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1 Introduction

In this paper we consider the following fractional problemM([u]ps,p)(−∆)s
pu− γ

|u|p−2u
|x|sp = λw(x)|u|q−2u +

|u|p∗s (α)−2u
|x|α , in Ω,

u = 0 in RN \Ω,
(1.1)

where 0 < s < 1 < p < ∞, 0 ≤ α < sp < N, 1 < q < p, p∗s (α) =
p(N−α)
N−sp ≤ p∗s (0) = p∗s is the

critical Hardy–Sobolev exponent, γ and λ are real parameters, w is a positive weight whose
assumption will be introduced in the sequel and Ω ⊆ RN is a general open set. Naturally, the
condition u = 0 in RN \Ω disappears when Ω = RN .

Here (−∆)s
p denotes the fractional p-Laplace operator which, up to normalization factors,

may be defined by the Riesz potential as

(−∆)s
pu(x) = 2 lim

ε→0+

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))
|x− y|N+sp dy, x ∈ RN ,

BCorresponding author. Email: fiscella@ime.unicamp.br

https://doi.org/10.14232/ejqtde.2019.1.25
https://www.math.u-szeged.hu/ejqtde/


2 V. Ambrosio, A. Fiscella and T. Isernia

along any u ∈ C∞
0 (RN), where Bε(x) = {y ∈ RN : |x− y| < ε}. See [11, 23] and the references

therein for further details on the fractional Sobolev space Ws,p(Ω) and some recent results on
the fractional p-Laplacian.

Problem (1.1) is fairly delicate due to the intrinsic lack of compactness, which arise from
the Hardy term and the nonlinearity with critical exponent p∗s (α). For this reason, we strongly
need that the Kirchhoff coefficient M is non–degenerate, namely M(t) > 0 for any t ≥ 0.
Hence, along the paper, we suppose that the Kirchhoff function M : R+

0 → R+
0 is continuous and

satisfies

(M1) inft∈R+
0

M(t) = a > 0;

(M2) there exists θ ∈ [1, p∗s (α)/p), such that M(t)t ≤ θM (t) for all t ∈ R+
0 , where M (t) =∫ t

0 M(τ)dτ.

Concerning the positive weight w, we assume that

(w) w(x)|x|
qα

p∗s (α) ∈ Lr(RN), with r = p∗s (α)
p∗s (α)−q .

Condition (w) is necessary, since it guaranties that the embedding Z(Ω) ↪→ Lq(Ω, w) is com-
pact, even when Ω is the entire space RN . Indeed, the natural solution space for problem (1.1)
is the fractional density space Z(Ω), that is the closure of C∞

0 (Ω) with respect to the norm
[ · ]s,p, given by

[u]s,p =

(∫∫
R2N

|u(x)− u(y)|p
|x− y|N+sp dxdy

)1/p

.

Thus, by arguing similarly to Lemma 4.1 of [15], we have that the embedding Z(Ω) ↪→
Lq(Ω, w) is compact with

‖u‖q,w ≤ Cw[u]s,p for any u ∈ Z(Ω), (1.2)

where the weighted norm is set by

‖u‖q,w =

(∫
Ω

w(x)|u(x)|qdx
)1/q

and Cw = H−1/p
α

( ∫
RN wr(x)|x|

qα

p∗s (α)−q dx
)1/qr is a positive constant. Here Hα = H(N, p, s, α)

denotes the best fractional critical Hardy–Sobolev constant, given by

Hα = inf
u∈Z(Ω)\{0}

[u]ps,p

‖u‖p
Hα

, ‖u‖p∗s (α)
Hα

=
∫

Ω
|u(x)|p∗s (α) dx

|x|α . (1.3)

Of course number Hα is well–defined and strictly positive for any α ∈ [0, ps], since Lemma 2.1
of [15]. We observe that when α = 0 then H0 coincides with the critical Sobolev constant, while
when α = sp then Hsp is the true critical Hardy constant. In order to simplify the notation,
throughout the paper we denote the true fractional Hardy constant and the true fractional
Hardy norm with H = Hsp and ‖ · ‖H = ‖ · ‖Hsp , in (1.3) when α = sp.

