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Abstract. We present a representation of well-defined solutions to the following non-
linear second-order difference equation

xn+1 = a +
b

xn
+

c
xnxn−1

, n ∈N0,

where parameters a, b, c, and initial values x−1 and x0 are complex numbers such that
c 6= 0, in terms of the parameters, initial values, and a special solution to a third-
order homogeneous linear difference equation with constant coefficients associated to
the nonlinear difference equation, generalizing a recent result in the literature, com-
pleting the proof therein by using an essentially constructive method, and giving some
theoretical explanations related to the method for solving the difference equation. We
also give a more concrete representation of the solutions to the nonlinear difference
equation by calculating the special solution to the third-order homogeneous linear dif-
ference equation in terms of the zeros of the characteristic polynomial associated to the
linear difference equation.
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1 Introduction

In this paper, by N, N0, Z and C we denote the set of positive, nonnegative, whole and
complex numbers, respectively.

As it is well-known nonhomogeneous linear difference equation with constant coefficients
of kth order, that is, the following difference equation

ckxn+k + ck−1xn+k−1 + · · ·+ c0xn = fn, n ≥ l, (1.1)

where k ∈N, l ∈ Z, cj, j = 0, k are given constants, such that

c0 6= 0 6= ck, (1.2)

and ( fn)n≥l is a given sequence of real or complex numbers, is a basic example of a difference
equation solvable in closed-form (see, for example, books [5, 7, 10, 13, 15, 16, 19]). If one of the
conditions in (1.2) does not hold then the equation is of order less than k, which is why these
conditions are posed.

If
fn = 0 for n ≥ l,

the equation is called homogeneous linear difference equation with constant coefficients of
kth order.

Several methods for finding general solution to difference equation (1.1) have been known
yet in the 18th century (for example, the method of generating functions which has been first
used for solving the difference equation [8], and the method of guessing solution in the form
of a geometric progression).

To find a concrete solution to the equation, initial values xl , xl+1, . . . , xl+k−1, must be given.
Value of index l depends on a specific problem which is studied. Frequently is l = 0 or l = 1,
but it can be any other integer.

Since ck 6= 0, by dividing difference equation (1.1) by ck we obtain the following equation

xn+k + ĉk−1xn+k−1 + · · ·+ ĉ0xn = f̂n, (1.3)

for n ≥ l, where
ĉj = cj/ck, j = 0, 1, . . . , k− 1,

and
f̂n = fn/ck,

for n ≥ l, which is a difference equation of the form in (1.1). Hence, it is usually assumed that

ck = 1. (1.4)

For linear difference equations which satisfy condition (1.4), we will say that they are normal-
ized.

Many nonlinear difference equations are solved by transforming them by using some suit-
able changes of variables to linear difference equations with constant coefficients. Somewhat
bigger recent interest in solving some concrete nonlinear difference equations in this way, ap-
peared after publication of a note by S. Stević in 2004, in which a special case of the following
nonlinear difference equation of second order was solved

xn =
xn−2

bn + cnxn−1xn−2
, (1.5)
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where n ∈N0 (see, e.g., [29] and the references therein).
The study was, among other papers, continued in [30, 46], where the following nonlinear

difference equation with variable coefficients was studied

xn =
anxn−k

bn + cnxn−1 · · · xn−k
,

(see, also [26]). For some related systems see, e.g., [31] and the references therein. Many
different ideas and methods for solving nonlinear difference equations, can be found, also in
the representative paper [36].

Motivated by some investigations of usually symmetric systems of difference equations
(see, e.g., [21–24]), approximately at the same time started a renewed considerable interest
in investigation of some related classes of solvable systems of nonlinear difference equations,
usually those which are nowadays called close-to-symmetric, or close-to-cyclic systems of
nonlinear difference equations (see, for example, [4, 20, 45] and the related references cited
therein).

As it is also well-known, the bilinear difference equation

zn+1 =
αzn + β

γzn + δ
, n ∈N0, (1.6)

where parameters α, β, γ, δ, and the initial value z0 are complex numbers, is one of the first
examples of nonlinear difference equations solvable in closed-form (see, for example, books
[5, 14, 15, 19, 27]). To get a nonlinear difference equation it must be additionally assumed that

γ 6= 0 and αδ 6= βγ,

otherwise the equation becomes a first-order linear difference equation with constant coeffi-
cients or the most simplest constant difference equation, respectively. Based on closed-form
formulas for solutions to equation (1.6), which have been known for a long time, in some
papers, such as [1, 6, 18] was studied the asymptotic behaviour of their solutions.

