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Abstract. In this article, we analyze the existence of Peregrine type solutions for the
fractional reaction–diffusion equation by applying splitting-type methods. Peregrine
type functions have two main characteristics, these are direct sum of functions of peri-
odic type and functions that tend to zero at infinity. Well-posedness results are obtained
for each particular characteristic, and for both combined.
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1 Introduction

We study the non-autonomous system

∂tu + σ(−∆)βu = F(t, u), (1.1)

where u(x, t) ∈ Z for x ∈ Rn, t > 0, σ ≥ 0 and 0 < β ≤ 1, F : R× Z → Z a continuous map
and Z a Banach space. We consider the initial value problem u(x, 0) = u0(x).

The aim of this paper is to analyze the existence of solutions for the fractional reaction–
diffusion equation by applying splitting methods to functions that have two main character-
istics: these are direct sum of functions of periodic type and functions that vanish at infinity.
We will call them from now on, “Peregrine type solutions”. A similar type of solution is also
studied in the context of the non-linear Schrödinger equation, under the name of “Peregrine
solitons”. These solutions were analyzed in [22], and have multiple applications, for example
[5,12,16,17,26]. To achieve our goal, we use recent results concerning global existence on frac-
tional reaction–diffusion equations [6] based in similar numerical splitting techniques [7, 13],
introduced for other purposes. Fractional reaction–diffusion equations are frequently used on
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many different topics of applied mathematics such as biological models, population dynamics
models, nuclear reactor models, just to name a few (see [4, 9, 10] and references therein).

The fractional model captures the faster spreading rates and power law invasion profiles
observed in many applications compared to the classical model (β = 1) characterized by the
behavior of the classical semigroup [15]. The main constituent of the model is the fractional
Laplacian, described by standard theories of fractional calculus (for a complete survey see
[21]). There are many different equivalent definitions of the fractional Laplacian and its prop-
erties are well understood (see [8,14,18–20,23,27]). The non-autonomous non-linear reaction–
diffusion equation dynamics were studied by [1, 24] and others, analyzing the stability and
evolution of the problem.

The paper is organized as follows: In Section 2 we set notations and preliminary results
and in Section 3 we present the main results, primarily focusing on each characteristic of the
direct sum separately. Finally, both results are combined to reach the existence of Peregrine
type solutions.

2 Notations and preliminaries

We investigate continuous, Banach space valued functions. For a Banach space Z, we define
Cu(Rd, Z) as the set of uniformly continuous and bounded functions on Rd with values in Z.
Defining the norm

‖u‖∞,Z = sup
x∈Rd
|u(x)|Z,

Cu(Rd, Z) is a Banach space.
It is easy to see that if g ∈ L1(Rd) and u ∈ Cu(Rd, Z) the Bochner integral is defined in the

following way,

(g ∗ u) (x) =
∫

Rd
g(y)u(x− y)dy

This determines an element of Cu(Rd, Z) and the linear operator u 7→ g ∗ u is continuous (see
[2,11]). The following results show that the operator −(−∆)β defines a continuous contraction
semigroup in the Banach space Cu(Rd, Z). We define the space C0(Rd, Z) of functions that
converge to 0 when |x| → ∞. The following lemma is a consequence of Lévy–Khintchine
formula for infinitely divisible distributions and properties of the Fourier transform.

Lemma 2.1. Let 0 < β ≤ 1 and gβ ∈ C0(Rd) such that ĝβ(ξ) = e−|ξ|
2β

. Then gβ is positive,
invariant under rotations of Rd, integrable and∫

Rd
gβ(x)dx = 1.

Proof. The first statement follows from Theorem 14.14 of [25], the remaining claims are an
easy consequence of the definition of ĝβ.

Based on the previous lemma, we recall some results about Green’s function related to the
linear operator ∂t + σ(−∆)β.

