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Abstract. In this note, we deal with the existence of infinitely many solutions for a
problem driven by nonlocal integro-differential operators with homogeneous Dirichlet
boundary conditions {

−LKu = λ f (x, u), in Ω,
u = 0, in Rn\Ω,

where Ω is a smooth bounded domain of Rn and the nonlinear term f satisfies super-
linear at infinity but does not satisfy the the Ambrosetti–Rabinowitz type condition.
The aim is to determine the precise positive interval of λ for which the problem admits
at least two nontrivial solutions by using abstract critical point results for an energy
functional satisfying the Cerami condition.
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1 Introduction and main results

Recently, the fractional and non-local operators of elliptic type have been widely investi-
gated. The interest in studying this type of operators of elliptic type re- lies not only on
pure mathematical research but also on the significant applications to many areas, such as
quasi-geostrophic flows, anomalous diffusion, continuum mechanics, crystal dislocation, soft
thin films, semipermeable membranes, flame propagation turbulence, water waves and prob-
ability and finance, see [2, 3, 5, 6, 9, 10] and the references therein.

The present study is concerned with the multiplicity of nontrivial weak solutions for the
nonlocal fractional equations, namely,{

−LKu = λ f (x, u), in Ω,

u = 0, in Rn\Ω,
(1.1)
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where λ is a real parameter, Ω is an open bounded subset of Rn with smooth boundary ∂Ω,
n > 2s, s ∈ (0, 1), LK is the non-local operator defined as follows

LKu(x) :=
∫

Rn
(u(x + y) + u(x− y)− 2u(x))K(y)dy, x ∈ Rn.

Here K : Rn\0→ (0,+∞) is a kernel function having the following properties
γK ∈ L1(Rn) where γ(x) = min{|x|2, 1},
there exists k0 > 0 such that K(x) ≥ k0|x|−(n+2s), ∀x ∈ Rn\{0},
K(−x) = K(x), ∀x ∈ Rn\{0}.

(1.2)

A typical example for K is given by K(x) = |x|−(n+2s). In this case, LK is the fractional
Laplacian operator −(−4)s which (up to normalization factors) is defined as

−(−4)su(x) :=
∫

Rn

u(x + y) + u(x− y)− 2u(x)
|y|n+2s dy, x ∈ Rn.

If λ = 1, then problem (1.1) reduces to the following nonlocal elliptic equation{
−LKu = f (x, u), in Ω,

u = 0, in Rn\Ω,
(1.3)

which has been studied by Servadei and Valdinoci [14] by using the fountain theorem. The
author proved the existence of solutions under the following assumptions.

( f1) f : Ω×R→ R is a Carathéodory function and there exist a1, a2 > 0 and q ∈ (2, 2∗s ) such
that

| f (x, t)| ≤ a1 + a2|t|q−1 for a.e. x ∈ Ω, t ∈ R,

where 2∗s is the fractional Sobolev critical exponent defined by 2∗s = 2n
n−2s .

( f2) lim|t|→0
f (x,t)
|t| = 0 uniformly for a.e. x ∈ Ω.

( f3) There exist µ > 2 and r > 0 such that for a.e. x ∈ Ω, t ∈ R, |t| ≥ r

0 < µF(x, t) ≤ t f (x, t),

where F(x, t) := µ
∫ t

0 f (x, τ)dτ.

Moreover, there have been a large number of papers that study the existence of the solutions
to (1.3), we refer the reader to [8, 14, 17, 18] and the references therein. For example, using
Symmetric version of mountain pass lemma, Zhang, Molica Bisci and Servadei [17] studied
the existence of infinitely many solutions of problem (1.3) when f ∈ C(Ω×Rn), ( f1), ( f3) and
the following symmetry condition:

( f4) f (x,−t) = − f (x, t) for a.e. x ∈ Ω, t ∈ R.

