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Abstract. We consider a third order system x′′′ = f (x) with the two-point boundary
conditions x(0) = 0, x′(0) = 0, x(1) = 0, where f (0) = 0 and the vector field f ∈
C1(Rn, Rn) is asymptotically linear with the derivative at infinity f ′(∞). We introduce
an asymptotically linear vector field φ such that its singular points (zeros) are in a one-
to-one correspondence with the solutions of the boundary value problem. Using the
vector field rotation theory, we prove that under the non-resonance conditions for the
linearized problems at zero and infinity the indices of φ at zero and infinity can be
expressed in the terms of the eigenvalues of the matrices f ′(0) and f ′(∞), respectively.
This proof constitutes an essential part of our article. If these indices are different, then
standard arguments of the vector field rotation theory ensure the existence of at least
one nontrivial solution to the boundary value problem. At the end of the article we
consider the consequences for the scalar case.
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1 Introduction

Third order ordinary differential equations play an important role in modeling various pro-
cesses in physics, engineering and technology, for example, in modeling compressible flows,
thin viscous films, three-layer beams, electric circuits, and many others. The reader may con-
sult, for instance, [4,8,9,13,25] and references therein, for more information about applications
of third order equations.

The present article regards the existence results for a system of n third order ordinary
differential equations

x′′′ = f (x), (1.1)
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satisfying the two-point boundary conditions

x(0) = 0, x′(0) = 0, x(1) = 0. (1.2)

The vector field f : Rn → Rn is supposed to present a linear behavior near zero and infinity.
We prove the existence of at least one nontrivial solution to the problem (1.1), (1.2) when
appropriate indices associated with the linearized problems at zero and infinity are different.
The same approach was used in the authors papers [10,11] considering the Dirichlet boundary
value problem for second order systems with asymptotically linear and asymptotically asym-
metric behavior at infinity, respectively. The idea of comparison the behavior of solutions near
zero and infinity was developed in [1, 24].

The literature on boundary value problems for third order nonlinear systems is not ex-
tensive, see, for instance, [5, 15, 16] and references therein. In the works [6, 8, 17, 19, 22, 23, 27]
boundary values problems for m-th order systems are considered.

First, in Section 2, we consider some properties of asymptotically linear vector fields. We
assume that a vector field f : Rn → Rn satisfies the following conditions.

(A1) f ∈ C1(Rn, Rn).

(A2) f (0) = (0), where 0 = ( 0, 0, . . . , 0︸ ︷︷ ︸
n

)T ∈ Rn.

(A3) f is asymptotically linear.

Then we introduce a vector field φ : Rn → Rn associated with the problem (1.1), (1.2). The
singular points (zeros) of φ are in a one-to-one correspondence with the solutions of the
boundary value problem (1.1), (1.2).

In Section 3, we will prove a number of auxiliary propositions which will be used in the
next sections.

In Section 4, we explore a linear vector field ψ : Rn → Rn associated with the linear
boundary value problem

p′′′ = A p, (1.3)

p(0) = 0, p′(0) = 0, p(1) = 0, (1.4)

where A is a n × n matrix with real entries. If this problem is non-resonant, that is, the
problem (1.3), (1.4) has only the trivial solution, then Theorem 4.2 states that the index of
ψ at zero can be expressed in the terms of the eigenvalues of A. The proof of Theorem 4.2
constitutes an essential part of our article.

In Section 5, we explore the vector field φ near zero. We consider a vector field φ0 : Rn →
Rn associated with the linearized at zero problem (5.4). The assumptions (A1) to (A3) coupled
with the condition that (5.4) is non-resonant ensure that ind(0, φ) = ind(0, φ0).

In Section 6, we prove that the vector field φ is asymptotically linear. We consider the
vector field φ∞ : Rn → Rn associated with the linearized at infinity problem (6.3). The as-
sumptions (A1) and (A3) combined with the condition that (6.3) is non-resonant ensure that
ind(∞, φ) = ind(0, φ∞).

In Section 7, we prove the main theorem 7.1 of this paper. The assumptions (A1) to (A3)
coupled with the condition that the problems (5.4) and (6.3) are non-resonant provide that
zero and infinity are isolated singular points of φ. The standard arguments of the vector field
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rotation theory (the Brouwer degree theory) ensure the existence of at least one nontrivial
solution to the problem (1.1), (1.2) whenever ind(0, φ) 6= ind(∞, φ).

In Section 8, we consider the example illustrating the main theorem and providing calcu-
lations of indices of φ at zero and infinity based on Theorem 4.2.

In Section 9, we analyze the main theorem in the scalar case.
The concluding remarks in Section 10 finish our paper.

2 Vector field φ associated with the boundary value problem

Definition 2.1 ([20]). A vector field f ∈ C(Rn, Rn) is called asymptotically linear if there exists
a real n× n matrix f ′(∞) such that

lim
‖x‖→∞

∥∥ f (x)− f ′(∞) x
∥∥

‖x‖ = 0, (2.1)

where ‖ · ‖ is the Euclidean norm on Rn. The matrix f ′(∞) is called the derivative of f at
infinity.

If a vector field f ∈ C(Rn, Rn) is asymptotically linear, then, see [2], its derivative f ′(∞) at
infinity is uniquely determined by f .

Definition 2.2 ([31]). A vector field f ∈ C(Rn, Rn) is called linearly bounded if there exist
non-negative constants a and b such that∥∥ f (x)

∥∥ ≤ a + b ‖x‖, ∀x ∈ Rn. (2.2)

Proposition 2.3. Consider a vector field f ∈ C(Rn, Rn).

(a) If f is asymptotically linear and

g(x) = f (x)− f ′(∞) x, ∀x ∈ Rn, (2.3)

then for every ε > 0 there exists M(ε) > 0 such that∥∥g(x)
∥∥ ≤ M(ε) + ε‖x‖, ∀x ∈ Rn. (2.4)

(b) Suppose that there exist a real n× n matrix B and a vector field g : Rn → Rn such that f has
the form

f (x) = Bx + g(x), ∀x ∈ Rn. (2.5)

If for every ε > 0 there exists M(ε) > 0 such that (2.4) is fulfilled, then f is asymptotically
linear and B = f ′(∞).

(c) If f is asymptotically linear, then f is linearly bounded.

Proof. (a) The statement is valid due to the reference [20].
(b) Consider ε > 0. Then there exists M(ε) > 0 such that (2.4) fulfills. It follows from (2.4)

and (2.5) that

lim
‖x‖→∞

∥∥ f (x)− B x
∥∥

‖x‖ ≤ ε.
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Since ε > 0 can be arbitrary, then (2.1) is fulfilled with f ′(∞) = B, by the uniqueness of the
derivative of f at infinity.

(c) If f is asymptotically linear with the derivative at infinity f ′(∞), then it follows from
(2.3) that ∥∥ f (x)

∥∥ ≤ ∥∥ f ′(∞) x
∥∥+ ∥∥g(x)

∥∥ ≤ ∥∥ f ′(∞)
∥∥‖x‖+ ∥∥g(x)

∥∥, ∀x ∈ Rn, (2.6)

where
‖ f ′(∞)‖ = max

‖x‖=1
‖ f ′(∞) x‖

is the induced matrix norm on the Euclidean space Rn. Consider ε > 0. Then, in accordance
with (a), there exists M(ε) > 0 such that (2.4) is valid. It follows from (2.4) and (2.6) that (2.2)
is fulfilled with a = M(ε) > 0 and b =

∥∥ f ′(∞)
∥∥+ ε > 0.

Corollary 2.4. Consider a vector field f ∈ C(Rn, Rn).

(a) If f is bounded on Rn, then f is asymptotically linear with f ′(∞) = On, where On is the n× n
zero matrix.

