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Abstract. In this note, the existence of multiple positive solutions is established for a
semilinear elliptic equation —Au = u% +u2 1 x e, u=00xe 9, where Qis a
smooth bounded domain in RN (N > 3), 2* = %, v € (0,1) and A > 0 is a real
parameter. We show by the variational methods and perturbation functional that the
problem has at least two positive solutions wy(x) and wj (x) with wo(x) < w1 (x) in Q.

Keywords: semilinear elliptic equations, critical growth, singularity, positive solution.

2010 Mathematics Subject Classification: 35A15, 35B09, 35B33, 35]75.

1 Introduction

The singular bounded value problem of the type

{—Au = Af(x)u""+ug(x)uP~!, inQ,

(1.1)
u=0, on d(),

where Q) is a bounded smooth domain in RN (N > 3), v € (0,1) and f, g satisfying some
certain conditions, was extensively investigated. Such problem describes naturally several
physical phenomena, therefore, only the positive solutions are relevant in most cases.

Singular elliptic problems have been intensively studied in the last decades. For example,
in the case when y = 0, the existence or uniqueness of positive solutions to problem (1.1) has
been studied extensively (see [6,7,12,13,18,24] and the references therein).

For the case of y > 0. When 1 < p < 2%, Sun, Wu and Long [21] established two
positive solutions to problem (1.1) by using the Nehari manifold provided A > 0 is enough
small. For singular elliptic problems with subcritical growth, please see [2-5,8,9,19] and
the references therein. For the case of critical growth, there are many interesting results, see
[10,11,15,20,22,23]. In particular, Yang [23] considered the problem

{—Au = A "+u¥1, in Q, 12)

u=20, on 0.
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The author firstly proved that problem (1.2) has a positive local minimizer solution u, for
A > 0 enough small. After that, with the helps of the sub-supersolutions and variational
arguments, and a second positive solution v, was obtained with u, < v, in (). In additional,

in problem (1.2), if u is replaced by AT v, problem (1.2) reduces to

—ANo=0v7"+uv* !, in Q,
v=0, on dQ),

here y = AT By using the Nehari manifold, Sun and Wu [20] proved that there was an
exact u, such that the problem has two positive solutions for all u € (0, #.) and no solution
for 4 > p,. In the case when 0 < ¢ < 1, by using the variational method, Hirano, Saccon
and Shioji showed the existence of two positive solutions for problem (1.2) with A > 0 small
enough, see [10].

Thus, observing the all above studies, it is natural to ask whether problem (1.2) has multi-
ple positive solutions by other methods? We shall give a positive answer to this question, the
main technical approaches are based on the variational and perturbation functional. Now, the
main result can be stated as follows.

Theorem 1.1. Assume that v € (0,1). Then there exists A, > 0, such that for any A € (0,A.),
problem (1.2) has at least two positive solutions wy(x) and wy (x) with wo(x) < wi(x) in Q.

Remark 1.2. Compared with [23], with the help of a perturbation functional, we give a simple
and direct method to obtain the size relation of the two positive solutions.

Throughout this paper, we make use of the following notations:

o the space H}(Q) is equipped with the norm |[u[|* = [ [Vu|?dx, which is equivalent to

the usual norm. The norm in L7 (Q)) is denoted by |ull, = [, |u|Pdx;

* C,Cq,Cy,... denote various positive constants, which may vary from line to line;

* we denote by B, (respectively, 9dB,) the closed ball (respectively, the sphere) of center
zero and radius 7, i.e.,, B, = {u € H}(Q) : ||u|| <r}, 9B, = {u € H{(Q) : |Jul| =r};

e u=ut+u",ut = £max{+u,0};
e let S be the best Sobolev constant, i.e.,
Jo |Vul*dx

weHJ OO} ([ |u?) %

2 Existence of the first positive solution of problem (1.2)

We define the energy functional of problem (1.2) by
_ 1o A T e 1/ 428 1
I(u) = 5l 1_7/0(14 y - o [ ), vue H(Q).

