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Consider the linear nonautonomous second order differential equation

(L) x′′ + a(t)x = 0,

where a : R+ → R+ is a positive nondecreasing function. This equation describes the
motion of a material point of unit mass under the action of restoring force with changing
elasticity coefficient. It is known [11] that every solution x of (L) is oscillatory, the maxima
of |x| do not increase and the maxima of |x′| do not decrease as t goes to infinity. The
following question arises: Can maxima of |x| tend to zero as t goes to infinity, provided
that the elasticity coefficient a tends to infinity?

This is a classical problem of the stability theory of nonautonomous differential sys-
tems [11, Ch. XIV]. In 1934, H. Milloux [23] proved that there always exists a solution
x0 6≡ 0 of (L) with the property

(1) lim
t→∞

x0(t) = 0,

provided that a is continuously differentiable. The celebrated Armellini-Tonelli-Sansone
theorem says that if function a “grows regularly” to infinity, then all solutions of (L) have
property (1). The “regular growth” means that the function does not increase intermit-
tently; i.e., the increase of the function cannot be located to a sequence of intervals whose
density on R+ is small in some sense. The theorem has been sharpened and extended to
various types of equations [4–9, 12–13, 15, 20, 22, 24].

Let us consider the simplest case of “irregular” growth when a is a step function:

(2) x′′ + akx = 0 (tk ≤ t < tk+1), k = 0, 1, 2, . . . ,
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where
t0 = 0, lim

k→∞

tk = ∞,

0 < a0 < a1 < . . . < ak < ak+1 < . . . , lim
k→∞

ak = ∞.

By a solution of (2) we mean a function continuously differentiable on R+, twice contin-
uously differentiable on the set I := ∪∞

k=0
(tk, tk+1), and satisfying equation (2) on set I.

Extending Milloux’s theorem to equation (2), we proved

THEOREM A [14]. There exists at least one solution x0 6≡ 0 of equation (2) satisfying
(1).

Now let us deal with the problem of finding sufficient conditions on sequence
{tk, ak}∞k=0

guaranteeing that all solutions of (2) satisfy (1). In fact, equation (2) is in-
tegrable: one can integrate the equation on every interval [tk, tk+1), then one “glues” the
pieces together properly to get a solution on R+. Using this method, Á. Elbert proved the
following

THEOREM B [9]. If

∞
∑

k=1

min

{

1 −
√

ak√
ak+1

; 1 −
√

ak+1√
ak+2

}

sin2
(√

ak+1(tk+1 − tk)
)

= ∞,

then all solutions of equation (2) satisfy (1).

This is a very nice theoretical result. However, it is not easy to check the condition in
practice. Roughly speaking, the condition says that the time difference tk+1 − tk between
two consecutive jumps should not be near to mπ/

√
ak+1, m ∈ N. One can think that this

condition “typically” is satisfied. To make this claim more precise, we made the following
conjecture [14]: If {ak}∞k=1

is given and {tk} is chosen “at random”, then it is almost sure
that all solutions of (1) satisfy (2). Recently it has turned out that the conjecture is true
for an important class of random sequence {tk} :

THEOREM C [15]. Suppose {ak}∞k=0
is given, and {tk}∞k=0

is random such that for
every k = 0, 1, 2, . . . the difference tk+1 − tk is a random variable uniformly distributed on
interval [0, 1].

Then all solutions of (2) satisfy (1) with probability 1.

Consider now the so-called half-linear second order differential equation

(HL) x′′|x′|n−1 + a(t)|x|n−1x = 0, (0 < n ∈ R),

introduced by I. Bihari [3]. He called this equation half-linear because its solution set
is homogeneous, but it is not additive. Many papers have been devoted to the study of
asymptotic properties of the solutions of (HL) (see [1–2, 4, 10, 16–19, 21] and the references
therein). I. Bihari extended the Armellini-Tonelli-Sansone theorem proving

THEOREM D [4]. If coefficient a in (HL) is continuously differentiable and it grows
to infinity “regularly” as t → ∞, then all solutions of (HL) have property (1).
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The problem of extending Milloux’s theorem to (HL) is more difficult since all the
tools of the proof were connected with the linearity of (L). Very recently, F.V. Atkinson
and Á. Elbert proved

THEOREM E [1–2]. If function a is continuously differentiable, monotonous, and
limt→∞ a(t) = ∞, then there exists at least one solution x0 6≡ 0 of (HL) satisfying (1).

Now we show, that Milloux’s theorem has an extension to equation (HL) also in the
case if a is a step function. Consider the equation

(3) x′′|x′|n−1 + ak|x|n−1x = 0, (tk ≤ t < tk+1), k = 0, 1, 2 . . . ,

where
t0 = 0, lim

k→∞

tk = ∞,

0 < a0 < a1 < . . . < ak < ak+1 < . . . , lim
k→∞

ak = ∞.