When s = 1 and p = 2, our problem (1.1) is related to the celebrated Kirchhoff equation

ρ utt −
(

P0

h
+

E
2L

∫ L

0
|ux|2dx

)
uxx = 0, (1.4)
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proposed by Kirchhoff [21] in 1883 as a nonlinear generalization of D’Alembert’s wave equa-
tion for free vibrations of elastic strings. This model describes a vibrating string, taking
into account the changes in the length of the string during vibrations. In the equation (1.4)
u = u(x, t) is the transverse string displacement at the space coordinate x and time t, L is the
length of the string, h is the area of the cross section, E is Young’s modulus of the material,
ρ is the mass density, and P0 is the initial tension. The early studies devoted to the Kirchhoff
model were given by Bernstein [6], Lions [22] and Pohozaev [26].

In the nonlocal setting, Fiscella and Valdinoci [17] proposed a stationary Kirchhoff varia-
tional model in smooth bounded domains of RN , which takes into account the nonlocal aspect
of the tension arising from nonlocal measurements of the fractional length of the string, given
by Caffarelli et al. in [8]. In other words, the problem studied in [17] is the fractional version
of the Kirchhoff equation (1.4). Starting from [17], a great attention has been devoted to the
study of fractional Kirchhoff problems; see for example [1–3, 9, 13–16, 24, 27].

The true local version of problem (1.1), namely when M ≡ 1 and s = 1, given by−∆pu− γ
|u|p−2u
|x|p = λw(x)|u|q−2u +

|u|p∗(α)−2u
|x|α , in Ω,

u = 0 on ∂Ω,
(1.5)

has been widely studied in [10, 12, 18, 19]. In these works, the authors proved the existence of
infinitely many solutions of (1.5), when the parameter λ is controlled by a suitable threshold
depending on the following Sobolev–Hardy constant

Sγ = inf
W1,p

0 (Ω)\{0}

∫
Ω

(
|∇u(x)|p − γ

|u(x)|p
|x|p

)
dx(∫

Ω

|u(x)|p∗(α)
|x|α dx

) p
p∗(α)

.

In order to overcome the lack of compactness, due to the presence of two Hardy potentials
in (1.5), they exploit a concentration compactness principle, applied to the combined norm∫

Ω

(
|∇u|p − γ |u|

p

|x|p
)

dx and to the critical norm
∫

Ω
|u|p∗(α)
|x|α dx. Because of the bi–nonlocal nature

of the problem (1.1), the same approach of [10, 12, 18, 19] can not work in our case. Indeed,
due to the presence of a Kirchhoff coefficient M, for which the equation in (1.1) is no longer
a pointwise identity, we have difficulties in considering a combined norm. Since Ω could be
unbounded, we can not apply a concentration compactness argument because of the nonlocal
nature of (−∆)p

s , as well explained in Section 2.3 of [25]. For these reasons, we use a tricky
analysis of the energy functional which allows us to handle the two Hardy potentials in (1.1);
see Sections 2 and 3.

Thus, we get the next multiplicity result for (1.1), which involves the main geometrical
parameter κσ = κ(σ) defined by

κσ =
a(σ− θp)
θ(σ− p)

, (1.6)

for any σ ∈ (pθ, p∗s (α)). A parameter similar to (1.6) already appeared in [9]. Clearly κσ ≤ a,
since θ ≥ 1 and pθ ≤ σ. When θ = 1 in (M2), we observe that parameter κσ = a does not
depend by the choice of σ. As shown in Section 2 of [9], the situation θ = 1 holds true in other
cases, besides the obvious one M ≡ a.

Now, we are ready to state the main result of the present paper.
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Theorem 1.1. Let N > ps > α ≥ 0, q ∈ (1, p), with s ∈ (0, 1) and p ∈ (1, ∞). Assume that M and
w satisfy assumptions (M1)–(M2) and (w).

Then, for any σ ∈ (pθ, p∗s (α)) and for any γ ∈ (−∞, κσ H), there exists λ̄ = λ̄(σ, γ) > 0 such
that for any λ ∈ (0, λ̄) problem (1.1) admits a sequence of solutions {un}n in Z(Ω) with the energy
functional Jγ,λ(un) < 0, Jγ,λ(un)→ 0 and {un}n converges to zero as n→ ∞.