In general, a function u is called a positive solution of problem (1.2) if u € H}(Q) and for all
v € HY(Q) it holds

/ (Vu, Vo)dx — A/ u~Todx —/ u? lodx = 0.
o Q )

From [23] and [10], we obtain the following result.



New solutions for elliptic equations with singularity and critical growth 3

Theorem 2.1. For 0 < 7 < 1, there exists Ay > 0 such that problem (1.2) has a positive solution
wo € L®(Q) NC®(Q) with I(wy) < 0 when A € (0, Ay).

3 Existence of a second positive solution of problem (1.2)

Up to now, we get that problem (1.2) has a positive solution wy. Next we will prove that there
is another positive solution for problem (1.2) by a translation argument. For a« > 0, we define
a C! functional J, : H}(Q) — R by
Ly 1 + wd ot
Jol©) = 510l = 52 [ [(0* +wo)* —wf —2'wf To*Jdx
2 2% Jo

A +
— 1—/ {(U—i_ +wo+ )T — (w + )T — (1 'y)v—7 dx,
-7 Ja wy

forv € Hé (Q)). Now, we show that the functional J, satisfies the mountain-pass lemma.
Lemma 3.1. There exist r,p > 0 such that |, satisfies the following conditions for any A > 0,
(i) Ju(u) > p for any u € 0B,;
(i) there exists { € HY(Q) with ||{|| > r such that J,({) < 0.

Proof. (i) For u € H(Q) with u™ # 0, by the mean value theorem and the Lebesgue domi-
nated convergence theorem, one has

g B0 L [ (0 S 2
t—0t 2% 10+ Jo t
O tim (tu™ 4+ wo 4+ a)™7 — (wo + )77 — (1 — y)wy "tu™ "
=0+ JQ (1 =)t

, 21 _ 21
= — lim Q[(ntu++wo) —wy utdx

— A lim [(Ct‘u+ +wo+a) " —w, Mutdx

_A/[ wOM)]dx

which implies that there exist p, 7 > 0 such that Ju |, =, > p > 0 for each A > 0.
(ii) For a,b > 0, there holds

(a+b)* >a* +1* —2%a> "1b.

Therefore, for u € Hé(Q), ut #0and t > 0, one has

2, tF

Jolt) < Sl =5 [ @) x| 2 —dx
— —o0

as t — +oo. Therefore we can easily find { € H}(Q) with ||| > r, such that J,({) < 0. The

proof is complete. O
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Lemma 3.2. The functional J, satisfies the (PS). condition with ¢ < %S¥ — DA, where D =
D(IQl,N, S, 7, [wole)-

Proof. Let {v,} C H}(Q) be a (PS). sequence for J,, namely,

Ju(vn) = ¢, Ji(v,) =0, asn— co. (3.1)
Set
Hi(00) = [ [(0F +w0)* 7 (@4 +w0) = w§ (o + o)
—/Q[(vf{ +wp)* —wi —2*w o) ]dx,
and
Hy(v,) = A/ [ vﬁv—:;—:f nE B Un;—gwo dx
- 12?\7 /Q [(v,‘f +wo 4+ a) — (wo +a) 7T — (1 — 7)2% dx.
Then
Hion) = | (o +w0)? —of o) —uf Jdx
—/vnzo[(vf{ +wp)* —wi —2*wd o) ]dx
= (2" - 1)/Qwé*_lv,'fdx
>0,
and
Hy(v,) > — /\/ Un‘j’f'ﬂ;iow A/ ‘U"Hwo - 12_)\7/0(03)17%
> —A 7|v"’tw0dx—)\ ’v”|tw0dx—2*/ [0, 7dx
o w) o w, -