(b) If f is quasi-linear, that is, f has the form (2.5), where g is bounded on Rn, then f is asymptoti-
cally linear with f ′(∞) = B.

From now on, we assume that the conditions (A1) to (A3) are fulfilled.
Let us rewrite the system (1.1) in the equivalent form w′ = F(w), where

F(w) =
(
y, z, f (x)

)T, w = (x, y, z)T ∈ RN , y = x′, z = y′ = x′′, N = 3n.

Denote by ‖ · ‖N the Euclidean norm on RN .

Proposition 2.5. Suppose that the conditions (A1) to (A3) hold. The vector field F : RN → RN has
the following properties.

(a) F ∈ C1(RN , RN).
(b) F(o) = o, where o = (0, 0, 0)T ∈ RN , besides

F ′(o) =

 On In On

On On In

f ′(0) On On

 , (2.7)

where In is the n× n unit matrix.

(c) F is asymptotically linear and its derivative at infinity is

F ′(∞) =

 On In On

On On In

f ′(∞) On On

 . (2.8)

(d) F is linearly bounded.
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Proof. The statements (a) and (b) are direct consequences of (A1) and (A2).
(c) Since f is asymptotically linear, then it follows from (a) of Proposition 2.3 that for every

ε > 0 there exists M(ε) > 0 such that (2.4) fulfills. For each w = (x, y, z)T ∈ RN we have

‖F(w)− F ′(∞)w
∥∥

N =
∥∥g(x)

∥∥ ≤ M(ε) + ε‖x‖ ≤ M(ε) + ε‖w‖N ,

where F ′(∞) and g are given by (2.8) and (2.3), respectively. In accordance with (b) of Propo-
sition 2.3, the vector field F is asymptotically linear with the derivative at infinity F ′(∞).

(d) It follows from (c) of Proposition 2.3 that f is linearly bounded, that is, there exist non-
negative constants a and b such that (2.2) is valid. Consider an arbitrary w = (x, y, z)T ∈ RN .
Since (

‖y‖ − ‖z‖
)2 ≥ 0,

(
‖x‖ − b‖y‖

)2 ≥ 0,
(
‖x‖ − b‖z‖

)2 ≥ 0,

then

2‖y‖ ‖z‖ ≤ ‖y‖2 + ‖z‖2, 2b ‖x‖ ‖y‖ ≤ ‖x‖2 + b2‖y‖2, 2b ‖x‖ ‖z‖ ≤ ‖x‖2 + b2‖z‖2.

Taking into account the last inequalities, we obtain(
‖y‖+ ‖z‖+ b ‖x‖

)2 ≤ (2 + b2)
(
‖x‖2 + ‖y‖2 + ‖z‖2) = (2 + b2) ‖w‖2

N . (2.9)

In view of (2.2) and (2.9), we have∥∥F(w)
∥∥

N =

√
‖y‖2 + ‖z‖2 +

∥∥ f (x)
∥∥2 ≤ ‖y‖+ ‖z‖+

∥∥ f (x)
∥∥

≤ a +
(
‖y‖+ ‖z‖+ b ‖x‖

)
≤ a +

√
2 + b2 ‖w‖N .

Consequently, F is linearly bounded.

It follows from Proposition 2.5 that F ∈ C1(RN , RN) and F is linearly bounded. Therefore,
see [3, 31], the flow Φt(ξ) = w(t; ξ) of F is complete and Φt ∈ C1(RN , RN) for every t ∈ R,

where w(t; ξ) =
(
x(t; ξ), x′(t; ξ), x′′(t; ξ)

)T, is the solution of the Cauchy problem

w′ = F(w), w(0) = ξ.

Consider ξ = (α, β, γ)T ∈ RN . If α = β = 0, then

x(t; γ) := x(t; ξ) (2.10)

solves the Cauchy problem (1.1),

x(0) = 0, x′(0) = 0, x′′(0) = γ. (2.11)

Consider a vector field φ : Rn → Rn,

φ(γ) = x(1; γ), ∀γ ∈ Rn.

Since φ is the first component of the restriction Φ1
∣∣∣α=0

β=0
, then φ ∈ C1(Rn, Rn).

Definition 2.6. A point γ ∈ Rn is called a singular point of the vector field φ if φ(γ) = 0.

The singular points of φ are in a one-to-one correspondence with the solutions of the
boundary value problem (1.1), (1.2), since φ(γ) = 0 if and only if x(t; γ) solves (1.1), (1.2). It
follows from (A2) that γ = 0 is a singular point of φ and it corresponds to the trivial solution
of (1.1), (1.2). Each singular point γ 6= 0 of φ generates a nontrivial solution of (1.1), (1.2).

In this paper, we will prove that under the conditions, formulated in the main theorem
7.1, the vector field φ has a singular point γ 6= 0. For this we will use the vector field rotation
theory. The reader may consult, for instance, [21,30], for definitions of isolated singular points
of vector fields and their indices.
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3 Auxiliary results

Consider the function

h(z) = ez + ε1eε1z + ε2eε2z = ez − 2e−
z
2 sin

(√
3

2
z +

π

6

)
, ∀z ∈ C, (3.1)

where ε1,2 = − 1
2 ± i

√
3

2 are cube roots of unity and ez is the complex exponential function. The
function h is analytic on C and

h(ε1z) = ε2h(z), h(ε2z) = ε1h(z), ∀z ∈ C. (3.2)

If τ is a zero of h, then it follows from (3.2) that ε1τ and ε2τ are zeros of h, too.
The next lemma plays an important role in our considerations.

Lemma 3.1. The function h has no complex zeros outside of the lines Im z = 0 and Im z = ±
√

3 Re z.

For the proof of this lemma we will prove a number of auxiliary propositions, some of
which are of independent interest and will be used in the next sections.

3.1 The change of the argument along a path

Definition 3.2. Let α and β be real numbers with α < β. A continuous mapping w : [α, β]→ C

is called a path from w(α) to w(β) and its image [w] = w
([

α, β]
)

is called the trace of w. A
path w : [α, β] → C is called a loop if w(α) = w(β). A subset L ⊂ C is called a Jordan curve if
there exists a loop w : [α, β] → C such that L = [w] and the mapping w, restricted to [α, β), is
injective.

For each path w : [α, β]→ C \ {0} there exist, see [29], continuous functions ρ : [α, β]→ R+

and ϕ : [α, β]→ R such that

w(t) = ρ(t) ei ϕ(t), ∀t ∈ [α, β]. (3.3)

Definition 3.3 ([29]). Every continuous function ϕ satisfying (3.3) is called a continuous branch
of the argument along the path w.

If ϕ and ψ are two continuous branches of the argument along the path w, then, see [29],
there exists k ∈ Z such that ψ(t) = ϕ(t) + 2πk for every t ∈ [α, β]. Therefore, if ϕ is a
continuous branch of the argument along the path w : [α, β] → C \ {0}, then the difference
∆w arg = ϕ(β)− ϕ(α) does not depend on the choice of the branch ϕ along w.

Definition 3.4. The difference ∆w arg is called the change of the argument along the path w.

If w : [α, β] → C \ {0} is a loop, then, see [29], the change of the argument along w is an
integer multiple of 2π, and, as already mentioned above, it does not depend on the choice of
the branch ϕ along w.

Definition 3.5. The integer wind w = ∆w arg
2π is called the winding number of w.

