.3 a persistent center of system (1.5).

1Variety of the ideal generated by polynomials f1, . . . fs is the set of common zeros of polynomial system
f1 = 0, . . . , fs = 0, i.e.

V(〈 f1, . . . , fs〉) = {a = (a1, . . . , an) ∈ kn : fi(a) = 0, for every i = 1, . . . , s}.
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Because of Theorem 1.4 we can for (1.7) always assume that λµ 6= 0. We now define the
following sets of polynomials

Ck =
{

g(m,n)
kq,kp (a, b); m, n ∈N0, m + n = kq + kp

}
, k = 1, 2, 3, . . .

and the ideals

C p := 〈C1, C2, . . . , Ck, . . .〉 ,

C p
K := 〈C1, C2, . . . , CK〉 .

The ideals C p and C p
K are ideals in the polynomial ring C [a, b]. By the Hilbert Basis Theo-

rem (see e.g. [8, Theorem 1.1.6]) any ideal C p is finitely generated that means that there exists
N ∈N such that for every k > N, C p

k = C p
N .

Therefore, in order to find necessary conditions for the existence of a persistent p : −q
resonant center for system (1.5) we have to find first few saddle quantities and then to compute
the variety of the ideal generated by these saddle quantities.

Note that the variety of the ideal C p is always easier to obtain than the (regular) center
variety V(〈gkq,kp(a, b) : k ∈ N〉) since the saddle quantities, g(m,n)

kq,kp (a, b) are split compared to
(regular) saddle quantities gkq,kp(a, b). Also note that if system has persistent p : −q resonant
center, then it also has p : −q resonant center which will be useful fact in the next section
where for some cases the (regular) p : −q resonant center problem has been solved, already.

In the following section we present the main results of the paper. We find necessary and
sufficient conditions for some persistent p : −q resonant quadratic systems. For proving
the sufficiency of the obtained conditions we mainly use the Darboux theory of integrability
which is one of the main methods for proving the existence of first integrals for polynomial
systems of differential equations on C2 (or R2). We recall briefly some results related to this
theory. We consider systems

ẋ = P(x, y), ẏ = Q(x, y), (2.1)

where x, y ∈ C, P and Q are polynomials without constant terms that have no nonconstant
common factor, and m = max(deg(P), deg(Q)). By the definition a Darboux factor of system
(2.1) is a polynomial f (x, y) such that

∂ f
∂x

P +
∂ f
∂y

Q = K f ,

where K(x, y) is a polynomial of degree at most n − 1 (K(x, y) is called the cofactor). The
polynomial f defines an invariant algebraic curve f = 0 of system (2.1). A simple computation
shows that if there are Darboux factors f1, f2, . . . , fk with the cofactors K1, K2, . . . , Kk satisfying

k

∑
i=1

αiKi = 0,

then H = f α1
1 · · · f αk

k , is a Darboux first integral of (2.1), and if

k

∑
i=1

αiKi + P̃′x + Q̃′y = 0

then the equation admits the Darboux integrating factor

M = f α1
1 · · · f αk

k . (2.2)
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The definition of Darboux integrating factor is consistent with the classical definition of an
integrating factor. For proving the sufficiency of the conditions concerning the existence of
Darboux integrating factor we several times refer to following theorem, or more precisely to
part (ii) of the following theorem.

Theorem 2.1 ([4]). If system

ẋ = x + F(x, y)

ẏ = −qy + G(x, y)

has a local (reciprocal) integrating factor of the form (2.2), with fi analytic in x and y and nonzero αi,
then the system is

• integrable if q is irrational;

• integrable or orbitally normalizable if q is a nonzero rational.

More precisely,

(i) if all fi(0, 0) 6= 0, then the system is integrable;

(ii) if at most one fi(0, 0) vanishes and the corresponding Darboux factor has one of forms fi(x, y) =
x + o(x, y) and fi(x, y) = y + o(x, y), then the system is integrable;

(iii) if exactly two factors f1(x, y) = x + o(x, y) and f2(x, y) = y + o(x, y) vanish at the origin, then
the system is integrable, except when the two coefficients α1 and α2 are both integers greater than
1, in which case it is orbitally normalizable;

(iv) if (iii) is satisfied and there exists a Darboux change of one coordinate transforming one of the
equations into the normal form ẋ = xh(u) or ẏ = −qyh(u), where h(u) = 1 + O(u) and
u = xcyd is the resonant monomial as in Case II or Case III [4, Theorem 4.3], then the system is
normalizable.