— _2A ’””‘d —2/\/
o wy

It follows from (3.1) that

2%+ o(|[onll) = 27 Ju(vn) = (Ja(on), v + wo)
2
= 750l = [ (Vwo, Vo) + Hi (00) + Halo)
N I
= o2 - /(Awouwg “Voudx + Hy (o) + Ha(0n)

i |Un |
72||vn||2—/0w0 1|vn]dx—3)&/0w§dx

_ 2*A
—2/\/ w(l) Tdx — / |0, |1~ Tdx
o) 1—o

Y

2 2*

HUHHZ Cilloall —

Ca|lwo|*~7,
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which implies that {v,} is bounded in H}(Q). Moreover, by using the concentration com-

pactness principle (see [16,17]), there exist a subsequence, say {v,} and v, € H}(Q) such
that

/Q Vo, |dx — du > /Q Vo, [?dx+ Y Wi,

jek

/Q(v,f)z*dx —dy = /Q(vj)z*dx + Y 10y,

jeK

where K is an at most countable index set, 5,(]. is the Dirac mass at Xj, and xj € (Y is in the
support of u, 1. Moreover, there holds

2
pj = Syp foralljeK. (3.2)

For e > 0, let 1, ;(x) be a smooth cut-off function centered at x; such that 0 < ¢, ;(x) <1,

Pej(x) =1 in B (xj,€/2), tei(x) =0 in Q\B(xj,€), |Vipej(x)| <

™ N

Since /v, is bounded in Hj (), according to (3.1), there holds

0 = lim Lim (], (vn), vntpe j)

e—0n—oo

— lim lim { / V0,V (0tpe ) dx
Q

e—0n—oo

— /Q[(v;r + wO)Z*_lvan&]‘ — w%*_lvnlp&j]dx}
Unlpg,j _ Unlps,j] dx

o+ wo + a)7 wy

— Alim lim [
a L(

e—0n—oo

(3.3)

= lim lim { / Vv,V (vnpe,j)dx — / (0))% e jdx
Q @)

e—0 n—oo

- /Q[(U;T + wO)Z*ilvans,j - (v;qr)z*ilvnl/)s,j - wg*lvnlps,j]dx}

Onte ; Unie
— Alim lim - e — nl/if’] dx.
e=0n—o Jo | (vy +wo +a)” W

Note that {v,,} is bounded in H}(Q). Then

lim lim
e—0n—oo

JL I+ w0) ot — (o) oupelax

< Tim i + 21 321 .
< lg%r}grgo Q[(U” + wo) + (03)° " |vnlipe,idx

< lim lim C |0, |dx
e—0n—oo B(xj.£)

=0.

Similarly, one has
Unej B Unej
o +wo+a)? wy

lim lim [ dx =0,
o |(

e—0n—oo
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and
lim lim / w3 o dx =0, lim lim | ©,Vov, Vi, dx = 0.

e—0n—oo JO) e—=0n—oo JO)

From the above information, by (3.3), we have

i = Hijr
this combining (3.2) we deduce that

Nz

17]25 or T]]':O.

Next we show that 7; > S is impossible. By contradiction, there exists some jp € | such

that 17;, > S2. By (3.1), there holds

n—o0

e = lim {Ja(0) = 300 00), 00+ 1)

1 * 1 *
- (an,Vwo)dx—i— / (|o;f + wo|? — %)dx—ki/owg “lotdx

2
—A/ (@ - +2)' 7 — (o +0)' 7 — (1 ) 2 |
I1—qyJal'" wg
/[ Un + Wo U”—'—wo} dx+o(1/n)
2 (o) +wo +a)” wy
* 1 * 1 * (4
S & +\2 7/ 21+ _7/ 21 /i
> N/Q(vn) dx—i—2 0 v, dx > < 0 Updx + A ngdx
+
——/ (o +wo+a)'™7 — (wo + &) — (1 — )v—” dx
1-— Q g
/ [ Uy + Wo Un+w0:|dx+0(1/n)
3 (o +wo + )Y wy
>