For the case that f (x, t) satisfies asymptotically linear at infinity with respect to t, Luo, Tang
and Gao [8] obtained the existence of sign-changing solutions of (1.3) by combining constraint
variational method with the quantitative deformation lemma. In references [4, 11, 12, 17, 18],
some new superlinear growth conditions are established instead of ( f3), Among them, a few
are weaker than ( f3), but most complement with it, for example,
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( f5) lim|t|→+∞
F(x,t)
|t|2 = +∞ uniformly for a.e. x ∈ Ω and there exists γ ≥ 1 such that for

a.e. x ∈ Ω, F (x, t′) ≤ γF (x, t) for any t, t′ ∈ R with 0 < t′ ≤ t, where F (x, t) =
1
2 t f (x, t)− F(x, t);

( f6) lim|t|→+∞
F(x,t)
|t|2 = +∞ uniformly for a.e. x ∈ Ω and there exists t > 0 such that for a.e.

x ∈ Ω, the function t 7→ f (x,t)
t is increasing in t ≥ t and decreasing in t ≤ −t;

( f7)1 there exists a positive constant r0 > 0 such that F(x, t) ≥ 0, (x, t) ∈ Ω×R and |t| ≥ r0,
and

lim
|t|→+∞

F(x, t)
|t|2 = +∞, a.e. x ∈ Ω;

( f7)2 there exist a constant C1 > 0 such that

F (x, t) ≥ C1(|t|2 − 1), (x, t) ∈ Ω×R;

( f8) there exist constants C2 > 0 and κ > N
2s such that

|F(x, t)|κ ≤ C2|u|2κF (x, t), (x, t) ∈ Ω×R and |t| ≥ r0;

( f9) there exist constants µ > 2, 2 < α < 2∗s and C3 > 0 such that

f (x, t)t− µF(x, t) ≥ C3(|t|α − 1), (x, t) ∈ Ω×R;

( f10) there exist constants µ > 2 and C4 > 0 such that

µF(x, t) ≤ t f (x, t) + C4|t|2, (x, t) ∈ Ω×R.

Specifically, Zhang–Molica Bisci–Servadei [17] and Zhang–Tang–Chen [18] obtained the exis-
tence of infinitely many nontrivial solutions of (1.3) under the assumptions f ∈ C(Ω×Rn),
( f1), ( f3)–( f5), or f ∈ C(Ω×Rn), ( f1), ( f3), ( f4) and ( f6), or f ∈ C(Ω×Rn), ( f1), ( f3), ( f4),
( f7)1,2 and ( f8), or f ∈ C(Ω×Rn), ( f1), ( f3), ( f4), ( f7)1,2 and ( f9), respectively.

However, regarding the existence of two distinct nontrivial weak solutions for (1.1) or (1.3),
to the best of our knowledge, there are no results in the literature. Motivated by the above
works, we shall further study the two nontrivial solutions of (1.1) with sign-changing potential
and subcritical 2-superlinear nonlinearity. The aim of this study, as in [1], is to determine the
precise positive interval of for which problem (1.1) admits at least two nontrivial solutions
using abstract critical point theorems. Now, we are ready to state the main results of this
article.

Theorem 1.1. Let s ∈ (0, 1), n > 2s and Ω be an open bounded set of Rn with continuous
boundary. Let K : Rn\{0} → (0,+∞) be a function satisfying (1.1) and ( f1), ( f7)1 and ( f8)

hold. Then there exists a positive constant λ0 such that the problem (1.1) admits at least two
distinct weak solutions for each λ ∈ (0, λ0).

Theorem 1.2. Let s ∈ (0, 1), n > 2s and Ω be an open bounded set of Rn with continuous
boundary. Let K : Rn\{0} → (0,+∞) be a function satisfying (1.1) and ( f1), ( f7)1 and ( f10)

hold. Then there exists a positive constant λ0 such that the problem (1.1) admits at least two
distinct weak solutions for each λ ∈ (0, λ0).

This paper is organized as follows. In Section 2, we present some necessary preliminary
knowledge on fractional Lebesgue–Sobolev spaces. In Section 3, several existence results
about at least two distinct nontrivial weak solutions for problem (1.1) are obtained by abstract
critical point theory and the compactness result of the Palais–Smale type.



4 Q.-M. Zhou

2 Preliminaries

In order to discuss problem (1.1), we need some facts on space X0 which are called fractional
Sobolev space. For this reason, we will recall some properties involving the fractional Sobolev
space, which can be found in [14–16] and references therein.

Let X denote the linear space of Lebesgue measurable functions from Rn to R such that
the restriction to Ω of any function g in X belongs to L2(Ω) and

((x, y) 7→ (g(x)− g(y))
√

K(x− y)) ∈ L2(Ω×Ω, dxdy).