3 Main results

In this section we consider the problem of persistent p : −q resonant center of system (1.8) for
the following values of p and q:

a) p = 1, q = 2;

b) p = 1, q = 3;

c) p = 1, q = 4;

d) p = 1, q = 5;

e) p = 2, q = 3.

According to Definition 1.3 we look for a systems with resonant center within the family

ẋ = px + λ(a10x2 + a01xy + a−12y2)

ẏ = −qy + µ(b2,−1x2 + b10xy + b01y2)
(3.1)

for all λ, µ ∈ C.
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a) Case p = 1, q = 2.

Theorem 3.1. System (1.8) has a persistent 1 : −2 resonant center at the origin if and only if one of
the following four conditions holds:

1. b01 = b2,−1 = a−12 = a10 = 0;

2. b01 = b2,−1 = a01 = 0;

3. b10 = b2,−1 = 0;

4. a−12 = a01 = a10 = 2b2
10 + b2,−1b01 = 0.

Proof. In order to obtain conditions listed above we compute first four saddle quantities
g2,1, . . . , g8,4 of system (3.1) and obtain

g2,1 =

(
−a01a10b10 −

1
2

a2
01b2,−1 −

3
5

a10a−12b2,−1

)
λ2µ

−
(

1
2

a10b01b10 −
1
4

a01b01b2,−1 +
1

20
a−12b10b2,−1

)
λµ2

+

(
1
2

b01b2
10 +

1
4

b2
01b2,−1

)
µ3

and so on. Therefore, we have

g(3,0)
2,1 =0,

g(2,1)
2,1 =− a01a10b10 −

1
2

a2
01b2,−1 −

3
5

a10a−12b2,−1,

g(1,2)
2,1 =− 1

2
a10b01b10 +

1
4

a01b01b2,−1 −
1
20

a−12b10b2,−1,

g(0,3)
2,1 =

1
2

b01b2
10 +

1
4

b2
01b2,−1

and C1 =
{

g(2,1)
2,1 , g(1,2)

2,1 , g(0,3)
2,1

}
. In a similar way we also obtain C2, C3 and C4 and it turns out

that
C p

4 = 〈C1, C2, C3, C4〉 = C
p
3 = 〈C1, C2, C3〉.

Hence, using the routine minAssGTZ [9] of computer algebra system Singular [26] we compute
the decomposition of the variety of ideal C p

3 and obtain four components listed in Theorem
3.1. For the sufficiency of these conditions we use [18, 19], where authors solved the resonant
center problem for system (1.8) with (p, q) = (1, 2). They found 20 conditions for a resonant
center and among them there are also the above listed four conditions corresponding to the
persistent resonant centers. Since in [19] the authors showed that in each of the 20 cases there
is an analytic first integral of the form (1.6), the proof of this theorem is completed.

b) Case p = 1, q = 3

Theorem 3.2. System (1.8) has a persistent 1 : −3 resonant center at the origin if and only if one of
the following five conditions holds:

1. b10 = a−12 = a01 = a10 = 0;

2. b10 = b2,−1 = 0;
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3. a−12 = a01 = a10 = 3b2
10 + 4b2,−1b01 = 0;

4. b01 = b2,−1 = a−12 = a10 = 0;

5. b01 = a−12 = a01 = 0.

Proof. The computation of obtained conditions goes in a similar way as in previous case. The
sufficiency is ensured using [12] where 1 : −3 resonant center problem for system (1.8) was
solved.

c) Case p = 1, q = 4

Theorem 3.3. System (1.8) has a persistent 1 : −4 resonant center at the origin if and only if one of
the following five conditions holds:

1. a−12 = a01 = a10 = 4b2
10 + 9b2,−1b01 = 0;

2. b10 = b2,−1 = 0;

3. a−12 = a01 = a10 = 6b2
10 + b2,−1b01 = 0;

4. b01 = b2,−1 = a−12 = a10 = 0;

5. b01 = a−12 = a01 = 0.