Literature on difference equations usually suggests solving equation (1.6) by the change of
variables

zn = c̃1
yn+1

yn
+ c̃2, n ∈N0, (1.7)

where c̃1 and c̃2 are two undetermined constants, which are chosen such that the change of
variables transforms difference equation (1.6) to a linear difference equation (see, for example,
[1, 5, 6, 18, 19, 27]). Equation (1.6) can be also solved by using a system of linear difference
equations [14, 15].

Since the first method is closer to the topic of this paper and serves as a good motivation
for the method which will be used here, we will give a few words on it.

Using (1.7) in (1.6) gives(
c̃1

yn+2

yn+1
+ c̃2

)(
γc̃1

yn+1

yn
+ γc̃2 + δ

)
= αc̃1

yn+1

yn
+ αc̃2 + β,

for n ∈N0, that is,

γc̃1
2 yn+2

yn
+ c̃1(γc̃2 − α)

yn+1

yn
+ c̃1(γc̃2 + δ)

yn+2

yn+1
+ c̃2 (γc̃2 + δ)− αc̃2 − β = 0,

for n ∈N0.
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Multiplying the last equality by yn, we obtain

γc̃1
2yn+2 + c̃1(γc̃2 − α)yn+1 + (γc̃2

2 + c̃2(δ− α)− β)yn + c̃1(γc̃2 + δ)
yn+2yn

yn+1
= 0,

n ∈N0, from which it is easy to see that the equation will be linear with constant coefficients
if γc̃2 + δ = 0, that is, if

c̃2 = −δ/γ. (1.8)

If so, we have

(γc̃1)
2yn+2 − c̃1γ(α + δ)yn+1 + (αδ− βγ)yn = 0, n ∈N0. (1.9)

To make difference equation (1.9) normalized, then, clearly, it should be chosen

c̃1 = 1/γ. (1.10)

Using (1.8) and (1.10) in (1.7), we see that the following change of variables

zn =
yn+1

γyn
− δ

γ
, n ∈N0, (1.11)

transforms equation (1.6) to the following normalized homogeneous linear difference equation
of second order

yn+2 − (α + δ)yn+1 + (αδ− βγ)yn = 0, (1.12)

for n ∈N0.
Anyone who see the change of variables (1.7) for the first time should be certainly intrigued

by the choice. So, let us say that one of the points is that equation (1.6) can be written as

γzn+1 + δ = α + δ +
βγ− αδ

γzn + δ
, n ∈N0,

[1, 18, 32] from which it follows that the following equation

xn+1 = α + δ +
βγ− αδ

xn
, n ∈N0,

should be solved, or equivalently, the following one

xn+1 = a +
b
xn

, n ∈N0, (1.13)

where a ∈ C and b ∈ C \ {0}.
What the above procedure says is that difference equation (1.13) is solved by the change of

variables
xn =

yn+1

yn
, n ∈N0. (1.14)

Motivated by some representations of general solutions to some nonlinear difference equa-
tions (for example, those ones in [50]), in terms of the Fibonacci sequence (for some basics of
the sequence, see, e.g., [2,51]), recently in [32], S. Stević has given a representation of solutions
to equation (1.6) in terms of the solution to a linear second-order homogeneous difference
equation with constant coefficients, satisfying the following initial conditions

x−1 = 0 and x0 = 1.
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Soon after that it turned out that such solutions play some interesting and important roles
in solving some other nonlinear difference equations and systems of nonlinear difference
equations, for example, the product-type ones, and frequently appear (see, e.g., [34, 37, 41, 43,
44, 48, 49] and the references therein on such systems).

Some classical applications of solvable difference equations can be found, for example, in
[15, 17, 28]. For some other recent results on finding closed-form formulas or invariants for
solutions to other linear or nonlinear difference equations and systems of nonlinear difference
equations, and their applications, see, for example [3, 11, 12, 23–25, 38–40].