The reader may consult, for instance, [29], for more information about winding numbers.
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Proposition 3.6. If p, q : [α, β]→ C are paths such that∣∣p(t)− q(t)
∣∣ < ∣∣q(t)∣∣, ∀t ∈ [α, β], (3.4)

p(α) q(β) = p(β) q(α), (3.5)

then

[p], [q] ⊂ C \ {0}, (3.6)

∆p arg = ∆q arg . (3.7)

Proof. It follows from (3.4) that (3.6) fulfills. Taking into account (3.5), the path ω = p
q : [α, β]→

C \ {0} is a loop. The inequality (3.4) yields∣∣ω(t)− 1
∣∣ < 1, ∀t ∈ [α, β]. (3.8)

Consider the constant loop κ(t) ≡ 1 and a mapping H : [0, 1]× [α, β]→ C,

H(s, t) = (1− s) κ(t) + s ω(t), ∀s ∈ [0, 1], ∀t ∈ [α, β].

It follows from (3.6) and (3.8) that H(s, t) 6= 0 for every s ∈ [0, 1] and t ∈ [α, β]. The mapping
H(s, ·) : [α, β] → C \ {0} is a loop for every s ∈ [0, 1]. Therefore, the loop ω is homotopic
through loops to the constant loop κ in the region C \ {0}. In view of the reference [26],
wind w = 0. Hence, for every continuous branch ϕ of the argument along the loop ω we have
∆ω arg = ϕ(β)− ϕ(α) = 0. Taking into account (3.6), there exist continuous branches ϕp and
ϕq of the argument along the paths p and q, respectively. Since ω = p

q , then ϕ = ϕp − ϕq is a
continuous branch of the argument along the loop ω. We have

0 = ∆ω arg = ϕ(β)− ϕ(α) =
(

ϕp(β)− ϕq(β)
)
−
(

ϕp(α)− ϕq(α)
)

=
(

ϕp(β)− ϕp(α)
)
−
(

ϕq(β)− ϕq(α)
)
= ∆p arg−∆q arg .

Consequently, (3.7) fulfills.

Remark 3.7. If p, q : [α, β] → C are loops, then Lemma 3.6 actually is the Rouché’s Theorem
for loops, since (3.5) fulfills and (3.7) yields wind p = wind q.

3.2 The number of zeros of h in the interior of the triangle Tk

Consider the function

g(z) = ε1eε1z + ε2eε2z = −2e−
z
2 sin

(√
3

2
z +

π

6

)
, ∀z ∈ C. (3.9)

If
ξk = −

2π√
3

2 + 3k
3

(k ∈N0), (3.10)

then sin
(√3

2 ξk+
π
6

)
= (−1)k+1 (k ∈N0). For every k ∈N0 consider a mapping wk : [−1, 5]→C,

wk(t) =



w1,k(t) = ξk + i
√

3ξk t, if t ∈ [−1, 1],

w2,k(t) = ε1w1,k(t− 2) = − ξk
2 (−5 + 3t) + i

√
3ξk
2 (3− t), if t ∈ [1, 3],

w3,k(t) = ε1w2,k(t− 2) = ε2w1,k(t− 4)

= ξk
2 (−13 + 3t)− i

√
3ξk
2 (−3 + t), if t ∈ [3, 5].

(3.11)
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The mapping wk (k ∈ N0) is a loop and its trace [wk] = Tk ⊂ C \ {0} is a positively oriented
Jordan curve. The set Tk is a triangle with the vertices

z1,k = w1,k(−1) = ξk − i
√

3ξk, (3.12)

z2,k = w2,k(1) = ε1z1,k = ξk + i
√

3ξk, (3.13)

z3,k = w3,k(3) = ε1z2,k = ε2z1,k = −2ξk,

and it consists of the line segments

L[z1,k; z2,k], L[z2,k; z3,k] = ε1L[z1,k; z2,k], L[z3,k; z1,k] = ε2L[z1,k; z2,k] (3.14)

with the parametrizations w1,k, w2,k, w3,k, respectively.

Proposition 3.8. For every k ∈ N0 the number of zeros of h in the interior of the Jordan curve Tk,
counted with multiplicity, is equal to 2 + 3k.

Proof. Suppose that k ∈N0. Consider the loop pk = h ◦ wk : [−1, 5]→ C,

pk(t) =


lclp1,k(t) = (h ◦ w1,k)(t), if t ∈ [−1, 1],

p2,k(t) = (h ◦ w2,k)(t) = ε2 p1,k(t− 2), if t ∈ [1, 3],

p3,k(t) = (h ◦ w3,k)(t) = ε1 p1,k(t− 4), if t ∈ [3, 5],

(3.15)

and the path q1,k = g ◦ w1,k : [−1, 1]→ C.
Let us prove that ∣∣p1,k(t)− q1,k(t)

∣∣ < ∣∣q1,k(t)
∣∣, ∀t ∈ [−1, 1]. (3.16)

For every t ∈ [−1, 1] we have∣∣p1,k(t)− q1,k(t)
∣∣ = ∣∣∣ew1,k(t)

∣∣∣ = eξk < 1. (3.17)

Since

q1,k(t) = g
(
w1,k(t)

)
= −2e−

w1,k(t)
2 sin

(√
3

2
w1,k(t) +

π

6

)
= 2(−1)k cosh

(
3
2

ξkt
)

e−
ξk
2 e−i

√
3 ξk t
2 ,

(3.18)
then for every t ∈ [−1, 1] we obtain∣∣q1,k(t)

∣∣ = 2e−
ξk
2 cosh

(
3
2

ξkt
)
> 2. (3.19)

In view of (3.17) and (3.19) we deduce that (3.16) fulfills.
From (3.1), (3.9), (3.10) and (3.11) it follows that

p1,k(−1)
q1,k(−1)

= 1 +
1

1 + e−3ξk
=

p1,k(1)
q1,k(1)

.

Therefore,
p1,k(−1)q1,k(1) = p1,k(1)q1,k(−1). (3.20)

On account of (3.16) and (3.20), we infer from Proposition 3.6 that

[p1,k], [q1,k] ⊂ C \ {0}, (3.21)

∆p1,k arg = ∆q1,k arg . (3.22)
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It follows from (3.18) that
q1,k(t) = ν(t)eiθ(t), ∀t ∈ [−1, 1],

where

ν(t) = 2 cosh
(

3
2

ξkt
)

e−
ξk
2 > 0, θ(t) =

−
√

3 ξk t
2 , if k = 0, 2, 4, . . . ,

π −
√

3 ξk t
2 , if k = 1, 3, 5, . . . ,

are continuous functions on the interval [−1, 1]. Therefore, θ is a continuous branch of the
argument along the path q1,k and

∆q1,k arg = θ(1)− θ(−1) =
2 + 3k

3
2π.

In view of (3.22),

∆p1,k arg =
2 + 3k

3
2π. (3.23)

Taking into account (3.21), there exist continuous functions

r : [−1, 1]→ R+, a : [−1, 1]→ R

such that
p1,k(t) = h

(
w1,k(t)

)
= r(t)eia(t), ∀t ∈ [−1, 1]. (3.24)

Since (3.23) is valid for every continuous branch of the argument along the path p1,k, then

a(1)− a(−1) =
2 + 3k

3
2π. (3.25)

It follows from (3.2), (3.12), (3.13) and (3.24) that

r(1)eia(1) = p1,k(1) = h
(
w1,k(1)

)
= h

(
ε1w1,k(−1)

)
= ε2h

(
w1,k(−1)

)
= ε2 p1,k(−1) = ε2r(−1)eia(−1).

Hence,
r(1) = r(−1). (3.26)

Consider functions ρk, ϕk : [−1, 5]→ R,

ρk(t) =


ρ1,k(t) = r(t), if t ∈ [−1, 1],
ρ2,k(t) = r(t− 2), if t ∈ [1, 3],
ρ3,k(t) = r(t− 4), if t ∈ [3, 5],

(3.27)

ϕk(t) =


ϕ1,k(t) = a(t), if t ∈ [−1, 1],
ϕ2,k(t) = 4π

3 + a(t− 2) + 2πk, if t ∈ [1, 3],

ϕ3,k(t) = 2π
3 + a(t− 4) + 2π(1 + 2k), if t ∈ [3, 5].

