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Abstract

In this paper, we investigate boundary data smoothness for solutions of the nonlocal boundary

value problem, y™ = f(z,y,¢/,...,y" "),y (2;) = yi; and y (@x) = > ripy(nip) = yir- Bs-
p=1

sentially, we show under certain conditions that partial derivatives of the solution to the problem

above exist with respect to boundary conditions and solve the associated variational equation.

Lastly, we provide a corollary and nontrivial example.
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1 Introduction

Interest in nonlocal or multipoint boundary values problems for ordinary differential equations
has been on the rise in recent years as can be seen in [1], [8], [19], [20], [26], and [27]. For dynamic
equations on time scales, we refer the reader to [2]-[6], [9], [11], [13]-[14], [16], [18], [21]-[25]. The
result of this paper is an extension and perhaps culmination of publications [7], [10], [12], and
[15]. The astute reader may wish to investigate further the recent publication [17] which presents
a similar result to the theorems presented here for difference equations.

2 Preliminaries

Our concern is characterizing partial derivatives with respect to the boundary data of solutions
to the nth order nonlocal boundary value problem

n n—1
v = f@y s y"TY) a<a <, (1)
satisfying
v (@) =y, 0<i<m;—1,1<j<k—1,
m
i . 2
Y (@) = 3 ripy(nip) = yir, 0 < i <= 1, @)
p=1
where 2 < k < n, m € N, m1,...,my are positive integers such that Zle mi =mn, a <x1 <
T < < Tho1 <701 <+ < Dmpe—1,m < T < b, and Yo1, .-, Ymy—1,ks T0Ls - - - s Tmp—1,m € R.

We establish a few conditions that are imposed upon (1):
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(1) f(z,y1,-.-,yn) : (a,b) x R® — R is continuous,
(ii) g—f(x, Y1iy---,Yn) : (a,b) X R™ — R are continuous, i = 1,2,...,n, and
Yi
(iii) solutions of initial value problems for (1) extend to (a,b).

Remark 2.1 Note that (iii) is not a necessary condition but lets us avoid continually making
statements about mazimal intervals of existence inside (a,b).

The theorem presented in this work relies heavily upon the definition for the variational equation
which we now give.

Definition 2.1 Given a solution y(z) of (1), we define the variational equation along y(z) by
29 =3 O () (@), O @), (3)
= Ous

We seck an analogue of the following theorem that Hartmann, [9], attributes to Peano for (1),
(2)-

Theorem 2.1 [A Peano Theorem] Assume that, with respect to (1), conditions (i)-(iii) are sat-
isfied. Let xo € (a,b) and y(x) := y(z,zo,c1,c2,...,cn) denote the solution of (1) satisfying the
initial conditions y(ifl)(xo) =c¢;, 1 <1< n. Then,

(a) for each 1 < j < n, g—cy(ac) exists on (a,b), and a;(z) = aa—cy(x) is the solution of the
j J

j
variational equation (3) along y(z) satisfying the initial conditions

al ™V (xo) =85, 1< i <.

(v) 88—;/0(17) exists on (a,b), and B(x) := 88—;/0(17) is the solution of the variational equation (3)

along y(x) satisfying the initial conditions

ﬂ(ifl)(xo) = fy(i)(xo), 1<i<n.

@) oL@ = =3 7o) 2L (@)

i=1

The next condition guarantees uniqueness of solutions of (1), (2) and is a nonlocal analogue of
(ma, ..., mg)-disconjugacy:

(iv) Let 2 <k <mn, m € N, and mq,..., my be positive integers such that Zle m; = n. Given
o<z <22 < <Tp—1 <Not < < Nmy—1,m < T < band ro1,...,"m,—1,m €R, if, for
OSiSmJ_L 1§]§k_17

v () = 29 (a;),
and, for 0 < i <my — 1,

v (@) = 3 ripy(ng) = 20 () = X ripz(),
p=1 p=1
where y(z) and z(z) are solutions of (1), then, on (a,b),

y(z) = z(x).