Having solved equation (1.13) long time ago, mathematicians started looking for some
generalizations of the equation which can be also solved by using the change of variables in
(1.14).

The following nonlinear second-order difference equation

xn+1 = a +
b
xn

+
c

xnxn−1
, n ∈N0, (1.15)

is a natural extension of equation (1.13) which is solved by the change of variables (1.14) which
transforms it to the following third-order linear difference equation with constant coefficients

yn+2 = ayn+1 + byn + cyn−1, (1.16)

for n ∈N0.
A special case of equation (1.15), that is, the one with a = 0, has been recently studied in

[11]. Instead of (1.14), in [11] was used the following (backward shifted) change of variables

xn =
yn

yn−1
, n ≥ −1, (1.17)

so that equation (1.15) is transformed to

yn+1 = ayn + byn−1 + cyn−2, n ∈N0, (1.18)

and, similar to [32], a representation of general solution to equation (1.15), with a = 0, was
given in terms of the solution (sn)n≥−2 of equation (1.18) satisfying the following initial con-
ditions

s−2 = s−1 = 0, s0 = 1. (1.19)

The shifted change of variables is usually used so that the initial values of the transformed
equation (1.18) are y−2, y−1 and y0. The initial values seem more natural than, for example,
the following ones: y−1, y0, y1, which appear for the case of equation (1.16).

The following theorem was proved in [11].

Theorem 1.1. Consider equation (1.15) with a = 0. Let (xn)n≥−1 be a well-defined solution to the
equation. Then, it has the following representation

xn =
x−1sn+1 + x0x−1sn + csn−1

x−1sn + x0x−1sn−1 + csn−2
, (1.20)

for n ∈N0.

The theorem is true, but the proof given in [11] is not complete, since it omits an inductive
argument, which is a small deficiency of the paper. A bigger deficiency of paper [11] is
of theoretical type, since it does not give or use a specific constructive or half-constructive
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method for getting representation of solutions to equations and systems studied therein. The
solutions therein are simply guessed based on some calculations.

Here, we present a more direct half-constructive approach in getting a representation of
solutions to difference equation (1.15) and extend Theorem 1.1. One of the motivations for the
approach stems from some recent papers by S. Stević and his collaborators, mostly on product-
type difference equations and systems of difference equations [34,37,41,43,44,48,49]. The idea
is to iterate some associated third-order homogeneous linear difference equations in a suitable
chosen way to get representation of solutions to the original difference equation. We also
give a more concrete representation of the solutions to the nonlinear difference equation by
calculating the special solution to the third-order homogeneous linear difference equation in
terms of the zeros of the characteristic polynomial associated to the linear difference equation.

2 Main results

The main results in this paper are proved in this section. The first one generalizes Theorem 1.1.

Theorem 2.1. Let parameters a, b, c be complex numbers such that c 6= 0, and let (sn)n≥−2 be the
solution to equation (1.18) satisfying initial conditions (1.19). Then, every well-defined solution to
equation (1.15) has the following representation

xn =
x−1(sn+1 − asn) + x0x−1sn + csn−1

x−1(sn − asn−1) + x0x−1sn−1 + csn−2
, (2.1)

for every n ∈N0.

Proof. As it has been said in the previous section, by using the change of variables (1.17),
equation (1.15) is transformed to equation (1.18).

Now we define initial values of three sequences which will be recursively defined and
used in the rest of the proof, in the way as it was done, for example, in [33, 37].

Let

a1 := a, b1 := b, c1 := c. (2.2)

In what follows the following three cases will be considered separately: 1) a 6= 0, 2) a = 0,
b 6= 0, 3) a = b = 0, since the proofs, although follow the same idea, are not the same.