Proof. The computation of saddle quantities and the corresponding ideals is similar as in
previous two cases. The above five persistent resonant center cases of system (1.8) are listed
among 55 conditions (proven to be necessary and sufficient) for the existence of a 1 : −4
resonant center in [17]. Consequently, we have five necessary and sufficient conditions for
persistent 1 : −4 resonant centers.

d) Case p = 1, q = 5

Theorem 3.4. System (1.8) has a persistent 1 : −5 resonant center at the origin if and only if one of
the following four conditions holds:

1. b10 = b2,−1 = a10 = 0;

2. b10 = a−12 = a01 = a10 = 0;

3. b01 = b10 = b2,−1 = 0;

4. b01 = a−12 = a01 = 0.

The 1 : −5 resonant center problem for quadratic system of the form (1.8) has been not
considered, yet. Here we present four conditions for resonant center, which are also conditions
for persistent resonant center. The proof of Theorem 3.4 is given in the next section.

e) Case p = 2, q = 3

Theorem 3.5. System (1.8) has a persistent 2 : −3 resonant center at the origin if one of the following
three conditions holds:

1. b10 = b2,−1 = 0;
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2. a−12 = a01 = 0;

3. b01 = b2,−1 = a−12 = a10 = 0;

The 2 : −3 resonant center problem (1.5) was solved only when (1.5) is cubic Lotka–Voltera
system, see [10, 22]. In the quadratic case the problem is still open. Here, we do not give a
complete list of all 2 : −3 resonant center conditions for (1.8), but we present three systems
with resonant center, which are also persistent resonant center. The proof of Theorem 3.5 is
given in Section 5.

4 Proof of sufficiency of Theorem 3.4

To prove the sufficiency of the conditions, we apply the Darboux theory of integrability to
construct the Darboux integrating factor in all cases unless in case 3, where we look for a
formal first integral of the form Ψ(x, y) = ∑∞

k=1 fk(x)yk. Below is the case-by-case analysis.

Case 1. In this case system (3.1) has the form:

ẋ = x + λ(a01xy + a−12y2), ẏ = −5y + µb01y2.

We find two invariant lines l1 = y and l2 = y− 5
b01µ , which help us to construct the Darboux

integrating factor M = l−4/5
1 l−(5a01λ+6b01µ)/5b01µ

2 for b01 6= 0 and µ 6= 0. By Theorem 2.1 there
exists a first integral of the form (1.6) with p = 1 and q = 5.

Remark 4.1. By Theorem 1.4 we can conclude, that origin is a center of system also for µ = 0.
If b01 = 0 this case coincides with the Case 3 of this theorem for a10 = 0. Note that in this case
the rational functions fk(x) become polynomial.

Case 2. In this case system (3.1) is written as:

ẋ = x, ẏ = −5y + µ(b2,−1x2 + b01y2),

and it has invariant line l1 = x and two invariant curves

l2 =
1
15

ib3/2
01 b3/2

2,−1µ3x3 +
1
5

ib3/2
01

√
b2,−1µ2xy +

1
15

b2
01b2,−1µ3x2y− 2

5
b01b2,−1µ2x2

− i
√

b01b2,−1µx− b01µy
5

+ 1,

l3 = − 1
15

ib3/2
01 b3/2

2,−1µ3x3 − 1
5

ib3/2
01

√
b2,−1µ2xy +

1
15

b2
01b2,−1µ3x2y− 2

5
b01b2,−1µ2x2

+ i
√

b01b2,−1µx− b01µy
5

+ 1,

which allows us to construct a Darboux integrating factor M = l4
1(l2l3)−1. To prove the

existence of a first integral of the form (1.6) with p = 1 and q = 5 we refer to Theorem 2.1.

Case 3. In this case we find only one invariant curve f1 = y, which is not enough to construct
Darboux first integral or Darboux integrating factor. Note that conditions in this case are
b2,−1 = 0, b10 = 0 and b01 = 0, the corresponding system is

ẋ = x + λ(a10x2 + a01xy + a−12y2), ẏ = −5y.
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We look for a formal first integral in the form Ψ(x, y) = ∑∞
k=1 fk(x)yk. The functions fk are

determined recursively by the differential equation

a−12λ f ′k−2(x)− a01λx f ′k−1(x)− 5k fk(x) + x(1 + a10λx) f ′k(x) = 0.

For k = 1, 2, 3, 4 (setting the integration constant equal to 1) we obtain

f1(x) =
x5

(1 + a10λx)5 , f2(x) =
x10 + · · ·+ α2

(1 + a10λx)10 ,

f3(x) =
x15 + · · ·+ α3

(1 + a10λx)15 , f4(x) =
x20 + · · ·+ α4

(1 + a10λx)20 .