(3.28)

Since r(t) > 0 for every t ∈ [−1, 1], then ρk(t) > 0 for every t ∈ [−1, 5]. It follows from (3.2),
(3.11), (3.15), (3.27) and (3.28), that

ρk(t)ei ϕk(t) = pk(t), ∀t ∈ [1, 5].

On account of (3.25) and (3.26), the functions ρk and ϕk are continuous on the interval [−1, 5].
Consequently, ϕk is a continuous branch of the argument along the loop pk and the change of
the argument along the loop pk is

∆pk arg = ϕk(5)− ϕk(−1) = ϕ3,k(5)− ϕ1,k(−1) = (2 + 3k)2π.
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The winding number of the function h along the Jordan curve Tk is

windTk h := wind pk =
∆pk arg

2π
= 2 + 3k.

It follows from the argument principle for analytic functions, see [29], that the number of
zeros of h in the interior of Tk, counted with multiplicity, is equal to 2 + 3k.

3.3 The scalar eigenvalue problem

Proposition 3.9.

(a) The number r0 = 0 is a double zero of h. Every zero τ ∈ C \ {0} of h, if any, is simple.

(b) The function h is positive on the interval (0,+∞).

(c) The function h on the real axis has a countable number of zeros rk (k ∈N0) which can be ordered
as

· · · < ξk+1 < rk+1 < ξk < rk < · · · < ξ2 < r2 < ξ1 < r1 < ξ0 < r0 = 0, (3.29)

where ξk (k ∈N0) are given by (3.10).

(d) The function h is positive on (rk+1, rk) if k ∈N0 is even and negative if k ∈N0 is odd.

Proof. (a) The number r0 = 0 is a double zero of h, since

h(0) = 1 + ε1 + ε2 = 0, h′(0) = 1 + ε2
1 + ε2

2 = 0, h′′(0) = 1 + ε3
1 + ε3

2 = 3 6= 0. (3.30)

Consider τ ∈ C \ {0} such that h(τ) = 0. Let us prove that h′(τ) 6= 0. Suppose, on the
contrary, that h′(τ) = 0. Since h(z) = ez + g(z) for every z ∈ C, then eτ + g(τ) = 0 and
eτ + g′(τ) = 0, where the function g is given by (3.9). Therefore,

ε2eε1τ + ε1eε2τ = g′(τ) = g(τ) = ε1eε1τ + ε2eε2τ.

We deduce that e(ε1−ε2)τ = 1 and thus there exists m ∈ Z such that τ = 2πm√
3

. If follows from

0 = h(τ) = e−
πm√

3

(
e
√

3πm − (−1)m
)

that e
√

3πm = 1. Hence, m = 0 and τ = 0. The contradiction obtained proves the statement.
(b) Let us consider the function h on the real axis. Taking into account (3.1), we can write

h(t) = 2e−
t
2 q(t), ∀t ∈ R, (3.31)

where

q(t) = q1(t)− q2(t), q1(t) =
1
2

e
3t
2 , q2(t) = sin

(√
3

2
t +

π

6

)
, ∀t ∈ R.

It follows from (3.31) that the functions h and q have the same zeros.
1) Since q2(ξk) = (−1)k+1 (k ∈ Z), then ξk (k = 0,±2,±4, . . .) are local minima of q2 and

ξk (k = ±1,±3,±5, . . .) are local maxima of q2. The points ηk = − 2π√
3

1+6k
6 (k ∈ Z) are zeros

of q2 and

· · · < ξk+1 < ηk+1 < ξk < ηk < · · · < η2 < ξ1 < η1 < ξ0 < η0 < 0 < ξ−1 < η−1 < · · ·
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The function q1 is positive and strictly increasing on R, besides, lim
t→−∞

q1(t) = 0 and q1(0) = 1
2 .

Therefore, for each k ∈N0 the points ξk and ηk are not zeros of the function q, since

q(ηk) = q1(ηk) > 0 (k ∈N0),

q(ξk) = q1(ξk) + (−1)k

{
< 0, if k = 1, 3, 5, . . . ,

> 0, if k = 0, 2, 4, . . .

2) Since the function q1 is positive on (η1, η0) and the function q2 is negative on this interval,
then the function q is positive on (η1, η0).

3) The function q1 is strictly convex on R and q1(0) = 1
2 , q′1(0) =

3
4 . Therefore, for t ∈ R

the graph of q1 is strictly above the tangent line y = 1
2 +

3
4 t to the graph of q1 at

(
0, 1

2

)
except

at the point of tangency. The function q2 is strictly concave on the interval (η0, ξ−1) and
q2(0) = 1

2 , q′2(0) =
3
4 . Therefore, for t ∈ (η0, ξ−1) the graph of q2 is strictly below the tangent

line y = 1
2 +

3
4 t to the graph of q2 at

(
0, 1

2

)
except at the point of tangency. Consequently, the

function q is positive on (η0, ξ−1) except at the point r0 = 0, where q(r0) = 0.
4) Since q1(ξ−1) =

1
2 e

π√
3 = 3.0668 and the function q1 is strictly increasing on R, then for

every t ∈ [ξ−1,+∞) we have q1(t) ≥ q1(ξ−1) > 1 ≥ q2(t). Therefore, the function q is positive
on [ξ−1,+∞).

It follows from 1) to 4) that h(t) > 0 for every t ∈ [η1,+∞) except at the point r0 = 0,
where h(r0) = 0. In particular, h(t) > 0 for every t > 0.

(c) To prove the statement, it is sufficient, taking into account (b), to prove that for every
k ∈N0 the function q has a unique zero rk+1 in the interval (ξk+1, ξk).

Since the function q1 is positive on R and the function q2 is nonnegative on Ck = [ηk+1, ηk]

(k = 1, 3, 5, . . .), then

q′′(t) =
9
8

q1(t) +
3
4

q2(t) > 0, ∀t ∈ Ck (k = 1, 3, 5, . . .).

Therefore, q is a strictly convex function on the interval Ck (k = 1, 3, 5, . . .), and its restriction
to every subinterval of Ck (k = 1, 3, 5, . . .) is a strictly convex function as well.

Suppose that k = 0, 2, 4, . . . The function q has no zeros in the subinterval Ik = (ηk+1, ξk) ⊂
(ξk+1, ξk), since the function q1 is positive on Ik and the function q2 is negative on Ik. The
function q has a unique zero in the subinterval Ik+1 = (ξk+1, ηk+1) ⊂ (ξk+1, ξk), since q(ξk+1) <

0, q(ηk+1) > 0 and the function q is strictly convex and continuous on Ik+1 = [ξk+1, ηk+1] ⊂
Ck+1. We have (ξk+1, ξk) = Ik+1 ∪ {ηk+1} ∪ Ik and q(ηk+1) > 0. Consequently, the function q
has a unique zero rk+1 in the interval (ξk+1, ξk).

Suppose that k = 1, 3, 5, . . . The function q has a unique zero in the subinterval Jk−1 =

(ηk+1, ξk) ⊂ (ξk+1, ξk), since q(ηk+1) > 0, q(ξk) < 0 and the function q is strictly convex
and continuous on Jk−1 = [ηk+1, ξk] ⊂ Ck. The function q has no zeros in the subinterval
Jk = (ξk+1, ηk+1) ⊂ (ξk+1, ξk), since the function q1 is positive on Jk and the function q2 is
negative on Jk. We have (ξk+1, ξk) = Jk+1 ∪ {ηk+1} ∪ Jk and q(ηk+1) > 0. Consequently, the
function q has a unique zero rk+1 in the interval (ξk+1, ξk).