The proof of Theorem 1.1 is obtained by applying suitable variational methods and con-
sists of several steps. In Section 2 we study the compactness property of the Euler-Lagrange
functional associated with (1.1). After that, in Section 3, we introduce a truncated functional
which allows us to apply the symmetric mountain pass lemma in [20]. Finally, we prove that
the critical points of the truncated functional are indeed solutions of the original problem
(1.1).

2 The Palais–Smale condition

Throughout the paper we assume that N > ps > α ≥ 0, s ∈ (0, 1), p ∈ (1, ∞), q ∈ (1, p),
(M1)–(M2) and (w), without further mentioning.

According to the variational nature, (weak) solutions of (1.1) correspond to critical points
of the Euler–Lagrange functional Jγ,λ : Z(Ω)→ R, defined by

Jγ,λ(u) =
1
p
M ([u]ps,p)−

γ

p
‖u‖p

H −
λ

q
‖u‖q

q,w −
1

p∗s (α)
‖u‖p∗s (α)

Hα
.

Note that Jγ,λ is a C1(Z(Ω)) functional and for any u, ϕ ∈ Z(Ω)

〈J ′γ,λ(u), ϕ〉 = M([u]ps,p)〈u, ϕ〉s,p − γ〈u, ϕ〉H − λ〈u, ϕ〉q,w − 〈u, ϕ〉Hα , (2.1)

where

〈u, ϕ〉s,p =
∫∫

R2N

|u(x)− u(y)|p−2[u(x)− u(y)] · [ϕ(x)− ϕ(y)]
|x− y|N+sp dxdy,

〈u, ϕ〉q,w =
∫

Ω
w(x)|u(x)|q−2u(x)ϕ(x)dx,

〈u, ϕ〉H =
∫

Ω
|u(x)|p−2u(x)ϕ(x)

dx
|x|sp , 〈u, ϕ〉Hα =

∫
Ω
|u(x)|p∗s (α)−2u(x)ϕ(x)

dx
|x|α .

Now, we discuss the compactness property for the functional Jγ,λ, given by the Palais–
Smale condition. We recall that {un}n ⊂ Z(Ω) is a Palais–Smale sequence for Jγ,λ at level
c ∈ R if

Jγ,λ(un)→ c and J ′γ,λ(un)→ 0 in (Z(Ω))′ as n→ ∞. (2.2)

We say that Jγ,λ satisfies the Palais–Smale condition at level c if any Palais–Smale sequence
{un}n at level c admits a convergent subsequence in Z(Ω).

Lemma 2.1. Let c < 0.
Then, for any σ ∈ (pθ, p∗s (α)) and any γ ∈ (−∞, κσ H) there exists λ0 = λ0(σ, γ) > 0 such that

for any λ ∈ (0, λ0), the functional Jγ,λ satisfies the Palais–Smale condition at level c.

Proof. Fix σ ∈ (pθ, p∗s (α)) and γ ∈ (−∞, κσ H). Since γ < κσ H ≤ a H, there exists a number
c̃ ∈ [0, 1) such that γ+ = c̃ a H. Thus, let us consider λ0 = λ0(σ, γ) > 0 sufficiently small such
that (

1
σ
− 1

p∗s (α)

)− p∗s (α)
p∗s (α)−q

[
λ0

(
1
q
− 1

σ

)
‖w‖r

] p∗s (α)
p∗s (α)−q

< [(1− c̃)a Hα]
p∗s (α)

p∗s (α)−p (2.3)
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where q < p < p∗s (α), a is set in (M1), while Hα is given in (1.3).
Fix λ ∈ (0, λ0). Let {un}n be a (PS)c sequence in Z(Ω). We first show that {un}n is

bounded. By using the assumptions (M1) and (M2), and the inequalities (1.2) and (1.3), we
get

Jγ,λ(un)−
1
σ
〈J ′γ,λ(un), un〉 ≥

(
1
pθ
− 1

σ

)
M([un]

p
s,p)[un]

p
s,p −

γ+

H

(
1
p
− 1

σ

)
[un]

p
s,p

− λ

(
1
q
− 1

σ

)
Cq

w[un]
q
s,p −

(
1

p∗s (α)
− 1

σ

)
‖un‖p∗s (α)