The last condition provides uniqueness of solutions of (3) along all solutions of (1) and again is a
nonlocal analogue of (my1,. .., my)-disconjugacy:
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(v) Let 2 <k <n, meIN,, and mq,...,my be positive integers such that Zle m; = n. Given
o<z <T2< < Tpo1 < Mot < < N —1,m < T < band ro1,...,7m,—1,m € R, and
a solution y(z) of (1), if, for 0 <i<m; —1, 1 <j<k—-1,
ul(z;) =0,
and, for 0 <i <my — 1,
m
ul (@) = ripu(nip) =0,
p=1
where u(z) is a solution of (3) along y(z), then, on (a,b),
u(z) = 0.
We also make much use of a well known continuous dependence result which is an application of

the Brouwer Invariance of Domain Theorem.
Theorem 2.2 Assume (i)-(iv) are satisfied with respect to (1). Let 2 < k < mn, m € N, and
mi, ..., my be positive integers such that °F_, m; = n. Let u(z) be a solution of (1) on (a,b), and
leta<c<zr <w2 < <Tp—1 <Not <+ < Nmyp—1,m < T < d < bandror,...,"m—1,m ER
be given. Then, there exists a 6 > 0 such that, for
lzj —t;1 <9, 1<j <k,
Imip — Tip| < 6 and |rip — pip| <6, 0<i<myp —1,1<p<m,

[ (z;) —yij| <6, 0<i<m; —1,1<j<k—1,
and

D () =Y ripunip) — yiel <6, 0<i <my — 1,

p=1
there exists a unique solution us(z) of (1) such that
u$(t) = yij, 0<i<my—1,1<j<k—1,

m

W (t) = 3 pipus(rip) = g, 0 < i < = 1,

p=1

and, for0<i<n-—1, {ugi) (z)} converges uniformly to v (x) as & — 0 on [c,d].

3 Analogue of Peano’s Theorem

In this section, we present our analogue to Theorem 2.1. The result is stated in four parts, but
each proof is essentially the same. Thus, in the interest of time and space, we only prove part (b).

Theorem 3.1 Assume conditions (i)-(v) are satisfied. Let n > 2, m € N, and 2 < k <

n be given and mai,...,my be positive integers such that Zle m; = n. Let u(z) be a solu-

tion of (1) on (a,b). Let a < 1 < -+ < Tp—1 < No1 < -+ < Nmy—1,m < T < b and

UOL, - -+, Umy—1,ks TOL; - - -, Tmy—1,m € R be given so that
’UJ(Q?):u(ﬂi’,wlw..,CE’]G,UOhHA,’IL»,nk,Lk,?’]()l,...,’I’]mk_l’m/r‘oh444,’l"mk__Lm)7

where

u (@) =uy, 0<i<my—1, 1<j<k—1,
and
ul (@) =Y ripu(nip) = wik, 0<i < my — 1.

p=1
Then,
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(a) foreach1<I<k—-1and0<r<m —1, ﬂ(ac) exists on (a,b), and yni(x) := ﬁ(az)

O Ouy
is the solution of the variational equation (3) aZong u(x) satisfying the boundary condi;ions
y (@) = 0, 0<i<my—1,1<j<k—1,j#L
v (@) = o, 0<i<m;—1,i#mr,
yi@) = 1,
. m
yr(‘;)(xk) - ZTipyrl(nip) = 07 0 S ) S mi — 1,
p=1
ou .
and for 0 < r < my — 1, yrp(x) = 3 (z) exists on (a,b) and solves (3) along u(x)
Urk

satisfying the boundary conditions

v(z) = 0, 0<i<m;—1,1<j<k-1,

v @) = D ripye(nip) =0, 0<i<mp—1,i#mr
p=1
m

Zlﬁ?(ﬁ?k) - Z’"prrk(nrp) =L
p=1

(b) for each 1 <1< k-1, g—u(x) exists on (a,b), and z(z) = g—u(x) is the solution of the
T Z
variational equation (3) along u(x) satisfying the boundary conditions

50(z) = 0, 0<i<m;—1,1<j<k-1,j#1
zl(i)(azl) = —u(z), 0<i<m—1,
2D(xy) - Zripzl(mp) =0, 0<i<my—1,
p=1
and zi(x) = aa—u(x) exists on (a,b) and solves (3) along u(x) satisfying the boundary
Lk
conditions
2z) = 0, 0<i<m;—11<j<k-1,
z,(f) (xr) — Zripzk(mp) =~ (z), 0<i<my—1.
p=1
ou ) ou .
(¢) for0<r<mp—1and1l<s<m, W(x) exists on (a,b), and wrs(z) := an () s the
solution of (3) along u(x) satisfying the boundary conditions
w(z;) = 0, 0<i<m;—1,1<j<k-—1,
wﬁls)(mk) - Zripwrs(nip) = 07 0<i<my— 17 1 75 T
p=1
W (@) = 3 Feptoraied) = 1ot ().
p=1
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(d) for0<r<mp—1andl<s<m, ;Tu(x) exists on (a,b), and vrs(z) = 8aru (z) is the
solution of (3) along u(x) satisfying thergoundary conditions ”