The function space X is equipped with the following norm

‖u‖X =
(
‖u‖L2(Ω) +

∫
Ω×Ω

(|u(x)− u(y)|2)K(x− y)dxdy
)1/2

. (2.1)

The function space X0 is defined by

X0 := {u ∈ X : u = 0 a.e. in Rn\Ω} (2.2)

endowed with the Luxemburg norm

‖u‖X0 :=
( ∫

Ω×Ω
(|u(x)− u(y)|2)K(x− y)dxdy

)1/2

and (X0, ‖ · ‖X0) is a Hilbert space (for this see [14, Lemma 7]), with scalar product

〈u, v〉 =
∫

Ω×Ω
(u(x)− u(y))(v(x)− v(y))K(x− y)dxdy.

By Lemma 6 in [14], Servadei and Valdinoci proved a sort of Poincaré–Sobolev inequality
for the functions in X0 as follows.

Lemma 2.1. let K : Rn\0 → (0,+∞) be a function satisfying assumption (1.2). Then there
exists a constant c > 1, depending only on N, s, λ and Ω, such that for any u ∈ X0

‖u‖X0 ≤ ‖u‖X ≤ c‖u‖X0 .

By the above lemma, ‖u‖X0 is an equivalent norm in X0. We will use the equivalent norm
in the following discussion and write ‖u‖ = ‖u‖X0 for simplicity. The following embedding
theorem will play a crucial role in our subsequent arguments.

Lemma 2.2. let K : Rn\0 → (0,+∞) be a function satisfying assumption (1.2). Then the
embedding X0 ↪→ Lr(Ω) is continuous for any r ∈ [2, 2∗s ], i.e., there exists cr > 0 such that
|u|r ≤ cr‖u‖, u ∈ X0. Moreover, X0 is compactly embedded into Lr(Ω) only for r ∈ [2, 2∗s ),
where Lr(Ω) denotes Lebesgue space with the standard norm |u|r.

In order to prove our main result, we define the energy functional ϕλ on X0 by

ϕλ(u) =J(u)− λΨ(u), (2.3)

where J(u) = 1
2

∫
Ω×Ω |u(x)− u(y)|2K(x− y)dxdy and Ψ(u) =

∫
Ω F(x, u)dx, F is the function

defined in ( f3). By [13], the energy functional ϕλ : X0 → R is well defined and of class
C1(X0, R). Moreover, the derivative of ϕλ is

〈ϕ′λ(u), v〉 =
∫

Ω×Ω
(u(x)− u(y))(v(x)− v(y))K(x− y)dxdy− λ

∫
Ω

f (x, u)vdx,
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for all u, v ∈ X0. Obviously, solutions for problem (1.1) are corresponding to critical points of
the energy functional ϕλ.

A sequence {un}⊂X0 is said to be a (C)c-sequence if ϕλ(un)→c and ‖ϕ′λ(un)‖(1+‖un‖)→0.
ϕλ is said to satisfy the (C)c-condition if any (C)c-sequence has a convergent subsequence. If
this condition is satisfied at every level c ∈ R, then we say that ϕλ satisfies (C)-condition.

In order to prove our main result, we state the following lemma which will play a crucial
role in the proof of main theorems.

Lemma 2.3 ([7, Theorem 2.6]). Let E be a real Banach space, G, H : E→ R be two continuous
Gâteaux differentiable functionals such that G is bounded from below and G(0) = H(0) = 0.
Fix ν > 0 and assume that, for each

λ ∈
(

0,
ν

supG(u)≤ν H(u)

)
,

the functional Iλ := G− λH satisfies the (C)-condition and it is unbounded from below. Then,
for each

λ ∈
(

0,
ν

supG(u)≤ν H(u)

)
,

the functional Iλ admits two distinct critical points.

3 Proof of the main results

In this section, we prove our main result. As we will see, in order to obtain the existence of at
least two weak solutions for problem (1.1) we use variational methods. Firstly, we are ready
to prove the following result about the compactness of the functional ϕλ.

Lemma 3.1. Assume that ( f1), ( f7)1 and ( f8) hold. Then for all λ > 0, any (C)c sequence is
bounded in X0.