Hα

≥ ν[un]
p
s,p − λ

(
1
q
− 1

σ

)
Cq

w[un]
q
s,p

−
(

1
p∗s (α)

− 1
σ

)
‖un‖p∗s (α)

Hα
, (2.4)

where

ν =

(
1
pθ
− 1

σ

)
a− γ+

H

(
1
p
− 1

σ

)
> 0 (2.5)

in view of (1.6) and the fact that σ > pθ ≥ p and γ ∈ (−∞, κσ H). Thus, by (2.2) there exists
β > 0 such that as n→ ∞

c + β[un]
q
s,p + o(1) ≥ ν[un]

p
s,p,

which implies at once that {un}n is bounded in Z(Ω), being q < p.
Therefore, using arguments similar to Lemma 4.1 of [15], there exists a subsequence, still

denoted by {un}n, and a function u ∈ Z(Ω) such that

un ⇀ u in Z(Ω), [un]s,p → d,

un ⇀ u in Lp(Ω, |x|−sp), ‖un − u‖H → ı,

un ⇀ u in Lp∗s (α)(Ω, |x|−α), ‖un − u‖Hα
→ `,

un → u in Lq(Ω, w), un → u a.e. in Ω

(2.6)

as n→ ∞.
Furthermore, as shown in the proof of Lemma 2.4 of [9], by (2.6) the sequence {Un}n,

defined in R2N \Diag R2N by

(x, y) 7→ Un(x, y) =
|un(x)− un(y)|p−2(un(x)− un(y))

|x− y|
N+sp

p′
,

is bounded in Lp′(R2N) as well as Un → U a.e. in R2N , where

U (x, y) =
|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|
N+sp

p′
.

Thus, up to a subsequence, we get Un → U in Lp′(R2N), and so as n→ ∞

〈un, ϕ〉s,p → 〈u, ϕ〉s,p (2.7)

for any ϕ ∈ Z(Ω), since |ϕ(x)− ϕ(y)| · |x− y|−
N+sp

p ∈ Lp(R2N). Similarly, (2.6) and Proposi-
tion A.8 of [4] imply that |un|p−2un ⇀ |u|p−2u in Lp′(Ω, |x|−sp) and |un|p

∗
s (α)−2un ⇀ |u|p∗s (α)−2u

in Lp∗s (α)
′
(Ω, |x|−α), from which as n→ ∞

〈un, ϕ〉H → 〈u, ϕ〉H, 〈un, ϕ〉Hα → 〈u, ϕ〉Hα , (2.8)
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for any ϕ ∈ Z(Ω).
Thanks to (2.6), by using Hölder inequality it results

lim
n→∞

∫
Ω

w(x)|un(x)|q−2un(x)(un(x)− u(x))dx = 0. (2.9)

Consequently, from (2.2), (2.6)–(2.9) we deduce that, as n→ ∞

o(1) = 〈J ′γ,λ(un), un − u〉 = M([un]
p
s,p)[un]

p
s,p −M([un]

p
s,p)〈un, u〉s,p

− γ
∫

Ω
|un(x)|p−2un(x)(un(x)− u(x))

dx
|x|sp

− λ
∫

Ω
w(x)|un(x)|q−2(un(x)− u(x))dx

−
∫

Ω
|un(x)|p∗s (α)−2un(x)(un(x)− u(x))

dx
|x|α

= M([un]
p
s,p)([un]

p
s,p − [u]ps,p)− γ(‖un‖p

H − ‖u‖
p
H)

− ‖un‖p∗s (α)
Hα

+ ‖u‖p∗s (α)
Hα

+ o(1). (2.10)

Furthermore, by using (2.6) and the celebrated Brézis and Lieb Lemma in [7], we have

‖un‖p
H = ‖un − u‖p

H + ‖u‖p
H + o(1),

‖un‖p∗s (α)
Hα

= ‖un − u‖p∗s (α)
Hα

+ ‖u‖p∗s (α)
Hα

+ o(1),
(2.11)

as n→ ∞. By applying again the Brézis and Lieb Lemma [7] to

(un − u)(x)− (un − u)(y)

|x− y|
N+sp

p

∈ Lp(R2N)

we can see that
[un]

p
s,p = [un − u]ps,p + [u]ps,p + o(1) as n→ ∞. (2.12)