v(z;) = 0, 0<i<m;—1,1<j<k—1,
m

vi(zk) = D Tipvrs(nip) =0, 0<i<mp—1,i#m,
p=1
m

’Ur(‘z) (xk) - Z TrpUrs (771"1)) = u(nrs)A
p=1

Proof: We will only prove part (b) as the proofs associated with (a), (c), and (d) follow similarly.

Let 1 <1<k —1, and consider 86—9:. Since the argument for % is essentially the same, we omit
its proof.

In the interests of conserving space and lessening the tedious notation, we will denote u(z, z1, ..., x;
ey ThyUOLy « oy Umgo—1,ks 0L, « - - s gy —1,m, TOLs - - - s Ty —1,m) Dy u(x, x1) as x; is the parameter of

interest. Let § > 0 be as in Theorem 2.2, 0 < |h| < & be given, and define

zin(x) = %[u(m, xi + h) — u(z, z)].

Note that for every h#0and 1 <i<m; — 1,
i 1 ¢ i
zl(h) (z1) = E[U( )(xl, x1+h) — ul )(xl, x1)
Lo @) ©) ©) ©)
= E[U (i, o+ h) —w (w4 hyx+ h) +w (2 + bz + h) —u'” (2, 20, )]
1. @

= —E[u( +1)(Czl,h7$l+h)'h+uu — ]
= —u" ey, 1+ h),

where cg,,n lies between z; and x; + h.
Also, for every h #0, 0<i<m; —1, 1 <j<k—1,and j #1,

Zz(;? (z;) = [ (25,21 + h) — u (25, 21)]

S = S =

[wij — wij]

Il
=

and for every h # 0 and 0 <i < my — 1,

2)@k) = > ripzin(mip)
p=1
= %[u(l) (x’ﬂ T+ h) - U(Z) (xkv Zi, )] - Z; %[U(Thw ) + h) - U(77ip7 ,CEL)]
= %[Uzk - uzk:]
= 0.

Now that we have established the boundary conditions, for m; <i <n —1, let

Bi = u' (1, 1),
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and _
€ = El(h) = u(l)(ml,axl + h) — ﬂz
By Theorem 2.2, for m; <i<n—1, ¢ = ¢;(h) — 0 as h — 0. Using the notation of Theorem
2.1 for solutions of initial value problems for (1), viewing u(z) as the solution of an initial value

problem, and denoting a solution u(x) = y(z, i, uot, - - -, Um, 1,0, Bmys - - -, Bn—1), We have
1
ZLh(,CE) = E[y(x7xl+h7u0l7"'7"'7uml—1,l7ﬂml+€ml7

Bmy+1 + €myty ooy Bae1 + €n—1)

_y(x7ml7u0l7 cee >uml*1,l7ﬁmlvﬁml+1 cee 7ﬁn—1)]4

Then, by utilizing a telescoping sum, we have

zin(z) = %{[y(x,:m + h,uot, -y Umy 1,0, Bmy + €my,
Brmy+1 F €my+1, - Bn-1 + €n—1)

—y(x, 1, uot, - -+ Umy—1,1, Bmy + €mys Bry+1 + €Emyt1s -+ Bne1 + €n—1)]
+ly(x, 2z, wot, - - -y Umy—1,0, Bmy + €my, Bmy+1 + €my+1s -+ - Bn—1 + €n—1)
—y(x, 1, U0ty - -+ s Umy—1,0, Bmys Brmy+1 + €my+1, - -5 Bne1 + €n—1)]
+ly(x, 2z, wor, - - s Umy—1,0, Bmy s Bmg+1 + €my+1, -, Pn—1 + €n—1)
—y(x, T, w0ty - -+ Umy—1,0, Bmys Bmy+1s -« Bn—1 + €n—1)]
Jrf ce

+ly(x, zi, wor, - -+ Umy—1,0, Bmys Bmy41s -« Bne1 + €n—1)
7y(x7xl7u017 .. ~7uml—1,l7ﬂm“/8ml+17 cee 7[371*1)]}'