Proposition 2.2. Let σ > 0 and 0 < β ≤ 1, the function Gσ,β given by

Gσ,β(t, x) = (σt)−
d

2β gβ((σt)−
1

2β x),

verifies
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i. Gσ,β(·, t) > 0;

ii. Gσ,β(·, t) ∈ L1(Rd) and ∫
Rd

Gσ,β(t, x)dx = 1;

iii. Gσ,β(·, t) ∗ Gσ,β(·, t′) = Gσ,β(·, t + t′), for t, t′ > 0;

iv. ∂tGσ,β + σ(−∆)βGσ,β = 0 for t > 0.

Proof. The first and second statements are a consequence of the definition of ĝβ. The third and
fourth statements are immediate applying Fourier transform.

In the following proposition, we have that the linear operator −σ(−∆)β defines a continu-
ous contraction semigroup in Cu(Rd, Z).

Proposition 2.3. For any σ > 0 and 0 < β ≤ 1, the map S : R+ → B(Cu(Rd, Z)) defined by
S(t)u = Gσ,β(·, t) ∗ u is a continuous contraction semigroup.

Proof. The proof can be found in [6, Proposition 2.2].

Next, we consider integral solutions of the problem (1.1). We say that u∈C([0,T], Cu(Rd,Z))
is a mild solution of (1.1) iff u verifies

u(t) = S(t)u0 +
∫ t

0
S(t− t′)F(t′, u(t′))dt′. (2.1)

A continuous map F : R+× Z → Z is called locally Lipschitz if, given R, T > 0 there exists
L > 0 such that if t ∈ [0, T] and |z|Z, |z̃|Z ≤ R, then

|F(t, z)− F(t, z̃)|Z ≤ L|z− z̃|Z.

In this case, for any z0 ∈ Z there exists a unique (maximal) solution of the Cauchy problem

z(t) = z0 +
∫ t

t0

F(t′, z(t′))dt′ (2.2)

defined in [t0, t0 + T∗(t0, z0)), with T∗(t0, z0) the maximal time of existence. It is easy to see
that there exists a nonincreasing function T : R2

+ → R+, such that

T (T, R) ≤ inf{T∗(t0, z0) : 0 ≤ t0 ≤ T, |z0|Z ≤ R}.

Also, one of the following alternatives holds:

- T∗(t0, z0) = ∞;

- T∗(t0, z0) < ∞ and |z(t)|Z → ∞ when t ↑ t0 + T∗(t0, z0).

We can see that F : R+ × Cu(Rd, Z) → Cu(Rd, Z), given by F(t, u)(x) = F(t, u(x)) is
continuous and locally Lipschitz. Therefore, we can consider problem (2.2) in Cu(Rd, Z).

We denote by N : R × R × Cu(Rd, Z) → Cu(Rd, Z) the flow generated by the integral
equation (2.2) as u(t) = N(t, t0, u0), defined for t0 ≤ t < t0 + T∗(t0, u0).

We recall well-known local existence results for evolution equations.
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Theorem 2.4. There exists a function T∗ : Cu(Rd, Z) → R+ such that for u0 ∈ Cu(Rd, Z), exists a
unique u ∈ C([0, T∗(u0)), Cu(Rd, Z)) mild solution of (1.1) with u(0) = u0. Moreover, one of the
following alternatives holds:

• T∗(u0) = ∞;

• T∗(u0) < ∞ and limt↑T∗(u0) ‖u(t)‖∞,Z = ∞.

Proof. See Theorem 4.3.4 in [11].

Proposition 2.5. Under conditions of the theorem above, we have the following statements:

1. T∗ : Cu(Rd, Z)→ R+ is lower semi-continuous;

2. If u0,n → u0 in Cu(Rd, Z) and 0 < T < T∗(u0), then un → u in the Banach space
C([0, T], Cu(Rd, Z)).

Proof. See Proposition 4.3.7 in [11].