N/QW) dx + Hs(0) +0(1/n),

where

A Un + Wo vn+w0
Hné—/ n }d—/ O iy A/ "d
3(on) 2 Q[(v;{—kwo—kzx) 0wl g

A
i /Q [(v,f + wo +oc)1"7 — (wo +o¢)1’7] dx
_A U;TJFU;IJFWO 1 v n
_2/0{(0;+w0+“)7_ ]dx—/\/ O gy +/\/ o
A
7/0 [(v;f +wo +a) T — (wo+1x)1_7] dx

1
A/[v;f+v;+w0+ v,
2 Ja [ (of +wo+a)r  (vf +wp+a)?

—wo ]dx A z)”dx
Qwo

A

- + -7y _ 1=y
1_7/0[(0,1—|—w0—|—a) (wo + ) ]dx
+ —
2)‘/ {U’lw”wjo ]der/\ Ige—a [ O
2 Jo [ (vg +wo+a)7 2 Jow] 0w}
A

-~ + =y _ 1=
1_7/(){(0,1—1—&)04—04) (wo + ) ]dx
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1 1
> - + 1_7
> <1_7 2))\/0(vn+wo+oc) dx

1 1 %
+(——-= A/wﬁ—al”dx——/ dx
<1—’Y 2) Q( 0 ) (o5 +wo +a)”

> o = - - v
> <1—’Y 2))\/0(0 +wo+a) Tdx 1_7/(100—1—0() dx
_A (v} + wo 4+ a) " Tdx
2 Ja
_ A +\1—7 2\ 1—7
— ]-_’)//Q(Un) dx H/(ZUO‘{‘IX) dx
A 2A
> — o @)y — 1 (0] 0wl )
1—7Ja 1-—

Then, by the Sobolev inequality and Young mequahty, we have

c> Zij/ﬂ(v,f)z*dx—l—Hﬂvn) +0(1/n)

1 :
235 / (v))? dx+ Y _n; | + Hs(vn) +0(1/n)
N \Jo jel
1-y
* 2*
> N%—i—/ x—li\Q] (/Q(vj)z dx) — AA+o0(1/n)
> NST ~AATET — AN+ 0(1/n)
> %s% — A1A — AA +0(1/n)
= %59 —DA+o0(1/n),
where A = %(|Q| +|Qf|woles ™), A1 = A1(N,7,S,|Q]), D = Ay + A. Therefore, we get

%S% —DA<c< 1{,5 2 — DA, which contradicts to the assumption. It implies that K is empty,
so [o(v5)?dx — [4(vf)* dx as n — co. Recalling that for p > 2, there holds

xP == Iyl | < Glx—yl(x + )P G0
As a result, there holds
0< ’/ (o 4+ wo)* — (vF +wp)? |dx
o)

< Cp/Q loF — o} (v} + v +2wp)? ldx
< Cplvyt — of [o+ oy + o + 2uwof5.7

S C’U; — Uy
— 0,

which implies that [, (v, +wo)? dx — [, (v +wo)? dx as n — co. Note that J}(v,) — 0, it
follows

/Q (Vo., V)dx = /Q [(0F +wp)* ~1¢p — wd ' pldx

(3.4)
¢ ¢
+/\/Q[(U*++wo+lx)7 wg dx
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for each ¢ € H}(Q)). Taking the test function ¢ = v, + wp in (3.4), we have

/Q(Vv*,V(v* +wp))dx = /Q[(vj +wp)? — w3 (v +wo)]dx

a | (v +wo+a)7 wy '

According to (J}(vy), vy + wo) — 0, one has
/Q(an, V(vn +wp))dx = / (v +wo)* "0y + wo) — w3 (v + wp)]dx

—|—/\/ [ Un + Wo v"+w0] dx+o(1/n).
(o5 +wo +a)” wy

Consequently,

[ (o, Vaodx +lloal? = [ [(0F +w0)* —wF " (oF +wo)lex

(3.6)
-l-)\/ [ Vs + Wo U*+w0]dx+o(1/n)
(v +wo +a)” wy
It follows from (3.5) and (3.6) that
|onl®> = [|vs]|?, asn — co.
Hence, we have v, — v, in H}(Q). The proof is complete. O
It is known that the function
N(N —2)e?]"¢
U, (x) = N )2 ., x€RN, £>0
(&+[x[?) =

satisfies
—AU, =U?"! inRN.