By Theorem 2.1 and the Mean Value Theorem, we obtain
zn(x) = B, y(x, 2+ by oty - - Uiy =10, Bmy + €mys
Brmy+1+ €my41s- -+, Bn1 + €n—1))
+6%aml (z,y(x, 1, w0ty - -, Umy—1,1, Bmy + Emys
Bmy+1 + €myt1, -5 Pt + €n—1))
m+1(2, y(x, T, wor, - -« s Umy—1,1, By s

/Bml+1 + E’ml+17 e 7/8774*1 + Enfl))

Ern,lﬁ»l

h

+

€n—1
T

om—1(x, y(z, z1, vot, - - - s Umy—1,0, By s
Bmy+1, -+ Pn—1 + En—1),

where B(x,y(:)) is the solution of the variational equation (1) along y(-) satisfying
B y() = =y @), 0<i <n -1,

and where, for 0 < j <n—1, a;(z,y(-)) is the solution of the variational equation (1) along y(-)
satisfying
a;i)(xl) =5 57;j, 0 S 7 S n— 1.
Furthermore, x; + h is between x; and z; + h, and for m; <i<n—1, B + € is between 3; and
Bi + €.
Thus, to show }llli% zin(x) exists, it suffices to show, for m; <i<n—1, }{1{2}6—}; exists.
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Now, from the construction of z;;(x), we have
2 (z5) =0, 0<i<m;—1,1<j<k-1,j#I,

and
zl(i)(mk) - Zripzlh(mp) = O7 0 S 7 S me — 1.
p=1

Hence, we have a system of n — m; linear equations with n — m; unknowns:

- ﬂ(l)(%‘,y(%xl + B,Uol, e 7uml—l,l7/8ml + Eml7/8ml+1 + €Emy+1y--- 7ﬁn71 + Enfl))
€ ; _
= %a% (@5, y(@, T, oty -+ s Umy =1, By + Emyy By +1 + €my+15 -+ 5 Bn1 + €n—1))

+ o
€En—1 (i) _
+ h an_l(xjyy(x7xl7u0l7--~7uml—1,l7ﬂmlyﬂml+17--~7/8n71 +€n71))7

and
- ﬁ(l)(xk7y(x7xl + }_lyuolw . '7uml_17l7ﬂml +€ml7ﬂml+1 + €Emy+1,. .- 7ﬁn71 +€n71))

+Z7"ipﬁ(77ip7y(x7$l + B,U()h o 7um171,l7ﬁml + €my,

p=1
ﬁml-l»l +5ml+17~~-7ﬂn—1 +5n—1))
€ ; _
= % [a% (T, Y(2, 1, U0ty -+« + s Wiy — 1,0 Brmy + Emys Brg+1 + €my+1y - -+ Bl + €n—1))

m
- Z TipQm; (Mip, Y(@, T1, Yol - -, Umy—1,1, Bmy + Emys
p=1
,Bml+1 + Emy+1y- .. 7/8’"«*1 + Enfl)):l
+ -

€En—1 1 _
+ ’ﬂh [as)—l(xkvy(x7xlvu0h~--7uml—1,lyﬁm“ﬁml+1,...,ﬁn71 +€n71))
m

— Zﬁpan—l(mmy(%xuuoh e Umy—1,05 By Bmy 1y -+ Bt + En—l))]7
p=1

0<i<my—L.

At this point in the proof, we will occasionally suppress the arguments of a and 3 as well as the
subscripts of r and 7, and limits of the summation. In the system of equations above, we notice
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that y(-) is not always the same. Therefore, we must consider the matrix

We claim det(M

amy (21, u(z))
Ay (1, u(2))

amy (111, u(z))

tomy (1 ()~

Z T0m, (777 u(x))

alr ™ (@, u(z))—

> raum (1, u(x))

my 1 (21, u())
1 (21, ()

Qmy+1 (2141, u(T)

11 (5, ()

E T0m;41 (777 (

(my—
amH—l

)-

“(@ u(e))-
S et 11, ()

) # 0. Suppose to the contrary that det(M) = 0. Then there exist p; € R, m; <

am—1(z1, u())
an_1(z1,u(x))

m 1 m1—1 ) m1—1 )
agm (ar,u() almy Y (@ u(z) o ol T (@, u(@))
am (@i, u(@) ol Y (@, u(z) (e (3 ()

)

n—1

an—1(w1y1, u(x))

Qn— 1(%7 (z))—

Z TOn—1 (777

almE=1) (xk, u(z))—
> ram—1(n,u(x))

(z))

i <n — 1, not all zero such that
Ay (1, u(z)) Oé/n—1(x1,u(x)) 0
A, (xhu(x)) an—l(xhu(x)) 0
o [ @) | e @) | _ |0
" o, (@141, u(z)) " an—1(Ti41, u(z)) 0
o™ (@, u(z)) - o5 e, ()~ .