Suppose by induction that fk(x) = p5k(x)
(1+a10λx)5k , where p5k(x) denotes a polynomial of degree

at most 5k and k = 1, . . . , n− 1. In order to complete this task we solve the differential equation

f ′n(x) =
5n

x(1 + a10λx)
fn(x) +

a01λx f ′n−1 − a−12λ f ′n−2

x(1 + a10λx)
, (4.1)

using the induction assumption about the form of fn−1 and fn−2.
The general solution of linear differential equation of the form

f ′(x) = g(x) f (x) + h(x) (4.2)

is
f (x) = Ce

∫
g(x)dx + e

∫
g(x)dx

∫
e−
∫

g(x)dxh(x)dx. (4.3)

In this case g(x) = 5n
x(1+a10λx) and h(x) = p5n−4(x)

x(1+a10λx)5n−3 , yielding e
∫

g(x)dx = x5n

(1+a10λx)5n and

e−
∫

g(x)dxh(x) =
(1 + a10λx)5n

x5n · p5n−4(x)
x(1 + a10λx)5n−3 =

p5n−1(x)
x5n+1 .

Rewriting e−
∫

g(x)dxh(x) as

p5n−1(x)
x5n+1 =

a0 + a1x + · · ·+ a5n−1x5n−1

x5n+1 =
a0

x5n+1 +
a1

x5n + · · ·+ a5n−1

x2 ,

and integrating, yields∫
e−
∫

g(x)dxh(x)dx =
a0

x5n +
a1

x5n−1 + · · ·+ a5n−1

x

for some a0, a1, . . . , a5n−1. Therefore, using (4.3) and choosing integration constant as C = 1
we obtain the solution of (4.1)

fn(x) =
x5n

(1 + a10λx)5n +
x5n

(1 + a10λx)5n

[
a0

x5n +
a1

x5n−1 + · · ·+ a5n−1

x

]
=

[
1 · x5n + a5n−1x5n−1 + · · ·+ a0

]
(1 + a10λx)5n =

p5n
(1 + a10λx)5n ,

where p5n denotes a polynomial of degree at most 5n. Therefore, it exists analytic first
integral of the form Ψ(x, y) = ∑∞

k=1 fk(x)yk whose power series expansion is of the form
x5y + ∑∞

i+j>6 αijxiyj.
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Case 4. The system

ẋ = x + λa10x2, ẏ = −5y + µ(b2,−1x2 + b10xy) (4.4)

has two invariant lines l1 = x and l2 = 1 + a10xλ, which allow to construct a Darboux inte-
grating factor of the form M = l4

1 l−(6a10λ+b10µ)/a10µ
2 , for a10 6= 0 and µ 6= 0. Thus, for a10 6= 0

and µ 6= 0 system (4.4) has a first integral of the form (1.6) with p = 1 and q = 5 according to
Theorem 2.1.

In case µ = 0 we again refer to Theorem 1.4 and we can conclude, that origin is a center of
system also for µ = 0. On the other hand if µ = 0, system (4.4) becomes subcase of system in
Case 3 of this theorem, which is already proven to be integrable.

In case a10 = 0 the corresponding system (4.4) is

ẋ = x, ẏ = −5y + µ(b2,−1x2 + b10xy).

We look for a formal first integral in the form Ψ(x, y) = ∑∞
k=5 fk(y)xk. The functions fk(y) are

determined recursively by the differential equation

b2,−1µ f ′k−2(y) + b10µy f ′k−1(y) + k fk(y)− 5y f ′k(y) = 0, k = 5, 6, 7, . . . , (4.5)

where f3(y) = f4(y) = 0. We seek for polynomial solutions of (4.5). We claim that a particular
solution to (4.5) for k ≥ 5 is a linear polynomial. For k = 5 this is trivial to check, since (4.5)
becomes

5 f5(y)− 5y f ′5(y) = 0,

yielding f5(y) = C5y, where C5 ∈ R. For sake of simplicity we choose C5 = 1. For k = 6 (4.5)
becomes

b10µy · 1 + 6 f6(y)− 5y f ′6(y) = 0,

yielding f6 (y) = C6y
6
5 − yµb10, where C6 ∈ R. Choosing C6 = 0 one obtains f6 (y) = −yµb10.