Proof. Let {un} ⊂ X0 be a (C)c sequence, that is,

ϕλ(un)→ c and |ϕ′λ(un)‖(1 + ‖un‖)→ 0. (3.1)

To complete our goals, arguing by contradiction, suppose that ‖un‖ → ∞, as n→ ∞. Observe
that for n large,

c + 1 ≥ ϕλ(un)−
1
2
〈ϕ′λ(un), un〉

= λ
∫

Ω
F (x, un)dx.

(3.2)

Since ‖un‖ > 1 for n large, we have

0 = lim
n→∞

c + o(1)
‖un‖2 = lim

n→∞

ϕλ(un)

‖un‖2

=
1
2
− λ lim

n→∞

∫
Ω

F(x, un)

‖un‖2 dx,

which implies that
1

2λ
≤ lim sup

n→∞

∫
Ω

F(x, un)

‖un‖2 dx. (3.3)
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For 0 ≤ α < β, let

Ωn(α, β) = {x ∈ Ω : α ≤ |un(x)| < β}.

Let vn = un
‖un‖ , then ‖vn‖ = 1 and |vn|q ≤ cq‖vn‖ = cq for q ∈ [1, 2∗s ). Since X0 is a reflexive

space (see [15, Lemma 7]), going if necessary to a subsequence, we may assume that

vn ⇀ v in X0;

vn → v in Lq(Ω), 1 ≤ q < 2∗s ;

vn(x)→ v(x) a.e. on Ω.

(3.4)

Now, we consider two possible cases: v = 0 or v 6= 0.
(1) If v = 0, then we have that vn → 0 in Lq(Ω) for all q ∈ [1, 2∗s ), and vn(x)→ 0 a.e. on Ω.

Hence, it follows from ( f1) that

∫
Ωn(0,r0)

|F(x, un)|
‖un‖2 dx ≤

(a1r0 +
a2
q rq

0)meas(Ω)

‖un‖2 → 0 as n→ +∞, (3.5)

where meas(·) denotes the Lebesgue measure in RN .
Set κ′ = κ

κ−1 . Since κ > N
2s one sees that 2κ′ ∈ (1, 2∗s ). Hence, we deduce from ( f8), (3.2)

and (3.4) that ∫
Ωn(r0,+∞)

F(x, un)

u2
n

v2
ndx

≤
(∫

Ωn(r0,+∞)

F(x, un)κ

u2κ
n

dx
) 1

κ
(∫

Ωn(r0,+∞)
v2κ′

n dx
) 1

κ′

≤
(∫

Ωn(r0,+∞)

F(x, un)κ

u2κ
n

dx
) 1

κ
(∫

Ω
v2κ′

n dx
) 1

κ′

≤ C
1
κ
2

(∫
Ωn(r0,+∞)

F (x, un)dx
) 1

κ
(∫

Ω
v2κ′

n dx
) 1

κ′

≤ [C2(
c + 1

λ
)]

1
κ

(∫
Ω

v2κ′
n dx

) 1
κ′

→ 0, as n→ ∞.

(3.6)

Combining (3.5) with (3.6), we get

∫
Ω

|F(x, un)|
‖un‖2 dx

=
∫

Ωn(0,r0)

|F(x, un)|
‖un‖2 dx +

∫
Ωn(r0,+∞)

F(x, un)

‖un‖2 dx

=
∫

Ωn(0,r0)

|F(x, un)|
‖un‖2 dx +

∫
Ωn(r0,+∞)

F(x, un)

u2
n

v2
ndx

→ 0, as n→ ∞,

(3.7)

which contradicts (3.3).
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(2) If v 6= 0, set

Ω 6= := {x ∈ Ω : v(x) 6= 0},

then meas(Ω 6=) > 0. For a.e. x ∈ Ω 6=, we have

lim
n→∞
|un(x)| = +∞.

Hence,

Ω 6= ⊂ Ωn(r0, ∞) for large n ∈ N.