(d) It follows from the proof of (b) and (c) that the statement is valid.

Consider the scalar boundary value problem

x′′′ = λx, x(0) = 0, x′(0) = 0, x(1) = 0. (3.32)

Definition 3.10. A number λ is called an eigenvalue of (3.32) if there exists a nontrivial solu-
tion of (3.32). The set σ of all eigenvalues of (3.32) is called the spectrum of (3.32).
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Proposition 3.11. The set σ = {r3
j : j ∈N} is the spectrum of (3.32), where rj (j ∈N) are negative

zeros of the function h.

Proof. If y(t; λ) solves the Cauchy problem

y′′′ = λy, y(0) = 0, y′(0) = 0, y′′(0) = 1, (3.33)

then x(t; λ; γ) = γ y(t; λ) is the solution of the Cauchy problem

x′′′ = λx, x(0) = 0, x′(0) = 0, x′′(0) = γ.

The boundary value problem (3.32) has a nontrivial solution x(t; λ; γ) if and only if γ 6= 0 and
y(1; λ) = 0.

1) If λ = 0, then y(t; λ) = t2

2 solves (3.33). Since

y(1; λ) =
1
2
> 0, (3.34)

then λ = 0 does not belong to the spectrum σ of (3.32).
2) If λ > 0, then λ = r3, where r = 3

√
λ > 0. The function y(t; λ) = 1

3r2 h(rt) solves (3.33).
Taking into account (b) of Proposition 3.9,

y(1; λ) =
1

3r2 h(r) > 0. (3.35)

Therefore, positive λ do not belong to the spectrum σ of (3.32).
3) If λ < 0, then λ = −r3, where r = 3

√
|λ| > 0. The function y(t; λ) = 1

3r2 h(−rt) solves
(3.33). Taking into account (c) of Proposition 3.9, y(1; λ) = 1

3r2 h(−r) = 0 if and only if there
exists j ∈ N such that −r = rj. Therefore, a negative λ belongs to the spectrum σ of (3.32) if
and only if there exists j ∈N such that λ = −r3 = r3

j .
If follows from 1) to 3) that the statement is valid.

Remark 3.12. The numerical values of rj (j = 1, 2, 3, 4, 5) are

r5 = −18.7426, r4 = −15.115, r3 = −11.4874, r2 = −7.85979, r1 = −4.23321.

The numerical values of the first five eigenvalues of the spectrum σ are

r3
5 = −6583.99, r3

4 = −3453.22, r3
3 = −1515.88, r3

2 = −485.549, r3
1 = −75.8593.

3.4 The proof of Lemma 3.1

Proof. In accordance with (c) of Proposition 3.9, the numbers rj (j ∈ N) are negative zeros of
h. Taking into account (3.2), we deduce that ε1rj, ε2rj (j ∈N) are zeros of h as well. It follows
from (a) of Proposition 3.9 that r0 = 0 is a double zero of h and rj, ε1rj, ε2rj (j ∈N) are simple
zeros of h. All these zeros

r0, rj, ε1rj, ε2rj (j ∈N) (3.36)

of h are located on the lines Im z = 0 and Im z = ±
√

3 Re z.
Since L[z1,k; z2,k] (k ∈N0) is the vertical line segment with the end points z1,k = ξk − i

√
3ξk

and z2,k = ξk + i
√

3ξk, then it follows from (3.29) that the interior of the triangle Tk (k ∈ N0)

with the edges (3.14) contains 2+ 3k zeros (3.36) of h, counted with multiplicity. More detailed,
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• the interior of T0 contains the double zero r0 = 0 of h,

• the interior of Tk (k ∈ N) contains the double zero r0 = 0 of h and 3k simple zeros
rj, ε1rj, ε2rj (1 ≤ j ≤ k) of h.

It follows from Proposition 3.8 that for every k ∈ N0 the number of zeros of h in the
interior of Tk, counted with multiplicity, is equal to 2 + 3k and thus the numbers (3.36) are
exactly the zeros of h. If z ∈ C is not located on the lines Im z = 0 and Im z = ±

√
3 Re z, then

z is not a zero of h and thus h(z) 6= 0.

Remark 3.13. Actually, we have proved more than Lemma 3.1 claims, namely that the numbers
(3.36) form the set of all zeros of h.

4 Vector field ψ associated with the linear boundary value problem

Definition 4.1. The vectorial boundary value problem (1.3), (1.4) is called non-resonant if the
problem (1.3), (1.4) has only the trivial solution.

Suppose that P solves the n× n matrix Cauchy problem

P′′′ = A P, P(0) = On, P′(0) = On, P′′(0) = In. (4.1)

If p(t; γ) is the solution of the vectorial Cauchy problem (1.3),

p(0) = 0, p′(0) = 0, p′′(0) = γ, (4.2)

then p(t; γ) = P(t) γ for every t ∈ R and γ ∈ Rn. Let us introduce a linear vector field
ψ : Rn → Rn,

ψ(γ) = p(1; γ) = P(1) γ, ∀γ ∈ Rn. (4.3)

Consequently, ψ′(γ) = ψ′(0) = P(1) for every γ ∈ Rn.

Theorem 4.2.
(A) The following statements are equivalent.

(1) The boundary value problem (1.3), (1.4) is non-resonant.

(2) det P(1) 6= 0.

(3) γ = 0 is a unique singular point of the vector field ψ.

(4) No eigenvalue of the matrix A belongs to the spectrum σ of (3.32).

(B) Suppose that one of the statements (1)–(4) holds. Then

ind(0, ψ) = sgn det P(1). (4.4)

If the matrix A does not have negative eigenvalues with odd algebraic multiplicities, then ind(0, ψ) = 1.
If the matrix A has m (1 ≤ m ≤ n) different negative eigenvalues λs (1 ≤ s ≤ m) with odd algebraic
multiplicities, then

ind(0, ψ) =
m

∏
s=1

sgn h
(
− 3
√
|λs|

)
= (−1)j1+···+jm , (4.5)

where
rjs+1 < − 3

√
|λs| < rjs (1 ≤ s ≤ m) (4.6)

and rj (j ∈N0) are real zeros of h ordered as in (3.29).
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Proof. (A) Since the nonzero singular points of the linear vector field ψ are in one-to-one
correspondence with the nontrivial solutions of the boundary value problem (1.3), (1.4), then
equivalencies (1)⇔ (2)⇔ (3) hold by (4.3).

Let us prove (2)⇔ (4).
Since the matrix A has real elements, then, see [14], there exists nonsingular matrix M

with real elements such that J = M−1AM, where J is the real Jordan form of A. If p = Mq
and γ = Mη, then the Cauchy problem (1.3), (4.2) transforms to the Cauchy problem

q′′′ = Jq, q(0) = 0, q′(0) = 0, q′′(0) = η. (4.7)

If q(t; η) is the solution of (4.7) and Q solves the n× n matrix Cauchy problem

Q′′′ = J Q, Q(0) = On, Q′(0) = On, Q′′(0) = In, (4.8)

then q(t; η) = Q(t) η for every t ∈ R and η ∈ Rn. It follows from q(1; η) = M−1 p(1; γ) that
Q(1)η = M−1P(1)Mη for every η ∈ Rn. Therefore, Q(1) = M−1P(1)M. The matrices Q(1)
and P(1) are similar and have the same eigenvalues, counted with multiplicity. Consequently,

det Q(1) = det P(1). (4.9)

Next we will analyze det Q(1).
The blocks of the real Jordan form J of A are of two types. A real eigenvalue λ of A

generates blocks

Jk(λ) =


λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · λ 1
0 0 0 · · · 0 λ

 (4.10)

of the size k. A pair of complex conjugate eigenvalues λ = a + ib and λ = a− ib, where b 6= 0,
generates blocks

Jk(λ) =


C2(λ) I2 O2 · · · O2 O2

O2 C2(λ) I2 · · · O2 O2
...