We choose a function ¢ € C7(Q2) such that 0 < ¢(x) < 1in Q, ¢(x) = 1 near x = 0 and it
is radially symmetric. Let u(x) = ¢(x)U(x). Moreover, from [10], there exist two constants
m, M > 0 such that m < wy(x) < M for each x € supp¢, and

]2 < $% + O(eN-2) + O(eN),
[ [ue]¥ dx = 87 — O(eM).

Moreover, one has

2 (3.7)

Ja wou? ~ldx = Ce' + O(ngzH),
N7
Ja ;—idx =0(e 7).

Lemma 3.3. Forevery 0 < o < 1and A > 0 small, there holds
1 n

sup Ju(tue) < —S2

>0 o £ N

where D is defined by Lemma 3.2.
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Proof. For t > 0, there holds

12 1 N bk r
Ju(titg) = E||u8\|2—5/0[(m£+wo)2 —w? — 2 w? ugdx
- tu +wo) T —w, T — (1 —9)— | dx
g N (LI (-
t2 t

where the following inequality is used

(a+b)% >a? +0* — 2% o —2%ab® ', Va,b>0.

Set §
(t) = ﬁHu 1% — tz/ u? dx — tz*_l/ wou dx +tA | & dx
g 2 2% Jo ¢ o O ow]
As limy_, 4o g(tu,) = —oo, similar to the paper [14], we can prove that there exist t, > 0 and

positive constants to, t; which are independent of ¢, A, such that sup,., g(t) = g(t:) and
O0<ty<t: <t <o0. (3.8)

Therefore, from (3.7) and (3.8), there holds
sup g(t) < Sup{tzllu Hz—tz*/ uz*dx} —tz*—l/ wou? “ldx +t A/ e gy
£>0 T om0 L20° 2% Ja * O Ja ¢ ! o w)

1 - _
< NS% +CEN -G’ T 4 Care T,

where C; > 0 (independent of ¢, A), i = 1,2,3. Therefore, let ¢ = A¥2, A < A = (Qiﬁ)z’
then
CieN2 - Ce™s" + Cade T = CiA + CAT — GoA2
<A(CG+G-an?)
< —DA.

From the above information, it holds that

supg(t) < =Sz + CieN 72 — Czs¥ + Cg)\s¥

t>0

zl= z|=

which implies that
1
sup Ju (tug) < NS% — DA

t>0

for any 0 < A < Aj. The proof is complete. O

Lemma 3.4. For given 0 < & < 1 and A > 0 is sufficiently small, there exists v, € H}(Q) such that
Ji(vy) = 0 and Ju(vy) > 0.
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N
Proof. Let A* = min {AO, A, IS\,%, 1} and 0 < A < A*. By Lemma 3.1, the functional J, satisfies
the geometry of the mountain-pass lemma. Applying the mountain-pass lemma [1], there
exists a sequence {v,} C H}(Q), such that

Jo(vy) > c>p and [, (v,) — 0, (3.9)
where

e = inf max Ju(v(t), T = {7 C(01]Hy(0): 1(0) = 0,(1) = ¢}.