As the proof of (3.5), we also obtain that

∫
Ωn(0,r0)

|F(x, un)|
‖un‖2 dx ≤

(a1r0 +
a2
q rq

0)meas(Ω)

‖un‖2 → 0 as n→ +∞. (3.8)

By ( f7)1, (3.8) and Fatou’s lemma, we have

0 = lim
n→∞

c + o(1)
‖un‖2 = lim

n→∞

ϕλ(un)

‖un‖2

=
1
2
− λ lim

n→∞

∫
Ω

F(x, un)

‖un‖2 dx

=
1
2
− λ lim

n→∞

[∫
Ωn(0,r0)

F(x, un)

‖un‖2 dx +
∫

Ωn(r0,+∞)

F(x, un)

‖un‖2 dx
]

=
1
2
− λ lim

n→∞

∫
Ωn(r0,+∞)

F(x, un)

‖un‖2 dx

≤ 1
2
− λ lim inf

n→∞

∫
Ωn(r0,+∞)

F(x, un)

‖un‖2 dx

=
1
2
− λ lim inf

n→∞

∫
Ωn(r0,+∞)

F(x, un)

|un|2
|vn|2dx

=
1
2
− λ lim inf

n→∞

∫
Ω

F(x, un)

|un|2
χΩn(r0,+∞)(x)|vn|2dx

≤ 1
2
− λ

∫
Ω

lim inf
n→∞

F(x, un)

|un|2
χΩn(r0,+∞)(x)|vn|2dx

→ −∞,

(3.9)

which is a contradiction. Thus {un} is bounded in X0. The proof is accomplished.

Lemma 3.2. Suppose that ( f1), ( f7)1 and ( f8) hold. Then for all λ > 0, any (C)c-sequence of
ϕλ has a convergent subsequence in E.

Proof. Let {un} ⊂ X0 be a (C)c sequence. In view of the Lemma 3.1, the sequence {un} is
bounded in X0. Then, up to a subsequence we have un ⇀ u in X0. According to Lemma 2.2,
un → u in Lq(Ω) for 1 ≤ q < 2∗s .
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It is easy to compute directly that∫
Ω
| f (x, un)− f (x, u)||un − u|dx

≤
∫

Ω
(| f (x, un)|+ | f (x, u)|)|un − u|dx

≤
∫

Ω
[(a1 + a2|un|q−1) + (a1 + a2|u|q−1)]|un − u|dx

≤ 2a1

∫
Ω
|un − u|dx + a2

∫
Ω
|un|q−1|un − u|dx + a2

∫
Ω
|u|q−1|un − u|dx

≤ 2a1

∫
Ω
|un − u|dx + a2

(∫
Ω
|un|(q−1)q′dx

) 1
q′
(∫

Ω
|un − u|qdx

) 1
r

+ a2

(∫
Ω
|u|(q−1)q′dx

) 1
q′
(∫

Ω
|un − u|qdx

) 1
q

= 2a1

∫
Ω
|un − u|dx + a2

(∫
Ω
|un|qdx

) q−1
q
(∫

Ω
|un − u|qdx

) 1
q

+ a2

(∫
Ω
|u|qdx

) q−1
q
(∫

Ω
|un − u|qdx

) 1
q

= 2a1|un − u|1 + a2|un|q−1
q |un − u|q + a2|u|q−1

q |un − u|q
→ 0, as n→ ∞,

(3.10)

where 1
q +

1
q′ = 1.

Noting that

‖un − u‖2 = 〈un − u, un − u〉

= 〈ϕ′λ(un)− ϕ′λ(u), un − u〉+ λ
∫

Ω
( f (x, un)− f (x, u))(un − u)dx.

(3.11)

Moreover, by (3.1), one yields

lim
n→∞
〈ϕ′λ(un)− ϕ′λ(u), un − u〉 = 0. (3.12)

Finally, the combination of (3.10)–(3.12) implies

‖un − u‖ → 0, as n→ +∞. (3.13)

Thus, we obtain un → u in X0. The proof is complete.

Lemma 3.3. Suppose that ( f1), ( f7)1 and ( f10) hold. Then for all λ > 0, any (C)c-sequence of
ϕλ has a convergent subsequence in X0.

Proof. Similarly to the proof of Lemma 3.1, we only prove that {un} is bounded in X0. Suppose
by contradiction that ‖un‖ → ∞ as n→ ∞. Let vn = un

‖un‖ , then ‖un‖ = 1 and |vn|q ≤ cq‖vn‖ =
cq for q ∈ [1, 2∗s ). Going if necessary to a subsequence, we may assume that

vn ⇀ v in X0;

vn → v in Lq(Ω), 1 ≤ q < 2∗s ;

vn(x)→ v(x) a.e. on Ω.