3 Peregrine type solutions

In this section, we analyze the existence of Peregrine type solutions for the fractional reaction–
diffusion equation by applying splitting methods [6]. Peregrine type functions have two main
characteristics: these are direct sum of functions of periodic type and functions that vanish
at infinity. As a reference, we consider a solution of the non-linear Schrödinger equation,
(Peregrine solitons), which entails these two characteristics. The explicit solution achieved in
[22] is:

u(x, t) =
[

1− 4(1 + 2it)
1 + 4x2 + 4t2

]
ei(kx−ωt)

Well-posedness of the solution is obtained for each particular characteristic, to then com-
bine both results using convergence theorems from [6]. In addition, we observe that the
evolution of the periodic part is independent of the part that tends to zero at infinity (Theo-
rem 3.9). For instance, suppose that the non-linearity is autonomous and of polynomial type
(as in the Fitzhugh–Nagumo equation, see [3]), such as F(u) = u2. If u(t) = v(t)+w(t), where
v(t) is a periodic function and w(t) is a function that vanishes when the spatial variable tends
to infinity, then we have

F(u) = F(v + w) = (v + w)2 = v2 + 2vw + w2

where, v2 is periodic and 2vw + w2 tends to zero. In this specific case we can appreciate the
absorption, i.e. the vanishing component is imposed in the crossed terms. As v2 = F(v), we
expect that the periodic part of the initial data evolves independently from the rest for the
non-linear equation. In this section we obtain general results to which this example refers.

Let {γ1, . . . , γq} be q linearly independent vectors of Rd and let Γ be the lattice generated,
i.e., Γ = {n1γ1 + · · ·+ nqγq : nj ∈ Z}. A function u ∈ Cu(Rd, Z) is Γ-periodic if u(x + γ) =

u(x) for any γ ∈ Γ. We denote the set of Γ–periodic functions of Cu(Rd, Z) by Cu(Rd/Γ, Z).
We recall the notation of the space C0(Rd, Z) of functions that converge to 0 when |x| → ∞.

It is easy to prove the following result.
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Proposition 3.1. Cu(Rd/Γ, Z), C0(Rd, Z) ⊂ Cu(Rd, Z) are closed subspaces. Moreover, C0(Rd, Z)∩
Cu(Rd/Γ, Z) = {0}.

Proof. Let u ∈ Cu(Rd/Γ, Z), we set x ∈ Rd and u(x) = lim|γ|→∞ u(x + γ). If u ∈ C0(Rd, Z),
then lim|γ|→∞ u(x + γ) = 0. Therefore, u(x) = 0 for any x ∈ Rd.

Lemma 3.2. Let X be a Banach space and let X1, X2 ⊂ X be closed subspaces such that X1∩X2 = {0},
the following statements are equivalent

i. X1 ⊕ X2 is closed.

ii. The projector P : X1 ⊕ X2 → X1 is continuous.

Proof. Since X1 ⊕ X2 is a Banach space, the linear map φ : X1 × X2 → X1 ⊕ X2 given by
φ(x1, x2) = x1 + x2 is bijective, and continuous. By the closed graph theorem we have φ−1 is
also a continuous operator. We express the projector as P = π1φ−1 and then P is continuous.
On the other hand, X1 ⊕ X2 = P−1X1, since P continuous and X1 a closed subspace, X1 ⊕ X2

is closed.

Lemma 3.3. The projector P : Cu(Rd/Γ, Z)⊕ C0(Rd, Z)→ Cu(Rd/Γ, Z) is continuous.

Proof. Let u = v + w ∈ Cu(Rd/Γ, Z)⊕ C0(Rd, Z), v ∈ Cu(Rd/Γ, Z) and w ∈ C0(Rd, Z). For
any x ∈ Rd, we can see that

v(x) = lim
|γ|→∞

γ∈Γ

v(x + γ) = lim
|γ|→∞

γ∈Γ

u(x + γ),

then |v(x)|Z ≤ ‖u‖∞,Z, which implies ‖v‖∞,Z = ‖Pu‖∞,Z ≤ ‖u‖∞,Z.

Corollary 3.4. The direct sum XΓ,Z = Cu(Rd/Γ, Z)⊕ C0(Rd, Z) is a closed subspace of Cu(Rd, Z).

To obtain the existence of solutions in the space XΓ,Z, we first study each case separately.
We analyze the existence of solutions for the case of Γ periodic functions using the translation
function.