For k = 7 (4.5) becomes

b2,−1µ− b2
10µ2y + 7 f7(y)− 5y f ′7(y) = 0,

yielding f7 (y) = C7y
7
5 − 1

7 µb2,−1 +
1
2 yµ2b2

10, where C7 ∈ R. Choosing C7 = 0 one obtains
the linear polynomial f7(y) = − 1

7 µb2,−1 +
1
2 yµ2b2

10. Inductively, if f5(y), f6(y), . . . , fk−2(y) and
fk−1(y) are linear polynomials, then clearly (4.5) takes the form

Ak + Bky + k fk(y)− 5y f ′k(y) = 0,

where Ak and Bk are some constants. Note that this is a linear ODE of first order, whose
nonhomegeneous part is being a linear polynomial Ak + Bky. This clearly yields a particular
solution for fk (y) in form of a linear polynomial. In particular, it is trivial to check that for
k ≥ 7 the solution to (4.5) takes the form

fk (y) = Cky
k
5 +

(−1)k−5

(k− 5)!
(b10µ)k−5 y +

(−1)k−6

k · (k− 7)!
µk−6bk−7

10 b2,−1.

Now, setting C5 = 1, C6 = 0 and Ck = 0 for k ≥ 7 proves the existence of an analytic first
integral of the form Ψ(x, y) = ∑∞

k=5 fk(y)xk which is of the form (1.6) with p = 1 and q = 5.
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5 Proof of sufficiency of Theorem 3.5

Case 1. We consider the system

ẋ = 2x + λa10x2

ẏ = −3y + µ
(
b2,−1x2 + b10xy + b01y2) ,

(5.1)

where a10, b2,−1, b10, b01 ∈ C.
After the blow-up transformation (see [15] where this transformation is shown that it is

useful to obtain the sufficiency)

(x, y) 7−→ (z, y) =
(

x
y

, y
)

we obtain the following system

ż = 5z− µb01yz + (λa10 − µb10) yz2 − µb2,−1yz3 = P (z, y)
ẏ = −3y + µb01y2 + µb10y2z + µb2,−1y2z2 = Q (z, y) .

(5.2)

We now look for the first integral of the system (5.2) of the form

Ψ (z, y) =
∞

∑
k=5

fk (z) yk.

We compute Ψ̇ = ∂Ψ(z,y)
∂z P (z, y) + ∂Ψ(z,y)

∂y Q (z, y) and for each k ≥ 5 set the coefficient of

power yk to zero. Setting f4 (z) = 0 this yields for k ≥ 5 the following recurrence differential
equation for fk (z) and fk−1 (z)

0 = (k− 1) µ
(
b01 + zb10 + z2b2,−1

)
fk−1 (z)− 3k fk (z)

+ 5z f ′k (z)− z
(
µb01 + z (µb10 − λa10) + z2µb2,−1

)
f ′k−1 (z) .

For k = 5, 6, 7, 8, 9 we find

f5 (z) = z3,

f6 (z) = z3
(

2
3

µb01 − z
(

µb10 +
3
2

λa10

)
− 2

7
µb2,−1z2

)
,

f7 (z) = z3 p4 (z) ,

f8 (z) = z3q5 (z) ,

f9 (z) = z3r6 (z) ,

where p4 (z), q5 (z) and r6 (z) are some polynomials of degree at most 4, 5 and 6, respectively.
So, we assume that

fk (z) = z3Rk−3 (z) ,

where Rk−3 (z) = ∑k−3
j=0 ρjzj denotes a polynomial of degree at most k − 3. We prove this by

induction. We have to solve the following differential equation

f ′n (z) =
3n
5z

fn (z) + α (z) · f ′n−1 (z)− (n− 1)
β (z)

z
fn−1 (z) , (5.3)
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where

α (z) =
µb2,−1z2 + (µb10 − λa10) z + µb01

5
,

β (z) =
µ
(
b01 + b10z + b2,−1z2)

5
.

Suppose

fk (z) = z3Rk−3 (z) =
k−3

∑
j=0

ρjzj+3, for k = 5, 6, . . . , n− 1.