Therefore, combining (2.6), the continuity of M and relations (2.10)–(2.12), we have proved the
crucial formula

M(dp) lim
n→∞

[un − u]ps,p = γ lim
n→∞
‖un − u‖p

H + lim
n→∞
‖un − u‖p∗s (α)

Hα
= γıp + `p∗s (α). (2.13)

Now, let us rewrite the formula (2.13) as

(1− c̃)M(dp) lim
n→∞

[un − u]ps,p + c̃M(dp) lim
n→∞

[un − u]ps,p = γıp + `p∗s (α),

with c̃ ∈ [0, 1) fixed at the beginning of the proof. By (M1) and (1.3), we have

(1− c̃)a Hα`
p + c̃a Hıp ≤ (1− c̃)M(dp) lim

n→∞
[un − u]ps,p + c̃M(dp) lim

n→∞
[un − u]ps,p

≤ γ+ıp + `p∗s (α).

Therefore, since γ+ = c̃ a H, we obtain

`p∗s (α) ≥ (1− c̃)a Hα`
p,

from which, assuming by contradiction that ` > 0, we get

`p∗s (α) ≥ [(1− c̃)a Hα]
p∗s (α)

p∗s (α)−p . (2.14)
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Exploiting (2.4) and (2.5), taking the limit as n → ∞, and by using (2.2), (2.6), (2.10),
assumption (w), Hölder inequality and Young inequality, we can infer

c ≥
(

1
σ
− 1

p∗s (α)

)(
`p∗s (α) + ‖u‖p∗s (α)

Hα

)
− λ

(
1
q
− 1

σ

)
‖u‖q

q,w

≥
(

1
σ
− 1

p∗s (α)

)(
`p∗s (α) + ‖u‖p∗s (α)

Hα

)
− λ

(
1
q
− 1

σ

)
‖w‖r‖u‖q

Hα

≥
(

1
σ
− 1

p∗s (α)

)(
`p∗s (α) + ‖u‖p∗s (α)

Hα

)
−
(

1
σ
− 1

p∗s (α)

)
‖u‖p∗s (α)

Hα

−
(

1
σ
− 1

p∗s (α)

)− q
p∗s (α)−q

[
λ

(
1
q
− 1

σ

)
‖w‖r

] p∗s (α)
p∗s (α)−q

.

Finally, by (2.14) we get

0 > c ≥
(

1
σ
− 1

p∗s (α)

)
[(1− c̃)a Hα]

p∗s (α)
p∗s (α)−p

−
(

1
σ
− 1

p∗s (α)

)− q
p∗s (α)−q

[
λ

(
1
q
− 1

σ

)
‖w‖r

] p∗s (α)
p∗s (α)−q

> 0,

where the last inequality follows from (2.3). This is impossible, so ` = 0.
Now, let us assume by contradiction that ı > 0. Then, from (M1), (1.3) and (2.13) we have

M(dp) lim
n→∞

[un − u]ps,p = γ lim
n→∞
‖un − u‖p

H

< a H lim
n→∞
‖un − u‖p

H ≤ M(dp) lim
n→∞

[un − u]ps,p,

which gives a contradiction. Therefore, ı = 0 and by using again (M1) and (2.13) it follows
that un → u in Z(Ω) as n→ ∞, as claimed.

3 The truncated functional

In this section we prove that problem (1.1) admits a sequence of solutions which goes to zero.
Firstly, we recall the definition of genus and some its fundamental properties; see [29] for
more details.

Let E be a Banach space and A a subset of E. We say that A is symmetric if u ∈ A implies
that −u ∈ A. For a closed symmetric set A which does not contain the origin, we define the
genus µ(A) of A as the smallest integer k such that there exists an odd continuous mapping
from A to Rk \ {0}. If there does not exist such a k, we put µ(A) = ∞. Moreover, we set
µ(∅) = 0.

Let us denote by Σk the family of closed symmetric subsets A of E such that 0 /∈ A and
µ(A) ≥ k. Then we have the following result.

Proposition 3.1. Let A and B be closed symmetric subsets of E which do not contain the origin. Then
we have

(i) If there exists an odd continuous mapping from A to B, then µ(A) ≤ µ(B).