Case a 6= 0. We use an iterative procedure which has been recently applied, for example, in
papers [34] and [41]. By using the equality (1.18) where n is replaced by n− 2, in the equation
(1.18) where n is replaced by n− 1, as well as the notation in (2.2), we have

yn = a1yn−1 + b1yn−2 + c1yn−3

= a1(ayn−2 + byn−3 + cyn−4) + b1yn−2 + c1yn−3

= (aa1 + b1)yn−2 + (ba1 + c1)yn−3 + ca1yn−4

= a2yn−2 + b2yn−3 + c2yn−4, (2.3)

where

a2 := aa1 + b1, b2 := ba1 + c1, c2 := ca1. (2.4)
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Using now the equation (1.18) where n is replaced by n− 3 in (2.3), it follows that

yn = a2yn−2 + b2yn−3 + c2yn−4

= a2(ayn−3 + byn−4 + cyn−5) + b2yn−3 + c2yn−4

= (aa2 + b2)yn−3 + (ba2 + c2)yn−4 + ca2yn−5

= a3yn−3 + b3yn−4 + c3yn−5, (2.5)

where
a3 := aa2 + b2, b3 := ba2 + c2, c3 := ca2. (2.6)

Based on relations (2.3)–(2.6), we assume that for some k ∈ N such that 2 ≤ k ≤ n− 1, we
have that

yn = akyn−k + bkyn−k−1 + ckyn−k−2, (2.7)

and
ak := aak−1 + bk−1, bk := bak−1 + ck−1, ck := cak−1. (2.8)

Using further the equality (1.18) where n is replaced by n− k− 1 in (2.7), it follows that

yn = akyn−k + bkyn−k−1 + ckyn−k−2

= ak(ayn−k−1 + byn−k−2 + cyn−k−3) + bkyn−k−1 + ckyn−k−2

= (aak + bk)yn−k−1 + (bak + ck)yn−k−2 + cakyn−k−3

= ak+1yn−k−1 + bk+1yn−k−2 + ck+1yn−k−3, (2.9)

where
ak+1 := aak + bk, bk+1 := bak + ck, ck+1 := cak. (2.10)

From (2.3), (2.4), (2.9), (2.10), and by using the induction we see that (2.7) and (2.8) must
hold for every 2 ≤ k ≤ n.

Now we prolong sequences ak, bk and ck for some non-positive values of index k, as it was
done, for example, in [43, 44]. Note that since c 6= 0, the recurrent relations in (2.8) can be
really used for calculating values of sequences ak, bk and ck for every k ≤ 0.

Using the recurrent relations with the indices k = 1, k = 0 and k = −1, respectively, after
some calculations, it follows that

a0 =
c1

c
= 1, (from (2.2), (2.8)), (2.11)

b0 = a1 − aa0 = a− a · 1 = 0, (from (2.2), (2.8), (2.11)), (2.12)

c0 = b1 − ba0 = b− b · 1 = 0, (from (2.2), (2.8), (2.11)), (2.13)

a−1 =
c0

c
= 0, (from (2.8), (2.13)), (2.14)

b−1 = a0 − aa−1 = 1− a · 0 = 1, (from (2.8), (2.11), (2.14)), (2.15)

c−1 = b0 − ba−1 = 0− b · 0 = 0, (from (2.8), (2.12), (2.14)), (2.16)

a−2 =
c−1

c
= 0, (from (2.8), (2.16)), (2.17)

b−2 = a−1 − aa−2 = 0− a · 0 = 0, (from (2.8), (2.14), (2.17)), (2.18)

c−2 = b−1 − ba−2 = 1− b · 0 = 1, (from (2.8), (2.15), (2.17)). (2.19)
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Hence, we have
a0 = 1, a−1 = 0, a−2 = 0,

b0 = 0, b−1 = 1, b−2 = 0,

c0 = 0, c−1 = 0, c−2 = 1.

From (2.8), we also have

an = aan−1 + ban−2 + can−3, (2.20)

bn = an+1 − aan, (2.21)

cn = can−1, (2.22)

for n ∈ N. In fact, since c 6= 0, it is not difficult to see that equalities (2.20)–(2.22) hold for
every n ∈ Z.

If we take k = n in (2.7), we obtain

yn = any0 + bny−1 + cny−2, (2.23)

for n ∈N0.
From (2.21)–(2.23), we get

yn = any0 + (an+1 − aan)y−1 + can−1y−2, (2.24)

for n ∈N0.
Using (2.24) in (1.17), we obtain

xn =
any0 + (an+1 − aan)y−1 + can−1y−2

an−1y0 + (an − aan−1)y−1 + can−2y−2
, (2.25)

for n ∈N0.