...
... · · ·

...
...

O2 O2 O2 · · · C2(λ) I2

O2 O2 O2 · · · O2 C2(λ)

 (4.11)

of the size k = 2m, where

C2(λ) =

(
a −b
b a

)
, I2 =

(
1 0
0 1

)
, O2 =

(
0 0
0 0

)
.

Suppose that Qk solves the k× k matrix Cauchy problem

Q′′′k = Jk(λ) Qk, Qk(0) = Ok, Q′k(0) = Ok, Q′′k (0) = Ik. (4.12)

If λ = r3 sgn λ, where r = 3
√
|λ| ≥ 0, is a real eigenvalue of A, then corresponding to λ

Jordan blocks have the form (4.10). Taking into account [28], we obtain

Qk(t) =
∞

∑
j=0

t3j+2

(3j + 2)!
[

Jk(λ)
]j, ∀t ∈ R, (4.13)
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where [Jk(λ)
]j

(j ∈ N0) is an upper triangular k× k matrix with the same element λj on the
main diagonal. Therefore, the matrix Qk(t) is an upper triangular matrix also with the same
element

y(t; λ) =
∞

∑
j=0

t3j+2

(3j + 2)!
λj, ∀t ∈ R,

on the main diagonal. It follows from (4.12) that y(t; λ) solves the Cauchy problem (3.33) and
det Qk(1) =

[
y(1; λ)

]k.
(a) If λ = 0, then it follows from (3.34) that det Qk(1) = 1

2k > 0.
(b) If λ > 0, then it follows from (3.35) that det Qk(1) > 0.
(c) If λ < 0, then λ = −r3. It follows from Proposition 3.11 that

det Qk(1) =
[

h(−r)
3r2

]k

6= 0⇔ −r 6= rj (j ∈N)⇔ λ 6∈ σ.

(d) If λ = a + ib and λ = a− ib, where b 6= 0, is a pair of complex conjugate eigenvalues of
A, then corresponding to λ and λ Jordan blocks Jk(λ) have the form (4.11). The power

[
Jk(t)

]j

(k = 2m; j ∈ N0) is an m× m upper triangular block matrix of 2× 2 blocks with the same
block

[
C2(λ)

]j on the main diagonal. Therefore, the matrix Qk(t), given by (4.13), is an m×m
upper triangular block matrix of 2× 2 blocks also with the same block

D2(t) =
(

u2(t) −v2(t)
v2(t) u2(t)

)
=

∞

∑
j=0

t3j+2

(3j + 2)!
[
C2(λ)

]j

on the main diagonal, where

u2(t) =
∞

∑
j=0

t3j+2

(3j + 2)!
|λ|j cos

(
j arg λ

)
, v2(t) =

∞

∑
j=0

t3j+2

(3j + 2)!
|λ|j sin

(
j arg λ

)
,

and
det Qk(1) =

[
det D2(1)

]m
=
[
u2

2(1) + u2
2(1)

]m ≥ 0. (4.14)

It follows from (4.12) that D2(t) solves the 2× 2 matrix Cauchy problem

D′′′2 (t) = C2(λ) D2(t), D2(0) = O2, D′2(0) = O2, D′′2 (0) = I2.

Let us introduce a complex-valued function w2(t) = u2(t) + i v2(t) of a real variable t. Then
we can rewrite the last Cauchy problem in the complex form

w′′′2 (t) = λ w2(t), w2(0) = 0, w′2(0) = 0, w′′2 (0) = 1. (4.15)

The function

w2(t; λ) =
1

3µ2

(
eµt + ε1eε1µt + ε2eε2µt) = 1

3µ2 h(µt), t ∈ R, (4.16)

solves (4.15), where µ is a fixed cube root of λ ∈ C \R. The solution (4.16) of (4.15) does not
depend on the particular choice of the cube root µ, since, in view of (3.2),

1
3µ2

1
h(µ1t) =

1
3µ2

2
h(µ2t) = w2(t; λ),
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where µ1 = ε1µ and µ2 = ε2µ are the two other cube roots of λ. Notice that

det D2(1) = u2
2(1) + v2

2(1) =
∣∣w2(1; λ)

∣∣2. (4.17)

It follows from (4.14) and (4.17) that det Qk(1) =
∣∣w2(1; λ)

∣∣2m ≥ 0. Hence,

det Qk(1) > 0⇔ h(µ) 6= 0. (4.18)

Since the cube root µ of λ ∈ C \R is not located on the lines Im z = 0 and Im z = ±
√

3 Re z,
then it follows from Lemma 3.1 that h(µ) 6= 0. Taking into account (4.18), det Qk(1) > 0.

Since det Q(1) is equal to the product of det Qk(1) for all Jordan blocks Jk(λ) in the real
Jordan form J of the matrix A, then if follows from (4.9) and (a)-(d) that det P(1) = det Q(1) 6=
0 if and only if the eigenvalues of the matrix A do not belong to the spectrum σ of (3.32).
Hence, the equivalence (2)⇔ (4) is valid.

(B) Suppose that one of the statements (1)–(4) holds. Then det ψ′(0) = det P(1) 6= 0. It
follows from [21] that (4.4) fulfills.

The sign of det P(1) = det Q(1) 6= 0 is equal to the product of signs det Qk(1) for the Jordan
blocks Jk(λ) of the real Jordan form J of A. Taking into account (a), (b) and (d), we deduce
that sgn det Qk(1) = 1 for the Jordan blocks Jk(λ) corresponding to nonnegative and complex
conjugate eigenvalues λ of A. Consider a negative eigenvalue λ = −r3 of A, where r = 3

√
|λ|,

with the algebraic multiplicity α and the geometric multiplicity γ, 1 ≤ γ ≤ α ≤ n. Since the
statement (4) holds, then h(−r) 6= 0. The matrix Q(1) has the γ blocks Qk1(1), . . . , Qkγ

(1),
where k1 + · · ·+ kγ = α, corresponding to the Jordan blocks Jk1(λ), . . . , Jkγ

(λ) and

det Qk1(1) · . . . · det Qkγ
(1) =

[
h(−r)

3r2

]k1

· . . . ·
[

h(−r)
3r2

]kγ

=

[
h(−r)

3r2

]α

6= 0.

Consequently,

sgn
γ

∏
j=1

det Qk j(1) =

+1, if α is even,

sgn h
(
− 3
√
|λ|
)

, if α is odd.

If the matrix A does not have negative eigenvalues with odd algebraic multiplicities, then
ind(0, ψ) = 1. If the matrix A has m (1 ≤ m ≤ n) different negative eigenvalues λs

(1 ≤ s ≤ m) with odd algebraic multiplicities, then

ind(0, ψ) =
m

∏
s=1

sgn h
(
− 3
√
|λs|

)
. (4.19)

It follows from Proposition 3.9 that for each s ∈ {1, . . . , m} there exists a unique js ∈ N0 such
that (4.6) fulfills and

sgn h
(
− 3
√
|λs|

)
= (−1)js (1 ≤ s ≤ m). (4.20)

From (4.19) and (4.20) it follows that (4.5) is valid.