(ii) If there is an odd homeomorphism from A onto B, then µ(A) = µ(B).

(iii) If µ(B) < ∞, then µ(A \ B) ≥ µ(A)− µ(B).



8 V. Ambrosio, A. Fiscella and T. Isernia

(iv) The n-dimensional sphere Sn has a genus of n + 1 by the Borsuk–Ulam Theorem.

(v) If A is compact, then µ(A) < ∞ and there exist δ > 0 and a closed and symmetric neighborhood
Nδ(A) = {x ∈ E : ‖x− A‖ ≤ δ} of A such that µ(Nδ(A)) = µ(A).

Now, we state the following variant of symmetric mountain pass lemma due to Kajikija
[20].

Lemma 3.2. Let E be an infinite-dimensional Banach space and let I ∈ C1(E, R) be a functional
satisfying the conditions below:

(h1) I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the local Palais–Smale condition;
that is, for some c∗ > 0, in the case when every sequence {un}n in E satisfying I(un)→ c < c∗

and I′(un)→ 0 in E∗ has a convergent subsequence;

(h2) For each n ∈N, there exists an An ∈ Σn such that supu∈An
I(u) < 0.

Then either (i) or (ii) below holds.

(i) There exists a sequence {un}n such that I′(un) = 0, I(un) < 0 and {un}n converges to zero.

(ii) There exist two sequences {un}n and {vn}n such that I ′(un) = 0, I(un) = 0, un 6= 0,
limn→∞ un = 0, I′(vn) = 0, I(vn) < 0, limn→∞ I(vn) = 0 and {vn}n converges to a non-zero
limit.

Remark 3.3. It is worth to point out that in [20] the functional I verifies the Palais–Smale
condition in global. Anyway, a careful analysis of the proof of Theorem 1 in [20], allows us to
deduce that the result in [20] holds again if I satisfies the local Palais–Smale condition with
the critical levels below zero.

Let us note that the functional Jγ,λ is not bounded from below in Z(Ω). Indeed, assump-
tion (M1) implies that M(t) > 0 for any t ∈ R+

0 and consequently by (M2) we have M(t)
M (t) ≤

θ
t .

Thus, integrating on [1, t], with t > 1, we get

M (t) ≤M (1)tθ for any t ≥ 1.

From this, by using (1.2) and (1.3), for any u ∈ Z(Ω) we have

Jγ,λ(tu) ≤ tpθ M (1)
p

[u]pθ
s,p − tp γ

p
‖u‖p

H − tq λ

q
‖u‖q

q,w

− tp∗s (α) 1
p∗s (α)

‖u‖p∗s (α)
Hα

→ −∞ as t→ ∞.

Now, fix γ ∈ (−∞, aH) and λ > 0 and let us consider the function

Qγ,λ(t) =
1
p

(
a− γ+

H

)
tp − λCw

q
tq − 1

p∗s (α)Hα
tp∗s (α).

Choose R1 > 0 such that
1
p

(
a− γ+

H

)
Rp

1 >
1

p∗s (α)Hα
Rp∗s (α)

1 (3.1)

and define

λ∗ =
Cw

2qRq
1

[(
a− γ+

H

)
Rp

1 −
1

p∗s (α)Hα
Rp∗s (α)

1

]
(3.2)
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such that Qγ,λ∗(R1) > 0. Let us set

R0 = max{t ∈ (0, R1) : Qγ,λ∗(t) ≤ 0}. (3.3)

Taking in mind the fact that Qγ,λ(t) ≤ 0 for t near zero, since q < p < p∗s (α), and Qγ,λ∗(R1) >

0, we can infer that Qγ,λ∗(R0) = 0.
Choose φ ∈ C∞

0 ([0, ∞)) such that 0 ≤ φ(t) ≤ 1, φ(t) = 1 for t ∈ [0, R0] and φ(t) = 0 for
t ∈ [R1, ∞). Thus, we consider the truncated functional

J̃γ,λ(u) =
1
p
M ([u]ps,p)−

γ

p
‖u‖p

H −
λ

q
‖u‖q

w,q −
φ([u]s,p)

p∗s (α)
‖u‖p∗s (α)

Hα
.