> ram, (n,u(z))

> ran—1(n, u(z))

Set
w(z,w(x)) := pm,am, (z,u(z)) + -+ + pn_r1an_1(z, u(x)).
Then, w(z,u(x)) is a nontrivial solution of (3), but

w?(zj,u(x) =0,0<i<m;—1, 1<j<k—1,

and

@ (z)) =0, 0<i<my—1,

w (xk, u(z

Z TipW (Nip, u
which when coupled with hypothesw (v) implies w(z,u(z)) = 0. Thus, pm; = pm;y, = -
pn—1 = 0 which is a contradiction to the choice of the p;s. Hence det(M) # 0. Thus, as a result
of continuous dependence, for h # 0 and sufficiently small, det(M (h)) # 0 implying M (h) has an
inverse where M (h) is the appropriately defined matrix from the system of equations. Therefore,
for each m; < ¢ < n — 1, we can solve ¢;(h)/h by using Cramer’s rule:

ei(h) 1 o
h |M(h)]
Qmy Q-2 -3 (673 Qn—1
ag::;’kfl)i (mk 1) *ﬂ(mk71)+ aEmk71)7 agff’ifl)*

> rom, Z rocz 2 Srs Sra; S ran_y
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Noteas h — 0, det(M(h)) — det(M), and so for m; <i < n—1, ¢;(h)/h — det(M;)/det M := B;
as h — 0, where M; is the n — m; X n — m; matrix found by replacing the appropriate column of
the matrix defining M by

col [ — B(z1,u(®)),..., B (@, u(x)),. ..,
_/B(xl*h u(x))7 EERE) _ﬁ(mlil_l) (xl*h u(x))7

7ﬂ(xl+17 u(x)), (R 7ﬂ(mz+171) (ZCL+17 u(x)), ERRR

—Bar,u(@)) = Y ropBnop, u(x)), .-,

=B @ u(@) = D Ty 1,080 -1, u(@))].

p=1
Now let z/(z) = ,lllmo zin(z), and note by construction of z, (),

ou

zi(x)

Furthermore,

a(z) = Jim zu,(x) = Bl u(@)) + 3 Buou(z,u())

i=my

which is a solution of the variational equation (3) along u(z). In addition,

7 () = 1,}‘1}21(2)(-’%) = —u(2)0, 0<i<m; -1, 1< <k—1,

and
2 (@n) = 3 rwa(nig) = Jim 2 (@) = 3 ripzn(nip)| =0, 0 < < my 1.
p=1 p=1
This completes the argument for 38_;1' O

4 Corollary and Nontrivial Example

We now present a corollary that follows from Theorem 3.1. The proof is immediate from the
n-dimensionality of the solution space for the variational equation (3) along solutions of (1), and
also creates a nice analogue to part (c) of Theorem 2.1 of Peano.

Corollary 4.1 Assume the conditions of Theorem 3.1. Then,
(a) for each 1 <1<k,

m;—1

Ou v_ (r41) () 9%
(== X e @)
() foro0<r<mr—1land1l<s<m,
ou u'(nrs) Ou

(x) =

8771"3 e u(nTS) Orys

Finally, we give a nontrivial example.
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Example 4.1 Consider the BVP
"
y' —y=0, (4)
y(@1) =y, y(@2) —ry(n) = vz, (5)
where x1,T2,1M,Y1,Y2,7 € R with x1 < n < 2.

sinh(z2 — 1)

If we impose the condition r # , then (4), (5) satisfy condtions (i)-(v), and the

sinh(n — 21
results stated in 3.1 hold. Verification is left to the reader.

References

[1] C. Bai and J. Fang, Existence of multiple positive solutions for nonlinear m-point boundary
value problems, J. Math. Anal. Appl. 281 (2003), 76-85.

[2] A. Datta, Differences with respect to boundary points for right focal boundary conditions,
J. Differ. Equations Appl. 4 (1998), 571-578.