5 Vector field φ near zero

Suppose that U solves the n× n matrix Cauchy problem

U′′′ = f ′(0)U, U(0) = On, U′(0) = On, U′′(0) = In. (5.1)
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If u(t; γ) is the solution of the Cauchy problem

u′′′ = f ′(0) u, u(0) = 0, u′(0) = 0, u′′(0) = γ, (5.2)

then u(t; γ) = U(t) γ for every t ∈ R and γ ∈ Rn. Consider a linear vector field φ0 : Rn → Rn,

φ0(γ) = u(1; γ) = U(1) γ, ∀γ ∈ Rn. (5.3)

Theorem 5.1. Suppose that the conditions (A1) to (A3) are fulfilled. If the linear boundary value
problem

u′′′ = f ′(0) u, u(0) = 0, u′(0) = 0, u(1) = 0 (5.4)

is non-resonant, then γ = 0 is an isolated singular point of the vector field φ and

ind(0, φ) = sgn det U(1) = ind(0, φ0).

Proof. It follows from Proposition 2.5 that F ∈ C1(RN , RN) and w(t; o) = o for every t ∈ R is
a solution of the system w′ = F(w). Besides, as mentioned above, for every t ∈ R the flow

Φt(ξ) = w(t; ξ) =
(
x(t; ξ), x′(t; ξ), x′′(t; ξ)

)T

of F is of class C1, where ξ = (α, β, γ)T. In accordance with [18, Theorem 8.43], the N × N
matrix

Z(t) =
∂w(t; o)

∂ξ
=



∂x(t; o)
∂α

∂x(t; o)
∂β

∂x(t; o)
∂γ

∂x′(t; o)
∂α

∂x′(t; o)
∂β

∂x′(t; o)
∂γ

∂x′′(t; o)
∂α

∂x′′(t; o)
∂β

∂x′′(t; o)
∂γ


solves the variational equation

Z′ = F ′(o) Z (5.5)

of w′ = F(w) along the solution w(t; o) = o and satisfies the initial condition

Z(0) = IN . (5.6)

On account of (2.7), (5.5) and (5.6),

∂x′′′(t; o)
∂γ

= f ′
(
0)

∂x(t; o)
∂γ

,
∂x(0; o)

∂γ
= On,

∂x′(0; o)
∂γ

= On,
∂x′′(0; o)

∂γ
= In. (5.7)

If ξ = (0, 0, γ)T ∈ RN , then uniqueness of solutions for the n× n matrix Cauchy problems
(5.1) and (5.7), in view of the notation (2.10), imply that

U(t) =
∂x(t; 0)

∂γ
, ∀t ∈ R.

Hence,

U(1) =
∂x(1; 0)

∂γ
= φ′(0). (5.8)

Since the problem (5.4) is non-resonant, then it follows from (5.8) and Theorem 4.2 that

det φ′(0) = det U(1) 6= 0. (5.9)

Therefore, see [21, Theorem 6.3], the point γ = 0 is an isolated singular point of the vector
field φ and, taking into account (5.9) and Theorem 4.2, we have

ind(0, φ) = sgn det φ′(0) = sgn det U(1) = ind(0, φ0).
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6 Vector field φ near infinity

Suppose that V solves the n× n matrix Cauchy problem

V ′′′ = f ′(∞)V, V(0) = On, V ′(0) = On, V ′′(0) = In. (6.1)

If v(t; γ) is the solution of the Cauchy problem

v′′′ = f ′(∞) v, v(0) = 0, v′(0) = 0, v′′(0) = γ, (6.2)

then v(t; γ) = V(t) γ for every t ∈ R and γ ∈ Rn. Consider a linear vector field φ∞ : Rn → Rn,

φ∞(γ) = v(1; γ) = V(1) γ, ∀γ ∈ Rn.

Theorem 6.1. Suppose that the conditions (A1) and (A3) are fulfilled. If the linear boundary value
problem

v′′′ = f ′(∞) v, v(0) = 0, v′(0) = 0, v(1) = 0 (6.3)

is non-resonant, then γ = ∞ is an isolated singular point of the vector field φ and

ind(∞, φ) = sgn det V(1) = ind(0, φ∞).

Proof. It follows from Proposition 2.5 that the vector field F : RN → RN is asymptotically lin-
ear and F ′(∞), given by (2.8), is its derivative at infinity. In accordance with [20, Theorem 2.2],
the flow Φt (t ∈ R) of the vector field F is asymptotically linear and its derivative at infinity
is the matrix exponential W(t) = et F ′(∞),

lim
‖ξ‖N→∞

∥∥Φt(ξ)−W(t) ξ
∥∥

N
‖ξ‖N

= 0. (6.4)

The matrix exponential W(t) solves the N × N matrix Cauchy problem

W ′ = F ′(∞)W, W(0) = IN . (6.5)

If we represent the N × N matrix W as the 3× 3 block matrix

W =

 W11 W12 W13

W21 W22 W23

W31 W32 W33

 ,

where Wij (i, j = 1, 2, 3) are n× n matrices, then it follows from (6.5) and (2.8) that W has the
form

W =

 W11 W12 W13

W ′11 W ′12 W ′13
W ′′11 W ′′12 W ′′13

 ,

besides, W13 solves the n× n matrix Cauchy problem

W ′′′13 = f ′(∞)W13, W13(0) = On, W ′13(0) = On, W ′′13(0) = In. (6.6)

Uniqueness of solutions for the n × n matrix Cauchy problems (6.1) and (6.6) implies that
W13(t) = V(t) for every t ∈ R.
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It follows from (6.4), taking into account (a) of Proposition 2.3, that for every ε > 0 there
exists M(ε) > 0 such that∥∥∥Φ1(ξ)−W(1) ξ

∥∥∥
N
≤ M(ε) + ε ‖ξ‖N , ∀ξ ∈ RN . (6.7)

Consider an arbitrary ξ = (0, 0, γ)T ∈ RN . In view of the notation (2.10), the time one flow is

Φ1(ξ) = w(1; ξ) =

 x(1; γ)

x′(1; γ)

x′′(1; γ)

 .

Since ‖ξ‖N = ‖γ‖ and

W(1) ξ =

 W11(1) W12(1) W13(1)
W ′11(1) W ′12(1) W ′13(1)
W ′′11(1) W ′′12(1) W ′′13(1)

 0
0
γ

 =

 V(1)γ
V ′(1)γ
V ′′(1)γ

 ,

then it follows from (6.7) that

∥∥φ(γ)−V(1)γ
∥∥ =

∥∥x(1; γ)−V(1)γ
∥∥ ≤

∥∥∥∥∥∥
 x(1; γ)

x′(1; γ)

x′′(1; γ)

−
 V(1)γ

V ′(1)γ
V ′′(1)γ

∥∥∥∥∥∥
N

≤ M(ε) + ε ‖γ‖

for every γ ∈ Rn. Therefore, in view of (b) of Proposition 2.3, the vector field φ is asymptoti-
cally linear and its derivative at infinity is

φ′(∞) = V(1). (6.8)

Since the problem (6.3) is non-resonant, then it follows from (6.8) and Theorem 4.2 that

det φ′(∞) = det V(1) 6= 0. (6.9)

Therefore, see [30, Theorem 7], the point γ = ∞ is an isolated singular point of the vector field
φ and, taking into account (6.9) and Theorem 4.2, we have

ind(∞, φ) = sgn det φ′(∞) = sgn det V(1) = ind(0, φ∞).

7 The main theorem

Theorem 7.1. Suppose that the conditions (A1) to (A3) are fulfilled. If the linear boundary value
problems (5.4) and (6.3) are non-resonant and ind(0, φ) 6= ind(∞, φ), then the nonlinear boundary
value problem (1.1), (1.2) has a nontrivial solution.