Given γ ∈ Rd we define Tγ : Cu(Rd, Z)→ Cu(Rd, Z) as (Tγu)(x) = u(x + γ). Since S(t) is
a convolution operator, it is easy to see that TγS(t) = S(t)Tγ. Using that TγF(t, u) = F(t,Tγu)
we obtain

Tγu(t) = S(t)Tγu0 +
∫ t

0
S(t− t′)F(t,Tγu(t′))dt′.

Therefore, Tγu is the solution of (2.1) with initial data Tγu0.

Proposition 3.5. If u0 ∈ Cu(Rd/Γ, Z), then the solution u of the equation (2.1) verifies u(t) ∈
Cu(Rd/Γ, Z) for 0 ≤ t < T∗(u0).

Proof. Since Tγu0 = u0 for any γ ∈ Γ, Tγu, u are solutions with the same initial data. From
uniqueness, we have Tγu = u. Therefore, u(t) ∈ Cu(Rd/Γ, Z).

We now analyze the existence of solution in the space C0(Rd, Z). We first study the linear
part.

Lemma 3.6. If u ∈ C0(Rd, Z), then S(t)u ∈ C0(Rd, Z) for t ∈ R+.
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Proof. Let {xn}n∈N be a sequence with |xn| → ∞. Then we have

|(S(t)u)(xn)|Z ≤
∫

Rd
Gσ,β(t, y)|u(xn − y)|Zdy.

As Gσ,β(t, ·)|u(xn − ·)|Z ≤ Gσ,β(t, ·)‖u‖∞,Z and Gσ,β(t, y)|u(xn − y)|Z → 0, from dominated
convergence theorem we obtain limn→∞ |(S(t)u)(xn)|Z = 0. Since {xn}n∈N is an arbitrary
sequence, we have S(t)u ∈ C0(Rd, Z).

We now study the non-linear part.

Lemma 3.7. Let u0, ũ0 ∈ Cu(Rd, Z), if u0 − ũ0 ∈ C0(Rd, Z), then N(t, t0, u0) − N(t, t0, ũ0) ∈
C0(Rd, Z) for 0 ≤ t < min{T∗(u0), T∗(ũ0)}.

Proof. Let u(t) = N(t, t0, u0) and ũ(t) = N(t, t0, ũ0), for any x ∈ Rd we have

|u(x, t)− ũ(x, t)|Z ≤ |u0(x)− ũ0(x)|Z +
∫ t

0
|F(t′, u(x, t′))− F(t′, ũ(x, t′))|Zdt′

≤ |u0(x)− ũ0(x)|Z + L
∫ t

0
|u(x, t′)− ũ(x, t′)|Zdt′.

From Gronwall’s lemma, we obtain the inequality |u(x, t) − ũ(x, t)|Z ≤ eLt|u0(x) − ũ0(x)|Z.
Given ε > 0, there exists r > 0 such that |u0(x) − ũ0(x)|Z < εe−Lt for |x| > r, then
|u(x, t)− ũ(x, t)|Z < ε, which implies u(t)− ũ(t) ∈ C0(Rd, Z).

For the next proposition, we recall results from [6], based in numerical splitting techniques
[7, 13] for evolution equations. These are used to prove the convergence of the approximate
solution, that is constructed by the time-splitting of the linear and the non-linear component.

Proposition 3.8. Let u0, ũ0 ∈ Cu(Rd, Z), such that u0 − ũ0 ∈ C0(Rd, Z) and let u, ũ be the cor-
responding solutions of (2.1). For any 0 ≤ t < min{T∗(u0), T∗(ũ0)}, it is verified u(t)− ũ(t) ∈
C0(Rd, Z).

Proof. For t ∈ [0, min{T∗(u0), T∗(ũ0)}), let n ∈ N, h = t/n and {Uh,k}0≤k≤n,{Ũh,k}0≤k≤n
sequences defined in terms of a recurrence, in the following way.