[3] J. Ehme, Differentiation of solutions of boundary value problems with respect to nonlinear
boundary conditions, J. Differential Equations 101 (1993), 139-147.

[4] J. Ehme, P. W. Eloe and J. Henderson, Differentiability with respect to boundary conditions
and deviating argument for functional-differential systems, Differential Equations Dynam.
Systems 1 (1993), 59-71.

[5] J. Ehme and J. Henderson, Functional boundary value problems and smoothness of solutions,
Nonlinear Anal. 26 (1996), 139-148.

[6] J. Ehme and B. Lawrence, Linearized problems and continuous dependence for finite differ-
ence equations, Panamer. Math. J. 10 (2000), 13-14

[7] J. Ehrke, J. Henderson, C. Kunkel and Q. Sheng, Boundary data smoothness for solutions
of nonlocal boundary value problems for second order differential equations, J. Math. Anal.
Appl., 333 (2007), 191-193.

[8] C. P. Gupta and S. I. Trofimchuk, Solvability of a multi-point boundary value problem and
related a priori estimates, Canad. Appl. Math. Quart. 6 (1998), 45-60.

[9] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.

[10] J. Henderson, Right focal point boundary value problems forordinary differential equation
and variational equations, J. Math. Anal. Appl. 98 (1984), 363-377.

[11] J. Henderson, Disconjugacy, disfocality and differentiation with respect to boundary condi-
tions, J. Math. Anal. Appl. 121 (1987), 1-9.

[12] J. Henderson, B. Hopkins, E. Kim and J. Lyons, Boundary data smoothness for solutions of
nonlocal boundary value problems for nth order differential equations, Involve 1 (2008), no.
2, 167-181.

[13] J. Henderson, B. Karna and C. C. Tisdell, Uniqueness implies existence for multipoint bound-
ary value problems for second order equations, Proc. Amer. Math. Soc. 133 (2005), 1365-
1369.

[14] J. Henderson and B. Lawrence, Smooth dependence on boundary matrices, J. Differ. Equa-
tions Appl. 2 (1996), 161-166.

[15] J. Henderson and J. Lyons, Characterization of partial derivatives with respect to bound-
ary conditions for solutions of nonlocal boundary value problems for nth order differential
equations, International Journal of Pure and Applied Mathematics 56 (2009), no. 235-257.

[16] J.Henderson and C. C. Tisdell, Boundary data smoothness for solutions of three point bound-
ary value problems for second order ordinary differential equations, Z. Anal. Anwendungen
23 (2004), 631-640.

EJQTDE, 2011 No. 51, p. 10



[17] B. Hopkins, E. Kim, J. Lyons and K. Speer, Boundary Data Smoothness for Solutions of
Nonlocal Boundary Value Problems for Second Order Difference Equations, Comm. on Appl.
Nonlinear Anal. 2 (2009), no. 2, 1-12.

[18] B. Lawrence, A variety of differentiability results for a multi-point boundary value problem,
J. Comput. Appl. Math. 141 (2002), 237-248.

[19] R. Ma, Existence theorems for a second-order three-point boundary value problems, J. Math.
Anal. Appl. 212 (1997), 430-442.

[20] R. Ma, Existence and uniqueness of solutions to first-order three-point boundary value prob-
lems, Appl. Math. Lett. 15 (2002), 211-216.

[21] A. C. Peterson, Comparison theorems and existence theorems for ordinary differential equa-
tions, J. Math. Anal. Appl. 55 (1976), 773-784.

[22] A. C. Peterson, Existence-uniqueness for ordinary differential equations, J. Math. Anal. Appl.
64 (1978), 166-172.

[23] A. C. Peterson, Existence-uniqueness for focal point boundary value problems, SIAM J.
Math. Anal. 12 (1981), 173-185.

[24] A. C. Peterson, Existence and uniqueness theorems for nonlinear difference equations, J.
Math. Anal. Appl. 125 (1987), 185-191.

[25] J. Spencer, Relations between boundary value functions for a nonlinear differential equation
and its variational equation, Canad. Math. Bull. 18 (1975), 269-276.

[26] D. Sukup, On the existence of solutions to multipoint boundary value problems, Rocky Min.
J. Math. 6 (1976), 357-375.

[27] B. Yang, Boundary Value Problems for Ordinary Differential Equations, Ph.D. dissertation,
Mississippi State University, Mississippi State, MS, 2002.

(Received March 13, 2011)

EJQTDE, 2011 No. 51, p. 11