It immediately follows that J̃γ,λ(u) → ∞ as [u]s,p → ∞, by (M1), since γ ∈ (−∞, aH) and
q < p. Hence, J̃γ,λ is coercive and bounded from below. Now, we prove a local Palais–Smale
result for the truncated functional J̃γ,λ.

Lemma 3.4. For any γ ∈ (−∞, aH), there exists λ̄ > 0 such that, for any λ ∈ (0, λ̄)

(i) if J̃γ,λ(u) ≤ 0 then [u]s,p ≤ R0, and for any v in a small neighborhood of u we have Jγ,λ(v) =
J̃γ,λ(v);

(ii) J̃γ,λ satisfies a local Palais–Smale condition for c < 0.

Proof. Let us choose λ̄ sufficiently small such that λ̄ ≤ min{λ0, λ∗}, where λ0 is defined in
Lemma 2.1 and λ∗ in (3.2). Fix λ < λ̄.

(i) Let us assume that J̃γ,λ(u) ≤ 0.
If [u]s,p ≥ R1, then by using (M1), (1.2), (1.3), the definition of φ(t) and the fact that λ < λ∗,

we obtain

J̃γ,λ(u) ≥
1
p

(
a− γ+

H

)
[u]ps,p −

λ∗Cw

q
tq[u]qs,p > 0,

where the last inequality follows from q < p and Qγ,λ∗(R1) > 0. Thus we get a contradiction
because of 0 ≥ J̃γ,λ(u) > 0.

When [u]s,p < R1, by using (M1), (1.2), (1.3), λ < λ∗, the definition of φ(t), we can infer

0 ≥ J̃γ,λ(u) ≥ Qγ,λ([u]s,p) ≥ Qγ,λ∗([u]s,p).

From the definition of R0 we deduce that [u]s,p ≤ R0. Moreover, for any u ∈ B R0
2
(0) we have

that Jγ,λ(u) = J̃γ,λ(u).

(ii) Being J̃γ,λ a coercive functional, every Palais–Smale sequence for J̃γ,λ is bounded. Thus,
since λ < λ0, by Lemma 2.1 we deduce a local Palais–Smale condition for Jγ,λ ≡ J̃γ,λ at any
level c < 0.

Taking into account that Z(Ω) is reflexive and separable (see Appendix A in [28]), we can
find a sequence {ϕn}n ⊂ Z(Ω) such that Z(Ω) = span{ϕn : n ∈N}. For any n ∈ N we can
set Xn = span{ϕn} and Yn = ⊕n

i=1Xi.

Lemma 3.5. For any γ ∈ (−∞, aH), λ > 0 and k ∈N, there exists ε = ε(γ, λ, k) > 0 such that

µ(J̃ −ε
γ,λ) ≥ k,

where J̃ −ε
γ,λ = {u ∈ Z(Ω) : J̃γ,λ(u) ≤ −ε}.
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Proof. Fix γ ∈ (−∞, aH), λ > 0 and k ∈ N. Since Yk is finite dimensional, there exist two
positive constants c1(k) and c2(k) such that for any u ∈ Yk

c1(k)[u]
p
s,p ≤ ‖u‖

p
H and c2(k)[u]

q
s,p ≤ ‖u‖

q
q,w. (3.4)

By using (3.4), for any u ∈ Yk such that [u]s,p ≤ R0, we can infer

J̃γ,λ(u) = Jγ,λ(u) ≤
M∗

p
[u]ps,p +

γ−

p
c1(k)[u]

p
s,p −

λ

q
c2(k)[u]

q
s,p, (3.5)

with M∗ = maxτ∈[0,R0] M(τ) < ∞, by continuity of M. Now, let $ be a positive constant such
that

$ < min

{
R0,
[

λc2(k)p
q(M∗ + γ−c1(k))

] 1
p−q
}

. (3.6)

Then, for any u ∈ Yk such that [u]s,p = $, by (3.5) we get

J̃γ,λ(u) ≤ $q
[

M∗ + γ−c1(k)
p

$p−q − λc2(k)
q

]
< 0, (3.7)

where the last inequality follows from (3.6). Hence we can find a constant ε = ε(γ, λ, k) > 0
such that J̃γ,λ(u) ≤ −ε for any u ∈ Yk such that [u]s,p = $. As a consequence

{u ∈ Yk : [u]s,p = $} ⊂ {u ∈ Z(Ω) : J̃γ,λ(u) ≤ −ε} \ {0}.