Then f ′k (z) = ∑k−3
j=0 (j + 3) ρjzj+2, and

α (z) · f ′n−1 (z)− (n− 1)
β (z)

z
fn−1 (z)

=
µb2,−1z2 + (µb10 − λa10) z + µb01

5
·

n−4

∑
j=0

(j + 3) ρjzj+2

− (n− 1)
µ
(
b01 + b10z + b2,−1z2)

5

n−4

∑
j=0

ρjzj+2. (5.4)

It is very important to see that the coefficient to the highest power n in expression (5.4) van-
ishes

µb2,−1z2

5
· (n− 4 + 3) ρn−4zn−4+2 − (n− 1)

µ
(
b2,−1z2)

5z
ρn−4zn−4+3 = 0.

Also, note that the lowest power of expression (5.4) is obviously z2. This implies that differen-
tial equation (5.3) becomes

f ′n (z) =
3n
5z

fn (z) + z2Wn−3 (z) , (5.5)

where Wn−3 (z) is a polynomial of degree at most n − 3. From differential equation (5.5)
according to (4.3) we have

g (z) =
3n
5z

, h (z) = z2Wn−3 (z) = w0z2 + w1z3 + w2z4 + · · ·+ wn−3zn−1.

A direct integration yields

e
∫

g(z)dz = z
3n
5 ,

z
3n
5

∫
z2Wn−3 (z) · z−

3n
5 dz = z3

n−3

∑
k=0

5zkwk

5 (k + 3)− 3n
= z3 ·Qn−3 (z) ,

since z
3n
5
∫

wkzk+2 · z− 3n
5 dz = wkz

3n
5
∫

zk+2− 3n
5 dz = 5wkzk+3

5(k+3)−3n , and finally

fn (z) = Cz
3n
5 + z3Qn−3 (z) .

For C = 0 we obtain fn (z) = z3Qn−3 (z) , where Qn−3 (z) is a polynomial of degree n − 3,
which completes the proof.
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We proved that the formal first integral of (5.2) is of the form

Ψ (z, y) =
∞

∑
k=5

z3Rk−3 (z) yk = z3y5 +
∞

∑
k=6

z3Rk−3 (z) yk.

Setting Rk−3 (z) = ∑k−3
j=0 ρjzj and applying the inverse blow-up transformation z 7→ x

y , y 7→ y
yields

Ψ̃ (x, y) = Ψ
(

x
y

, y
)
=

x3

y3 y5 +
∞

∑
k=6

x3

y3

(
∑k−3

j=0 ρjxjyk−3−j
)

yk−3 yk

= x3y2 + x3
∞

∑
K=0

(
K+3

∑
j=0

ρjxjyK+3−j

)
= x3y2 + ψ4,2x4y2 + ψ5,1x5y + ψ6,0x6 + ψ7,0x7 + h.o.t.,

which is a formal first integral of (5.1) of the required form.

Case 2. The corresponding system has the form

ẋ = 2x + λ(a10x2 + a01xy + a−12y2)

ẏ = −3y + µb01y2,
(5.6)

where a10, a01, a−12, b01 ∈ C.
Using blow-up transformation

(x, y) 7−→ (z, y) =
(

x
y

, y
)

we obtain the following system

ż = 5z + λ(a−12y + a01yz + a10yz2)− µb01yz = P (z, y)
ẏ = −3y + µb01y2 = Q (z, y) .

(5.7)

We look for the first integral of the form

Ψ (z, y) =
∞

∑
k=5

fk (z) yk.

Again we compute Ψ̇ = ∂Ψ(z,y)
∂z P (z, y) + ∂Ψ(z,y)

∂y Q (z, y) and for each k ≥ 5 we set the coefficient

of power yk to zero. For k ≥ 5 this yields the following recurrence differential equation for
fk (z) and fk−1 (z)

(k− 1) µb01 fk−1 (z)− 3k fk (z) + 5z f ′k (z) +
(
λ(a−12 + a01z + a10z2)− µb01z

)
f ′k−1 (z) = 0.