Proof. It follows from Theorems 5.1 and 6.1 that γ = 0 and γ = ∞ are isolated singular points
of the vector field φ. Therefore, there exist positive r and R such that r < R and the vector
field φ has no singular points on the sets

Br(0) \ {0} =
{

γ ∈ Rn : 0 < ‖γ‖ ≤ r
}

, BR(∞) =
{

γ ∈ Rn : ‖γ‖ ≥ R
}

.

The rotations Γ
(
φ, Br(0)

)
and Γ

(
φ, BR(0)

)
on the spheres ∂Br(0) and ∂BR(0), respectively, are

different, since
Γ
(
φ, Br(0)

)
= ind(0, φ) 6= ind(∞, φ) = Γ

(
φ, BR(0)

)
.

It follows from [30] that the set

Rn \
(

Br(0) ∪ BR(∞)
)
=
{

γ ∈ Rn : r < ‖γ‖ < R
}

contains a singular point γ∗ 6= 0 of φ. Therefore, x(t; γ∗) is a nontrivial solution of the
boundary value problem (1.1), (1.2).
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8 Example

Consider the system {
x′′′1 = x1 + x2 − 101 sin(x1 + x2),

x′′′2 = −x1 + x2 − 49 arctan(x1 − x2)
(8.1)

together with the boundary conditions

x1(0) = x2(0) = x′1(0) = x′2(0) = 0, x1(1) = x2(1) = 0. (8.2)

Consider a vector field f : R2 → R2,

f (x) = Bx + g(x), ∀x ∈ R2,

where

B =

(
1 1
−1 1

)
and

g(x) =
(
− 101 sin(x1 + x2),−49 arctan(x1 − x2)

)T, ∀x = (x1, x2)
T ∈ R2.

The conditions (A1) and (A2) are fulfilled. Since g is bounded, then it follows from Corol-
lary 2.4 that f is asymptotically linear and f ′(∞) = B. Consequently, (A3) fulfills as well.

The matrix f ′(∞) has the complex conjugate eigenvalues 1± i. Therefore, no eigenvalue
of the matrix f ′(∞) belongs to the spectrum σ. It follows from Theorems 4.2 and 6.1 that
ind(∞, φ) = 1.

The matrix

f ′(0) =
(
−100 −100
−50 50

)
has the eigenvalues

λ1 = 25
(
−1−

√
17
)
= −128.078, λ2 = 25

(
−1 +

√
17
)
= 78.0776,

which, by Proposition 3.9 and Remark 3.12, do not belong to the spectrum σ. Taking into
account Theorems 4.2 and 5.1,

ind(0, φ) = sgn h
(
− 3
√
|λ1|

)
= sgn(−16.0161) = −1.

Since ind(0, φ) 6= ind(∞, φ), then it follows from the main theorem 7.1 that the problem
(8.1), (8.2) has a nontrivial solution.

9 The main theorem in the scalar case

Theorem 9.1. Consider a function f ∈ C1(R, R) such that f (0) = 0 and f is asymptotically linear
with the derivative at infinity f ′(∞). Suppose that f ′(0) and f ′(∞) do not belong to the spectrum σ

of (3.32). The boundary value problem

x′′′ = f (x), x(0) = 0, x′(0) = 0, x(1) = 0 (9.1)

has at least one nontrivial solution if one of the following conditions holds:
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(B1) f ′(0) ≥ 0 and f ′(∞) < 0, h
(
− 3
√
| f ′(∞)|

)
< 0;

(B2) f ′(0) < 0, h
(
− 3
√
| f ′(0)|

)
< 0 and f ′(∞) ≥ 0;

(B3) f ′(0) < 0, f ′(∞) < 0 and h
(
− 3
√
| f ′(0)|

)
h
(
− 3
√
| f ′(∞)|

)
< 0.

Proof. The statement is valid in view of Theorems 4.2 and 7.1.

The last theorem can be reformulated in the terms of conjugate points of the linear equa-
tion y′′′ = λy. The next definition adapts the similar definition in [12] for the case under
consideration.

Suppose that λ < 0. The function y(t; λ) = 1
3r2 h(−rt) solves the Cauchy problem (3.33),

where r = 3
√
|λ| > 0. Hence, t = 0 is a double zero of y(t; λ). In accordance with Proposi-

tion 3.9, the points rj (j ∈ N) are negative simple zeros of h. Therefore, the points aj = −
rj
r

(j ∈N) are positive simple zeros of y(t; λ) and, in view of (3.29), 0 < a1 < a2 < · · · < aj < · · ·

Definition 9.2. Let λ be a negative number. The points

aj = −
rj

3
√
|λ|

(j ∈N)

are called the conjugate points of the linear equation y′′′ = λy with respect to t = 0 (or simply
conjugate points).

Suppose that λ is negative and it does not belong to the spectrum σ of (3.32). The interval
(0, 1) contains k ∈ N0 conjugate points of y′′′ = λy if and only if − 3

√
|λ| ∈ (rk+1, rk). Taking

into account (4.20),

• h
(
− 3
√
|λ|
)
> 0 if and only if the interval (0, 1) contains an even number of the conjugate

points of y′′′ = λy;

• h
(
− 3
√
|λ|
)
< 0 if and only if the interval (0, 1) contains an odd number of the conjugate

points of y′′′ = λy;

The conditions (B1) to (B3) in Theorem 9.1 can be equivalently reformulated in the terms
of the conjugate points of y′′′ = f ′(0)y and z′′′ = f ′(∞)z.

(B1′) f ′(0) ≥ 0, f ′(∞) < 0 and the interval (0, 1) contains an odd number of the conjugate
points of z′′′ = f ′(∞)z;

(B2′) f ′(0) < 0, f ′(∞) ≥ 0 and the interval (0, 1) contains an odd number of the conjugate
points of y′′′ = f ′(0)y;

(B3′) f ′(0) < 0, f ′(∞) < 0 and the interval (0, 1) contains either an odd number of the
conjugate points of y′′′ = f ′(0)y and an even number of the conjugate points of z′′′ =
f ′(∞)z or an even number of the conjugate points of y′′′ = f ′(0)y and an odd number
of the conjugate points of z′′′ = f ′(∞)z.

Corollary 9.3. Consider a function f ∈ C1(R, R) such that f (0) = 0 and f is bounded on R.
Suppose that f ′(0) is negative and it does not belong to the spectrum σ of (3.32). If the interval (0, 1)
contains an odd number of the conjugate points of y′′′ = f ′(0)y, then the boundary value problem (9.1)
has at least one nontrivial solution.
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Proof. Since the function f is bounded on R, then it follows from Corollary 2.4 that f is
asymptotically linear with f ′(∞) = 0. Taking into account Theorem 9.1 and the equivalence
of (B2) and (B2′), the statement fulfills.

More can be said about solvability and the number of solutions for the boundary value
problem (9.1) if the nonlinearity f has additional properties, for example, if f ′(0) < 0, f is
bounded on R and f ′ is non-positive on R, see [7].

10 Concluding remarks

This article considers a two-point boundary value problem for third order systems with a
linear behavior near zero and infinity. We introduce an auxiliary vector field which is linear
at zero and at infinity and which reflects the behavior of solutions to the boundary value
problem. We prove that the auxiliary vector field under the non-resonance conditions has
well-defined indices at zero and infinity. The main difficulties in the proof are related with
the case of complex eigenvalues of corresponding matrices. By overcoming these difficulties,
the standard arguments of the vector field rotation theory lead to the existence of at least one
nontrivial solution to the boundary value problem whenever the indices at zero and infinity
are different. At the end of the paper, we draw attention to the scalar case and derive from the
main theorem sufficient conditions for the existence of a nontrivial solution to the boundary
value problem.
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