Case a = 0, b 6= 0. In this case, equation (1.18) becomes

yn+1 = byn−1 + cyn−2, (2.26)

for n ∈N0.
Let

b̃1 := b, c̃1 := c, d̃1 = 0. (2.27)

Now we use a modified procedure, which has been used in the case a 6= 0 (the modification
is necessary since the coefficient at yn is zero and the same procedure does not have an effect
in the case).

Using the equality (2.26) where n is replaced by n − 3, in the equality (2.26) where n is
replaced by n− 1, we obtain

yn = b̃1yn−2 + c̃1yn−3 + d̃1yn−4

= b̃1(byn−4 + cyn−5) + c̃1yn−3 + d̃1yn−4

= c̃1yn−3 + (bb̃1 + d̃1)yn−4 + cb̃1yn−5

= b̃2yn−3 + c̃2yn−4 + d̃2yn−5, (2.28)

where
b̃2 := c̃1, c̃2 := bb̃1 + d̃1, d̃2 := cb̃1. (2.29)
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Using now (2.26) where n is replaced by n− 4 in (2.28), we obtain

yn = b̃2yn−3 + c̃2yn−4 + d̃2yn−5

= b̃2(byn−5 + cyn−6) + c̃2yn−4 + d̃2yn−5

= c̃2yn−4 + (bb̃2 + d̃2)yn−5 + cb̃2yn−6

= b̃3yn−4 + c̃3yn−5 + d̃3yn−6, (2.30)

where
b̃3 := c̃2, c̃3 := bb̃2 + d̃2, d̃3 := cb̃2. (2.31)

Based on equalities (2.28)–(2.31), assume that for some k ∈ N such that 2 ≤ k ≤ n− 2, we
have proved that

yn = b̃kyn−k−1 + c̃kyn−k−2 + d̃kyn−k−3, (2.32)

and
b̃k := c̃k−1, c̃k := bb̃k−1 + d̃k−1, d̃k := cb̃k−1. (2.33)

Then, by using the equality (2.26) where n is replaced by n− k− 2 in (2.32), we have

yn = b̃kyn−k−1 + c̃kyn−k−2 + d̃kyn−k−3

= b̃k(byn−k−3 + cyn−k−4) + c̃kyn−k−2 + d̃kyn−k−3

= c̃kyn−k−2 + (bb̃k + d̃k)yn−k−3 + cb̃kyn−k−4

= b̃k+1yn−k−2 + c̃k+1yn−k−3 + d̃k+1yn−k−4, (2.34)

where
b̃k+1 := c̃k, c̃k+1 := bb̃k + d̃k, dk+1 := cb̃k. (2.35)

From relations (2.28), (2.29), (2.34), (2.35), and by using the method of mathematical induc-
tion we see that relations (2.32) and (2.33) hold for every k, n ∈N such that 2 ≤ k ≤ n− 1.

As above, since c 6= 0, by using all the relations in (2.33), it is not difficult to see that the
sequences b̃k, c̃k and d̃k, can be also calculated for all nonpositive values of index k.

By using the three recurrent relations in (2.33) with indices k = 1, k = 0, k = −1 and
k = −2, respectively, after some calculations and repeating use of already calculated terms,
we have

b̃0 =
d̃1

c
= 0, (from (2.27), (2.33)), (2.36)

c̃0 = b̃1 = b, (from (2.27), (2.33)), (2.37)

d̃0 = c̃1 − bb̃0 = c− b · 0 = c, (from (2.27), (2.33), (2.36)), (2.38)

b̃−1 =
d̃0

c
= 1, (from (2.33), (2.38)), (2.39)

c̃−1 = b̃0 = 0, (from (2.33), (2.36)), (2.40)

d̃−1 = c̃0 − bb̃−1 = b− b · 1 = 0, (from (2.33), (2.37), (2.39)), (2.41)

b̃−2 =
d̃−1

c
= 0, (from (2.33), (2.41)), (2.42)

c̃−2 = b̃−1 = 1, (from (2.33), (2.39)), (2.43)

d̃−2 = c̃−1 − bb̃−2 = 0− b · 0 = 0, (from (2.33), (2.40), (2.42)), (2.44)
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b̃−3 =
d̃−2

c
= 0, (from (2.33), (2.44)), (2.45)

c̃−3 = b̃−2 = 0, (from (2.33), (2.42)), (2.46)

d̃−3 = c̃−2 − bb̃−3 = 1− b · 0 = 1, (from (2.33), (2.43), (2.45)). (2.47)

So, from (2.39)–(2.47), we have

b̃−1 = 1, b̃−2 = 0, b̃−3 = 0,

c̃−1 = 0, c̃−2 = 1, c̃−3 = 0,

d̃−1 = 0, d̃−2 = 0, d̃−3 = 1.