By Lemma 3.2 and Lemma 3.3, {v,} C H}(Q) has a convergent subsequence, say {v,}, we
may assume that v, — v, in Hé(Q) as n — oo. Hence, from (3.9), it holds

]a(va) :r}i_r)rolo]a(vn) =C >0.
Furthermore, we have [, (v,) = 0. The proof is complete. O
Now, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let 0 < A < A*, where A* is defined by Lemma 3.4. Since v, is a critical
for J,, for each ¢ € H}(Q), one has

/Q (Vou, Vp)dx = /Q [(0F + wp)? ~1p — w? ~g]dx

¢ ¢
A — = | dx,
* /Q [(v;f +wo+a)r  w] *

which implies that v, satisfies the following equation

(3.10)

. . A A .
—Avy = (v +wp)* Tt —w} l+(v++w0+1x)”f_ﬁ' in Q,
w 0

v, =0, on 9.

Moreover, we can easily prove that {v,} is bounded in H}(Q), thus there exist a subsequence,
still denoted by {v,}, and vy € H}(Q) such that

vy — vy, weakly in H}(Q),
vy — Vg, strongly in LF(Q) (1 < p < 2%),
vu(x) = vo(x), a.e.in (),

as & — 0. Note that wy fulfilling

. A

—Awy = w% 14 —5 in Q,
Wy

wy =0, on 0.

Since 0 < wy < M, from the above information, we have

A

—A(vy +wg) = (0f +we)T 1+ oF T A
4

* /\
> (w2 1+ M (3.11)
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Let e be a positive solution of the following problem
—Au =1, in Q),
u=20, on dQ).

Then for every Qg CC (), there exists ¢y > 0 such that e|q, > 9. So, by (3.11) and comparison
principle, we get

U,X—ngzmin{l e>0.

A
"(M+2)r
In particular, we have

A
Ua+w02min{1,w}eo>0, inQO.

Hence, it is similar to the paper [14] that for every ¢ € H}(Q), passing the limit as a — in
(3.10), there holds

/Q(Vvo, V)dx = /Q[(vo+ +wo)* 1 — wi lpldx + A/Q [(P — ﬂ dx.  (3.12)

(v +wo)r  w]
Ao el Y BN IR [ G
ol(of +wo)r vo>0 w<0/) Ja [ (v +wo)r  w]

00<0 [ (v +wo w,

L3
v9<0 wo

Note that

Therefore, taking the test ¢ = v, in (3.12), then
—12 — + 2% -1 _ d A / O_ E d
I I = [ e+ 0)* oy~ ol A [ |t - 2
=0 §

which implies that ||v, || = 0. Consequently, 79 > 0 a.e. in Q2. Moreover, from (3.12), vy is a
positive solution of the following problem

. . A A
— (ot 25 -1 _ . 2"~1 _ .
—Av = (v +w) wy 4+ ot Wl in Q,

v=0, on o).
Similar to Lemma 3.2, we can deduce that v, — vg in H}(Q)) and
Jo(vo) = Lim Ju(va) > 0,
a—0
where

Jo(o) = 3ol — 5 /[v+ww—wm—r2*+wx

—/\/ [(v++wo)l_7— wp T (1 ) dx.

1—vJa wO
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Set wy = vy + wy, we have
/(le,V¢ dx—/ w1 ‘%pdx—)x/ ¢ dx
—/ (Vwy, V) dx—/wo _14>dx— / (de

+ /o (Voo, Vop)dx — /Q[(vo +wo)* ' — wﬁ* '¢pdx

M iy

=0,

which implies that w; is a positive solution of problem (1.2). Moreover, there holds

1 1 x A _
I(wl):7||ZU1||2_7/Qw% dx—l_,)//Quﬁ ’de

2 2%
1 1 « A _
= §||w0||2—2—*/0w% dx—i/ wy Tdx + Jo(vo)
+/ (Vwy, Vo) dx—/ wo “Logdx — A de
Qw,

= I(wo) + Jo(vo)

> 1 (ZUO)
Consequently, I(w;) > I(wyp), it suggests that w; # wy. Recalling that w; = vy + wy, we can
deduce that vyp > 0 and w; > wy. The proof is complete. O
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