By using (ii) and (iv) of Proposition 3.1 we have the thesis.

For any c ∈ R and any k ∈N, let us define the set

Kc = {u ∈ Z(Ω) : J̃ ′γ,λ(u) = 0 and J̃γ,λ(u) = c}

and the number
ck = inf

A∈Σk
sup
u∈A
J̃γ,λ(u). (3.8)

Lemma 3.6. For any γ ∈ (−∞, aH), λ > 0 and k ∈N, we have that ck < 0.

Proof. Fix γ ∈ (−∞, aH), λ > 0 and k ∈ N. Then, by using Lemma 3.5 we can find a positive
constant ε such that µ(J̃ −ε

γ,λ) ≥ k. Moreover, J̃ −ε
γ,λ ∈ Σk since J̃γ,λ is a continuous and even

functional. Taking into account that J̃γ,λ(0) = 0, we have 0 /∈ J̃ −ε
γ,λ and supu∈J̃ −ε

γ,λ
J̃γ,λ(u) ≤ −ε.

Therefore, recalling that J̃γ,λ is bounded from below, we get

−∞ < ck = inf
A∈Σk

sup
u∈A
J̃γ,λ(u) ≤ sup

u∈J̃ −ε
γ,λ

J̃γ,λ(u) ≤ −ε < 0.

Lemma 3.7. Let γ ∈ (−∞, aH) and λ ∈ (0, λ̄), where λ̄ is given by Lemma 3.4. Then all ck are
critical values for J̃γ,λ and ck → 0 as k→ ∞.

Proof. Fix γ ∈ (−∞, aH) and λ > 0. It is easy to see that ck ≤ ck+1 for all k ∈N. By Lemma 3.6
it follows that ck < 0, so we can assume that ck → c̄ ≤ 0. Since J̃γ,λ satisfies the Palais–Smale
condition at level ck by Lemma 3.4, we can argue as in [29] to see that all ck are critical value
of J̃γ,λ.
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Now, we prove that c̄ = 0. We argue by contradiction, and we suppose that c̄ < 0. In view
of Lemma 3.4, we know that Kc̄ is compact, so, by applying part (v) of Proposition 3.1 we can
deduce that µ(Kc̄) = k0 < ∞ and there exists δ > 0 such that µ(Kc̄) = µ(Nδ(Kc̄)) = k0. By
Theorem 3.4 of [5], there exists ε ∈ (0, c̄) and an odd homeomorphism η : Z(Ω)→ Z(Ω) such
that

η(J̃ c̄+ε
γ,λ \ Nδ(Kc̄)) ⊂ J̃ c̄−ε

γ,λ .

Now, taking into account that ck is increasing and ck → c̄, we can find k ∈ N such that
ck > c̄− ε and ck+k0 ≤ c̄. Take A ∈ Σk+k0 such that supu∈A J̃γ,λ(u) < c̄ + ε. By using part (iii)
of Proposition 3.1, we obtain

µ( A \ Nδ(Kc̄) ) ≥ µ(A)− µ(Nδ(Kc̄)) and µ(η( A \ Nδ(Kc̄) )) ≥ k, (3.9)

from which η( A \ Nδ(Kc̄) ) ∈ Σk. Thus

sup
u∈η(A\Nδ(Kc̄))

J̃γ,λ(u) ≥ ck > c̄− ε. (3.10)

However, in view of (3.7) and (3.9) we can see that

η( A \ Nδ(Kc̄) ) ⊂ η(J̃ c̄+ε
γ,λ \ Nδ(Kc̄)) ⊂ J̃ c̄

γ,λ,

which gives a contradiction in virtue of (3.10). Therefore, c̄ = 0 and ck → 0.

Proof of Theorem 1.1. Let σ ∈ (pθ, p∗s (α)), γ ∈ (−∞, κσ H) and λ ∈ (0, λ̄). Since κσ ≤ a, putting
together Lemma 3.4, Lemma 3.5, Lemma 3.6 and Lemma 3.7, we can see that J̃γ,λ verifies all
the assumptions of Lemma 3.2. Therefore, the thesis follows by point (i) of Lemma 3.4.
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