For k = 5, 6, 7, 8, 9 we find

f5 (z) = z3,

f6 (z) =
3
8

a−12λz2 + (a01λ +
2
3

b01µ)z3 − 3
2

a10λz4,

f7 (z) = p5 (z) ,

f8 (z) = q6 (z) ,

f9 (z) = r7 (z) ,
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where p5 (z), q6 (z) and r7 (z) are polynomials of degree at most 5, 6 and 7, respectively. Now
we assume that

fk (z) = Rk−2 (z) ,

where Rk−2 (z) = ∑k−2
j=0 ρjzj denotes polynomial of degree at most k − 2. We prove this by

induction. We have to solve the following differential equation

f ′n (z) =
3n
5z

fn (z) +
1
5z

(µb01z− λ(a−12 + a01z + a10z2)) · f ′n−1 (z)−
n− 1

5z
µb01 · fn−1 (z) . (5.8)

Suppose fk (z) = Rk−2 (z) = ∑k−2
j=0 ρjzj, for k = 5, 6, . . . , n− 1. Then f ′k (z) = ∑k−2

j=0 ρj jzj−1 and

1
5z

(µb01z− λ(a−12 + a01z + a10z2)) · f ′n−1 (z)−
n− 1

5z
µb01 · fn−1 (z)

=
1
5z

(µb01z− λ(a−12 + a01z + a10z2))
n−3

∑
j=0

ρj jzj−1 − n− 1
5z

µb01

n−3

∑
j=0

ρjzj

=
1
5z

Wn−2(z),

where Wn−2 (z) is a polynomial of degree at most n − 2. This is the case, since the term
(µb01z− λ(a−12 + a01z + a10z2)) · f ′n−1 (z) contains the highest power in the above expression,
deg(µb01z− λ(a−12 + a01z + a10z2)) = 2 and deg( f ′n−1 (z)) = n− 4. Equation (5.8) becomes

f ′n (z) =
3n
5z

fn (z) +
1
5z

Wn−2(z), (5.9)

which is of the form (4.2) and the corresponding solution is of the form (4.3). From differential
equation (5.9) and (4.2) it follows

g (z) =
3n
5z

, h (z) =
1
5z

Wn−2(z) =
1
5z

(w0 + w1z + w2z2 + · · ·+ wn−2zn−2).

A direct integration yields

e
∫

g(z)dz = z
3n
5 ,

z
3n
5

∫ 1
5z

Wn−2(z) · z−
3n
5 dz =

n−2

∑
k=0

wkzk

5k− 3n
= Qn−2 (z) ,

since z
3n
5
∫ 1

5z wkzk · z− 3n
5 dz = z

3n
5
∫ 1

5 wkzk−1− 3n
5 dz = wkzk

5k−3n , and finally

fn (z) = Cz
3n
5 + Qn−2 (z) .

For C = 0 we finally obtain fn (z) = Qn−2 (z) , where Qn−2 (z) is a polynomial of degree n− 2,
which completes the proof.

We proved that the formal first integral of (5.7) is of the form

Ψ (z, y) = z3y5 +
∞

∑
k=6

Rk−2 (z) yk.

Setting Rk−2 (z) = ∑k−2
j=0 ρjzj the inverse blow-up transformation z 7→ x

y , y 7→ y yields
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Ψ̃ (x, y) = Ψ
(

x
y

, y
)
=

x3

y3 y5 +
∞

∑
k=6

(
k−2

∑
j=0

ρjxjyk−j

)

= x3y2 +
∞

∑
k=6

(
ρ0yk + ρ1xyk−1 + ρ2x2yk−2 + · · ·+ ρk−2xk−2y2

)
,

which is a formal integral of system (5.6) of the form (1.6) with p = 2 and q = 3.

Case 3. The corresponding system has the form

ẋ = 2x + λa01xy
ẏ = −3y + µb10xy,

(5.10)

where a01, b10 ∈ C.
After the blow-up transformation

(x, y) 7−→ (z, y) =
(

x
y

, y
)

we obtain the following system

ż = 5z + λa01yz− µb10yz2 = P (z, y)
ẏ = −3y + µb10y2z = Q (z, y) .

(5.11)

We now look for the first integral of the form

Ψ (z, y) =
∞

∑
k=5

fk (z) yk.

After computing Ψ̇ = ∂Ψ(z,y)
∂z P (z, y) + ∂Ψ(z,y)

∂y Q (z, y) we set the coefficient to power yk for each
k ≥ 5 to zero. This yields for k ≥ 5 the following recurrence differential equation for fk (z)
and fk−1 (z)

(k− 1) µb10z fk−1 (z)− 3k fk (z) + 5z f ′k (z) +
(
λa01z− µb10z2) f ′k−1 (z) = 0.