(3.14)
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By (3.1) and ( f10), one has

c + 1 ≥ ϕλ(un)−
1
µ
〈ϕ′λ(un), un〉

≥ µ− 2
2µ
‖un‖2 − λC4

µ
|un|22,

(3.15)

for n ∈N, which implies

1 ≤ 2λC4

µ− 2
lim sup

n→∞
|vn|22. (3.16)

In view of (3.14), vn → v in Lp(Ω). Hence, we deduce from (3.16) that v 6= 0. By a similar
fashion as (3.9), we can conclude a contradiction. Thus, {un} is bounded in X0. The rest of
the proof is the same as that in Lemma 3.2.

Proof of Theorem 1.1. Let E = X0, I = ϕ, G = J and H = Ψ. We know that ϕλ satisfies the
(C)-condition from Lemma 3.2 and J(0) = Ψ(0) = 0. In view of Lemma 2.3, it suffices to
show that if,

(a) the functional ϕλ is unbounded from below,
(b) for given ν > 0, there exists λ0 > 0 such that

sup
u∈J−1((−∞,1))

Ψ(u) ≤ 1
λ0

.

Verification of (a). By the assumption ( f7)1, for any M > 0, there exists a constant δ > 0 such
that

F(x, t) = |F(x, t)| ≥ M|t|2

for |t| > δ and for almost all x ∈ Ω. Let δ0 = max{δ, r0}. Then

F(x, t) = |F(x, t)| ≥ M|t|2, ∀|t| > δ0, ∀x ∈ Ω.

Hence, from ( f1), there exists a constant CM > 0 such that

F(x, t) ≥ M|t|2 − CM, for a.e. x ∈ Ω, t ∈ R. (3.17)

Take v ∈ X0 with v > 0 on Ω and τ > 1. Then, for any λ > 0, the relation (3.17) implies that

ϕλ(τv) =
τ2

2

∫
Ω×Ω
|v(x)− v(y)|2K(x− y)dxdx− λ

∫
Ω

F(x, τv)dx

≤ τ2

2
‖v‖2 − λτ2M

∫
Ω
|v|2dx + λCM meas(Ω).

(3.18)

If M is large enough that
1
2
‖v‖2 − λM

∫
Ω
|v|2dx < 0.

This means that
lim

τ→+∞
ϕλ(τv) = −∞.

Hence the functional ϕ is unbounded from below.
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Verification of (b). Using assumption ( f1) and Lemma 2.2, we deduce

Ψ(u) =
∫

Ω
F(x, u)dx

≤
∫

Ω

(
a1|u|+

a2

q
|u|q

)
dx

= a2|u|1 +
a2

q
|u|qq

≤ a1c1‖u‖+
a2

q
cq‖u‖q,

(3.19)

where c1, cq is given in Lemma 2.2.
On the other hand, for each u ∈ J−1((−∞, ν)), It follows that

2ν > 2J(u) =
∫

Ω×Ω
|u(x)− u(y)|2K(x− y)dxdx = ‖u‖2.

This implies that
‖u‖ <

√
2ν. (3.20)

Let us denote

λ0 :=
(

a1c1
√

2ν + a2cq(2ν)
q
2

)−1
.

Taking into account (3.19) we assert that

sup
u∈J−1((−∞,ν))

Ψ(u) ≤ a1c1
√

2ν + a2cq(2ν)
q
2 =

1
λ0

<
1
λ

. (3.21)

Therefore, all the assumptions of Lemma 2.3 are satisfied, so that, for each λ ∈ (0, λ0), the
problem (P) admits at least two distinct weak solutions in E. This completes the proof.

Proof of Theorem 1.2. Let E = X0, I = ϕ, G = J and H = Ψ. We know that ϕλ satisfies the
(C)-condition from Lemma 3.3 and J(0) = Ψ(0) = 0. The rest proof is the same as that of
Theorem 1.1. Hence, the problem (1.1) admits at least two distinct weak solutions in X0. This
completes the proof.
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