(2.48)

If we choose k = n− 1 in (2.32), we obtain

yn = b̃n−1y0 + c̃n−1y−1 + d̃n−1y−2, (2.49)

for n ∈N0.
By using (2.33) in (2.49), it follows that

yn = b̃n−1y0 + b̃ny−1 + cb̃n−2y−2, (2.50)

for n ∈N0.
From initial conditions (2.48) we see that sequence b̃n is the solution to the equation (1.18)

with a = 0, b 6= 0, with the backward shifted initial conditions of the sequence an defined in
(2.2) and (2.8).

Hence,
b̃n−1 = an,

so from (2.50) we see that (2.24) also holds in the case a = 0, b 6= 0, and consequently the
formula in (2.25).

Case a = b = 0. In this case, equation (1.18) becomes

yn+1 = cyn−2, (2.51)

for n ∈N0.
From (2.51) it easily follows that

s3m−i = cms−i,

for m ∈N0 and i = 0, 2, from which it is easily verified that (2.24) also holds in this case, and
consequently formula (2.25).

From (2.25) we have

xn =
an

y0
y−1

+ an+1 − aan + can−1
y−2
y−1

an−1
y0

y−1
+ an − aan−1 + can−2

y−2
y−1

=
anx0 + an+1 − aan + can−1x−1

−1

an−1x0 + an − aan−1 + can−2x−1
−1

=
anx−1x0 + (an+1 − aan)x−1 + can−1

an−1x−1x0 + (an − aan−1)x−1 + can−2
, (2.52)
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for every n ∈N0.
Now note that by definition of sequences an and sn we have that

an = sn,

for n ≥ −2.
Using this fact in (2.52), we immediately obtain formula (2.1), completing the proof of the

theorem.

Remark 2.2. The method used here is inductive, since in proving hypotheses (2.7), (2.8), (2.32)
and (2.33) the method was used. However, it is also a constructive one, since we define
sequences ak, bk, ck, b̃k, c̃k, d̃k, appearing in the proof of Theorem 2.1 in a clear constructive
way, by using some initial conditions and recurrent relations. Hence, the above method is
half-constructive.

To conduct further investigations we need a lemma, which follows, for example, from the
Lagrange interpolation formula (see, e.g., [9]), or by using the residue theorem (see, e.g., [47]).

Lemma 2.3. Let
p(t) = ãktk + ãk−1tk−1 + · · ·+ ã1t + ã0,

and tj, j = 1, 2, . . . , k, be the zeros of p(t), which are distinct, that is,

ti 6= tj, i 6= j.

Then
k

∑
j=1

ts
j

p′(tj)
= 0

for 0 ≤ s ≤ k− 2, and
k

∑
j=1

tk−1
j

p′(tj)
=

1
ãk

.

Since linear difference equation (1.18) is of the third-order it is practically solvable, since
the characteristic equation

λ3 − aλ2 − bλ− c = 0 (2.53)

associated to difference equation (1.18) is a polynomial equation of the third order, so solvable
by radicals. From this it follows that difference equation (1.15) is also practically solvable.

The zeros of polynomial equation (2.53) can be obtained by using a standard procedure
(see, e.g., [9]). By using the change of variables

λ = s +
a
3

, (2.54)

in equation (2.53), after some calculation, we obtain

s3 −
(

a2

3
+ b
)

s− 2a3

27
− ab

3
− c = 0. (2.55)

Let

p := − a2

3
− b (2.56)
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and

q := −2a3

27
− ab

3
− c, (2.57)

then equation (2.55) is written as
s3 + ps + q = 0. (2.58)

We find solution to equation (2.58) in the form

s = u + v. (2.59)

Substituting (2.59) in (2.58) and requesting that

3uv + p = 0, (2.60)

we obtain
u3 + v3 = −q. (2.61)

From (2.60) and (2.61), we see that u3 and v3 are the zeros of the following polynomial

P2(t) = t2 + qt− p3

27
,

that is, they are equal to

t1,2 = − q
2
±
√

q2

4
+

p3

27
.