For k = 5, 6, 7, 8, 9 we find

f5 (z) = z3,

f6 (z) = z3(λa01 − µb10z),

f7 (z) = z3 p2(z),

f8 (z) = z3q3(z),

f9 (z) = z3r4(z),

where p2 (z), q3 (z) and r4 (z) are polynomials of degree at most 2, 3, and 4, respectively. We
can assume that

fk (z) = z3Rk−5 (z) ,

where Rk−5 (z) = ∑k−5
j=0 ρjzj denotes a polynomial of degree at most k − 5. Again we use

induction to prove this assumption. To this end we solve the following differential equation

f ′n (z) =
3n
5z

fn (z) +
µb10z− λa01

5
· f ′n−1 (z)−

n− 1
5

µb10 · fn−1 (z) . (5.12)
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Suppose

fk (z) = z3Rk−5 (z) =
k−5

∑
j=0

ρjzj+3, for k = 5, 6, . . . , n− 1.

Then f ′k (z) = ∑k−5
j=0 (j + 3) ρjzj+2, and

µb10z− λa01

5
· f ′n−1 (z)−

n− 1
5

µb10 · fn−1 (z)

=
µb10z− λa01

5
·

n−6

∑
j=0

(j + 3) ρjzj+2 − n− 1
5

µb10

n−6

∑
j=0

ρjzj+3. (5.13)

Now we can see that the highest power in expression (5.13) is n− 3 and the lowest power of
expression (5.13) is obviously z2. This implies that differential equation (5.12) becomes

f ′n (z) =
3n
5z

fn (z) + z2Wn−5 (z) , (5.14)

where Wn−5 (z) is some polynomial of degree at most n− 5. From differential equation (5.14)
using (4.2) it follows

g (z) =
3n
5z

, h (z) = z2Wn−5 (z) = w0z2 + w1z3 + w2z4 + · · ·+ wn−5zn−3.

An integration yields

e
∫

g(z)dz = z
3n
5 ,

z
3n
5

∫
z2Wn−5 (z) · z−

3n
5 dz = z3

n−5

∑
k=0

5wkzk

5 (k + 3)− 3n
= z3 ·Qn−5 (z) ,

since z
3n
5
∫

wkzk+2 · z− 3n
5 dz = z

3n
5
∫

wkzk+2− 3n
5 dz = 5wkzk+3

5(k+3)−3n , yielding

fn (z) = Cz
3n
5 + z3Qn−5 (z) .

For C = 0 we finally obtain fn (z) = z3Qn−5 (z) , where Qn−5 (z) is a polynomial of degree
n− 5, which completes the proof by induction.

We proved that the formal first integral of (5.11) is of the form

Ψ (z, y) =
∞

∑
k=5

z3Rk−5 (z) yk = z3y5 +
∞

∑
k=6

z3Rk−5 (z) yk.

Similar as in previous two cases we set Rk−5 (z) = ∑k−5
j=0 ρjzj and apply inverse blow-up trans-

formation z 7→ x
y , y 7→ y to obtain

Ψ̃ (x, y) = Ψ
(

x
y

, y
)
= x3y2 + ψ3,3x3y3 + ψ4,2x4y2 + h.o.t.,

which is a formal integral of (5.10) of the required form.
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6 Conclusions

In this paper we introduce the notion of persistent p : −q resonant center and we solve the
problem of p : −q persistent resonant center for some quadratic systems. First we fix p as
1 and we increase q starting with q = 2. Although the system is polynomial containing just
linear and quadratic terms the computations of saddle quantities become too laborious for
q > 5. If p = 2 and q = 3 computations are again very complex, and with increasing of q they
become more demanding. On the other hand, note that once we obtain a sufficient number of
saddle quantities then the study of persistent resonant centers is much easier than the study
of (regular) resonant centers since for persistent centers we use two parameters to “split” the
saddle quantities, whereas in the second case we have no splitting. Hence, similar as noted in
[7] in the first case we obtain a simpler variety to decompose than in the second case.
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[10] D. Dolićanin, J. Giné, R. Oliveira, V. G. Romanovski, The center problem for a 2 : −3
resonant cubic Lotka–Volterra system, Appl. Math. Comput. 220(2013), 12–19. https://
doi.org/10.1016/j.amc.2013.06.007; MR3091826; Zbl 1329.34064

[11] G. Dong, Linearizability of homogeneous quartic polynomial systems with 1 : −2 reso-
nance, J. Math. Anal. Appl. 396(2012), No. 1, 215–224. https://doi.org/10.1016/j.jmaa.
2012.06.013; MR2956956; Zbl 1259.34026
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