A solution of (3) is defined in the same way as it was done for equation (2).

THEOREM 1. There exists a solution x0 6≡ 0 of equation (3) satisfying (1), i.e.,
limt→∞ x0(t) = 0.

Proof. At first we make the changing ak disappear from the equation. To this end we
rescale the time: t = t(τ), where τ denotes the “new time” such that τ0 := t0 = 0, t(τk) =
tk, and

t(τ) = tk + αk(τ − τk) (τk ≤ τ < τk+1),

αk := a
−

1
n+1

k
(k = 0, 1, 2, . . .).

If we use the notation y(τ) := x(t(τ)), then

x′(t(τ)) =
1

αk

y′(τ), x′′(t(τ)) =
1

α2
k

y′′(τ),

and equation (3) with the new variables τ, y has the form

y′′(τ)|y′(τ)|n−1 + |y(τ)|n−1y(τ) = 0, (τk ≤ τ < τk+1), k = 0, 1, 2, . . . .

Any solution x of equation (3) has to be differentiable on R+; therefore, for every k ∈
N, x′(tk+1 − 0) = x′(tk+1 + 0), which means, that

y′(τk+1) = y′(τk+1 + 0) =
αk+1

αk

y′(τk+1 − 0), k = 1, 2, . . . .

We obtained, that equation (3) is equivalent to the following differential equation with
impulses:

(4)











y′′|y′|n−1 + |y|n−1y = 0, τ 6= τk,

y′(τk+1) =

(

ak

ak+1

)
1

n+1

y′(τk+1 − 0), k = 0, 1, 2, . . . .
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The expression
|y′|n+1 + |y|n+1

is a first integral of (4) on every interval [τk, τk+1), k = 0, 1, 2, . . .. So the dynamics of
(4) is the following. Any point (y0, y

′

0) starts moving at t0 = τ0 = 0 along the Minkowski
circle

|y′|n+1 + |y|n+1 = |y′

0|n+1 + |y0|n+1.

At τ = τ1 it jumps from the point (y(τ1 − 0), y′(τ1 − 0)) of this circle to the point

(y(τ1), y
′(τ1)) :=

(

y(τ1 − 0),

(

a0

a1

)
1

n+1

y′(τ1 − 0)

)

,

and starts turning again around the origin along another Minkowski circle on (τ1, τ2) and
this is repeated as k = 0, 1, 2, . . .. To prove our theorem it is enough to find a point
(y0∗, y

′

0∗) on the Minkowski unit circle

(5) C0 : |y′|n+1 + |y|n+1 = 1

from which there starts a trajectory τ 7→ (y(τ ; y0∗, y
′

0∗), y′(τ ; y0∗, y
′

0∗)) such that

(6) lim
τ→∞

y(τ ; y0∗, y
′

0∗) = 0.

Now we construct such a point (y0∗, y
′

0∗).
Let us start a trajectory from every point of unit circle C0. The points of this trajec-

tories at τk form a Minkowski ellipse Ck around the origin. The area Ak of the interior of
Ck tends to 0 as k → ∞, since

Ak =

(

a0

a1

a1

a2

. . .
ak

ak+1

)
1

n+1

A0 =

(

a0

ak+1

)
1

n+1

A0 → 0, as k → ∞.

Consequently, there is a sequence {Pk}∞k=1
such that

Pk ∈ Ck, lim
k→∞

dist(Pk, O) = 0,

where O = (0, 0) denotes the origin. Let Qk ∈ C0 denote the pre-image of Pk. Since C0

is compact, we can assume that {Qk}∞k=1
converges: limk→∞ Qk =: Q∗ = (y0∗, y

′

0∗) ∈ C0.
We prove that (6) is satisfied for this point Q∗.

In fact, if we define

ρ [(y, y′); O] =
(

|y′|n+1 + |y|n+1
)

1
n+1

(Minkowski norm), then

ρ [(y(τk; Q∗), y
′(τk; Q∗)) ; O]

≤ ρ[Pk; O] +
{

ρ [(y(τk; Q∗), y
′(τk; Q∗)) ; O]

− ρ [(y(τk; Qk), y′(τk; Qk)) ; O]
}

→ 0, as k → ∞,
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since ρ[Pk; O] → 0 by the definition of Pk, and {. . .} also tends to zero because the
phase plane (y, y′) contracts with respect to ρ by the dynamics of (4). But the function
t 7→ ρ [(y(τ ; Q∗), y

′(τ ; Q∗)) ; O] is nonincreasing, so we have

|y(τ ; Q∗)| ≤ ρ [(y(τ ; Q∗), y
′(τ ; Q∗)) ; O] → 0 as τ → ∞,

which was to be proved.
Finally we mention, that the probabilistic approach in Theorem C can be extended

also for the half-linear equation (3).
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