Hence, the zeros of polynomial (2.53) are

λ1 =
a
3
+

3

√
− q

2
+

√
q2

4
+

p3

27
+

3

√
− q

2
−
√

q2

4
+

p3

27
, (2.62)

λ2 =
a
3
+ ε

3

√
− q

2
+

√
q2

4
+

p3

27
+ ε̄

3

√
− q

2
−
√

q2

4
+

p3

27
, (2.63)

λ3 =
a
3
+ ε̄

3

√
− q

2
+

√
q2

4
+

p3

27
+ ε

3

√
− q

2
−
√

q2

4
+

p3

27
, (2.64)

where ε is a complex zero different from 1, of the polynomial equation

z3 = 1.

The character of zeros λj, j = 1, 2, 3, depends on the sign of the following quantity

∆ :=
q2

4
+

p3

27
, (2.65)

the, so called, discriminant.
The following three cases are possible:

1. if ∆ 6= 0, then all zeros of equation (2.53) are different. More precisely, if ∆ < 0, then
they are real and different, while if ∆ > 0 then two zeros are complex-conjugate and one
is real;

2. if ∆ = 0 and a2 6= −3b, then all zeros of equation (2.53) are real, but two of them are
equal;

3. if ∆ = 0 and a2 = −3b, then all zeros of equation (2.53) are real and equal.

Case ∆ 6= 0. In this case zeros (2.62)–(2.64) of polynomial (2.53) are distinct. Hence, equation
(1.18) has general solution in the following form

yn = g1λn
1 + g2λn

2 + g3λn
3 , n ≥ −2, (2.66)
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where gj ∈ C, j = 1, 2, 3.
If we apply Lemma 2.3 to the following polynomial

p3(t) =
3

∏
j=1

(t− λj),

we have
3

∑
j=1

λl
j

p′3(λj)
= 0, for l = 0, 1, (2.67)

and
3

∑
j=1

λ2
j

p′3(λj)
= 1. (2.68)

Since we need the solution to equation (1.18) satisfying the initial conditions in (1.19), from
(2.66)–(2.68), we obtain

sn =
λn+2

1
p′3(λ1)

+
λn+2

2
p′3(λ2)

+
λn+2

3
p′3(λ3)

,

which can be also written in the following form

sn =
λn+2

1
(λ1 − λ2)(λ1 − λ3)

+
λn+2

2
(λ2 − λ1)(λ2 − λ3)

+
λn+2

3
(λ3 − λ1)(λ3 − λ2)

, (2.69)

for n ≥ −2 (see, e.g., [42]).
From the above consideration and Theorem 2.1 we obtain the following corollary.

Corollary 2.4. Let parameters a, b, c be complex numbers such that c 6= 0 and

27
(

2a3

27
+

ab
3

+ c
)2

− 4
(

a2

3
+ b
)3

6= 0. (2.70)

Then, every well-defined solution to equation (1.15) has the representation given by formula (2.1), where
the sequence (sn)n≥−2 therein is given by (2.69), where λj, j = 1, 2, 3, are given by (2.62)–(2.64), while
p and q are given by (2.56) and (2.57), respectively.

Remark 2.5. By a simple calculation it is proved that condition (2.70) is equivalent to the
following one

(ab)2 + 4b3 − 4a3c− 18abc− 27c2 6= 0.

Case ∆ = 0, a2 6= −3b. In this case all zeros of equation (2.53) are real, but two of them are
equal. We may assume that λ1 6= λ2 = λ3. General solution to equation (1.18) has the form

yn = ĝ1λn
1 + (ĝ2 + ĝ3n)λn

2 , n ∈N, (2.71)

where ĝj ∈ C, j = 1, 2, 3.
The solution to (1.18) satisfying the initial conditions in (1.19) in this case can be obtained

by a limiting argument (see [35]), and it is given by

sn = lim
λ3→λ2

(
λn+2

1
(λ1 − λ2)(λ1 − λ3)

+
λn+2

2
(λ2 − λ1)(λ2 − λ3)

+
λn+2

3
(λ3 − λ1)(λ3 − λ2)

)
=

λn+2
1 − (n + 2)λ1λn+1

2 + (n + 1)λn+2
2

(λ2 − λ1)2 ,
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for n ≥ −2, that is,

sn =
λn+2

1 +
(
λ2 − 2λ1 + n(λ2 − λ1)

)
λn+1

2

(λ2 − λ1)2 , (2.72)

for n ≥ −2.
From the consideration and Theorem 2.1 we get the following corollary in the case.