Let {Uh,k}0≤k≤n, {Vh,k}1≤k≤n be the sequences given by Uh,0 = u0,

Vh,k+1 = S(h)Uh,k, (3.1a)

Uh,k+1 = N(kh + h, kh + h/2, Vh,k+1), k = 0, . . . , n− 1. (3.1b)

We claim that Uh,k − Ũh,k ∈ C0(Rd, Z) for k = 0, . . . , n. Clearly, the assertion is true for
k = 0. If Uh,k−1 − Ũh,k−1 ∈ C0(Rd, Z), from Lemma 3.7, we have N(kh, kh − h/2, Vh,k−1) −
N(kh, kh− h/2, Ṽh,k−1) ∈ C0(Rd, Z). Using Lemma 3.6, we can see that

Vh,k − Ṽh,k = S(h)(N(kh, kh− h/2, Vh,k−1)−N(kh, kh− h/2, Ṽh,k−1)) ∈ C0(R
d, Z).

We now recall Proposition 4.2 and Theorem 4.2 from [6] that assures us that Uh,n → u(t) and
Ũh,n → ũ(t) when n→ ∞.

As C0(Rd, Z) is closed and Uh,n − Ũh,n → u(t)− ũ(t), we obtain the result.

In the following theorem, we prove the existence of solutions in XΓ,Z, but also the absorption
mentioned in the introduction concerning the evolution of the initial condition component in
the space C0(Rd, Z).
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Theorem 3.9. For any u0 ∈ XΓ,Z, the solution u of the equation (2.1) satisfies u(t) ∈ XΓ,Z for
0 ≤ t < T∗(u0). Moreover, if u0 = v0 + w0 with v0 ∈ Cu(Rd/Γ, Z) and w0 ∈ C0(Rd, Z), then
u(t) = v(t) + w(t), where v is the solution of (2.1) with initial data v0 and w is the solution of

w(t) = S(t)w0 +
∫ t

0
S(t− t′)

(
F(t, v(t′) + w(t′))− F(t, v(t′))

)
dt′.

Proof. As u0 ∈ XΓ,Z ⊂ Cu(Rd, Z), by Theorem 2.4 we have u(t) ∈ Cu(Rd, Z) with maximal time
of existence T∗(u0). We observe that as v0 ∈ Cu(Rd/Γ, Z) then by Proposition 3.5 we know that
v(t) ∈ Cu(Rd/Γ, Z) with maximal time of existence T∗(v0). We define w(t) = u(t)− v(t). By
hypothesis, we have w0 = w(0) = u(0)− v(0) = u0− v0 ∈ C0(Rd, Z) therefore, by Proposition
3.8 we know that w(t) ∈ C0(Rd, Z). Then, we obtain u(t) = v(t) + w(t) ∈ XΓ,Z, where v(t) ∈
Cu(Rd/Γ, Z) and w(t) ∈ C0(Rd, Z) in the interval [0, Tmin) where Tmin = min{T(u0), T(v0)}.
For T∗(v0) ≥ T∗(u0), we have the result.

Suppose that T∗(v0) < T∗(u0).
Let T ∈ (0, T∗(u0)) and M = max0≤t≤T ‖u(t)‖∞,Z. We define T = {t ∈ [0, T] : u(t) /∈ XΓ,Z},

that is, the times for which we have u(t) /∈ XΓ,Z . Suppose that T 6= ∅. Then there exists
t1 = inf T .

Clearly, t1 = 0 is not possible because we have already seen that u(t) ∈ XΓ,Z, in the interval
[0, T∗(v0)). In the same way, if t1 > 0 and additionally t1 < T∗(v0) we have u(t) ∈ XΓ,Z and
that is a contradiction. We analyze the remaining case, t1 > 0 and T > t1 > T∗(v0).

We observe that, by Theorem 2.4 we obtain that limt→T∗(v0) ‖v(t)‖∞,Z = +∞ but on the
other hand, by Lemma 3.3 we have ‖v(t)‖∞,Z ≤ ‖P‖∞,Z ‖u(t)‖∞,Z ≤ ‖P‖∞,Z M that is, the
norm v(t) is bounded for t ∈ [0, T∗(v0)) ⊂ [0, T], which is a contradiction.

So we finally have that u(t) ∈ XΓ,Z for t ∈ [0, T∗(u0)).
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