Corollary 2.6. Let parameters a, b, c be complex numbers such that c 6= 0, a2 6= −3b and

27
(

2a3

27
+

ab
3

+ c
)2

− 4
(

a2

3
+ b
)3

= 0. (2.73)

Then, every well-defined solution to equation (1.15) has the representation given by formula (2.1), where
the sequence (sn)n≥−2 therein is given by (2.72), where λj, j = 1, 2, 3, are given by

λ1 =
a
3
− 2 3

√
q
2

, (2.74)

λ2,3 =
a
3
− ε 3

√
q
2
− ε̄ 3

√
q
2
=

a
3
+ 3

√
q
2

, (2.75)

while q is given in (2.57).

Case ∆ = 0, a2 = −3b. In this case all zeros of equation (2.53) are real and equal to a/3.
General solution to equation (1.18) has the form

yn = (g̃1 + g̃2n + g̃3n2)
( a

3

)n
, n ∈N, (2.76)

where g̃j ∈ C, j = 1, 2, 3.
The solution to (1.18) satisfying the initial conditions in (1.19) in this case can be also

obtained by a limiting argument (see [35]), and it is given by

sn =
(n + 1)(n + 2)

2

( a
3

)n
, (2.77)

for n ≥ −2.
From the consideration and Theorem 2.1 we get the following corollary in this case.

Corollary 2.7. Let parameters a, b, c be complex numbers such that c 6= 0, a2 = −3b and that
condition (2.73) holds. Then, every well-defined solution to equation (1.15) has the representation
given by formula (2.1), where the sequence (sn)n≥−2 therein is given by (2.77).
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[47] S. Stević, B. Iričanin, Z. Šmarda, On a product-type system of difference equations
of second order solvable in closed form, J. Inequal. Appl. 2015, Article No. 327, 15 pp.
https://doi.org/0.1186/s13660-015-0835-9; MR3407680

https://doi.org/10.14232/ejqtde.2016.1.120
https://www.ams.org/mathscinet-getitem?mr=3592200
https://doi.org/10.1515/anona-2016-0145
https://doi.org/10.1515/anona-2016-0145
https://doi.org/10.1515/anona-2015-0077
https://doi.org/10.1515/anona-2015-0077
https://www.ams.org/mathscinet-getitem?mr=3510818
https://www.ams.org/mathscinet-getitem?mr=3578306
https://doi.org/10.1186/s13662-017-1350-8
https://doi.org/10.1186/s13662-017-1350-8
https://www.ams.org/mathscinet-getitem?mr=3696471
https://doi.org/10.3390/sym9100227
https://doi.org/10.1186/s13662-017-1227-x
https://www.ams.org/mathscinet-getitem?mr=3663764
https://doi.org/10.1186/s13662-017-1190-6
https://doi.org/10.1186/s13662-017-1190-6
https://www.ams.org/mathscinet-getitem?mr=3652573
https://doi.org/10.1186/s13662-017-1204-4
https://doi.org/10.1186/s13662-017-1204-4
https://www.ams.org/mathscinet-getitem?mr=3656092
https://doi.org/10.1186/s13662-017-1305-0
https://doi.org/10.1186/s13662-017-1305-0
https://www.ams.org/mathscinet-getitem?mr=3687417
https://doi.org/10.14232/ejqtde.2017.1.13
https://www.ams.org/mathscinet-getitem?mr=3633243
https://doi.org/10.1155/2012/541761
https://doi.org/10.1155/2012/541761
https://www.ams.org/mathscinet-getitem?mr=2991014
https://www.ams.org/mathscinet-getitem?mr=2959769
https://doi.org/0.1186/s13660-015-0835-9
https://www.ams.org/mathscinet-getitem?mr=3407680
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