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Abstract. This work deals with the interior transmission eigenvalue problem: y′′ +
k2η (r) y = 0 with boundary conditions y (0) = 0 = y′ (1) sin k

k − y (1) cos k, where the
function η(r) is positive. We obtain the asymptotic distribution of non-real transmission
eigenvalues under the suitable assumption on the square of the index of refraction
η(r). Moreover, we provide a uniqueness theorem for the case

∫ 1
0

√
η(r)dr > 1, by

using all transmission eigenvalues (including their multiplicities) along with a partial
information of η(r) on the subinterval. The relationship between the proportion of the
needed transmission eigenvalues and the length of the subinterval on the given η(r) is
also obtained.
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1 Introduction and main results

Consider the interior transmission problem

y′′ + k2η (r) y = 0, 0 < r < 1, y (0) = 0 = y′ (1)
sin k

k
− y (1) cos k, (1.1)

where the square of the index of refraction η(r) is a positive function in W2
2 [0, 1] with the

natural assumption η(1) = 1 and η′(1) = 0. The k2-values for which the problem (1.1) has a
nontrivial solution y (r) are called transmission eigenvalues. The problem (1.1) appears in the
inverse scattering theory for a spherically stratified medium, which consists in determining
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the function η(r) from transmission eigenvalues. To study the inverse spectral problem, one
has to investigate the property of transmission eigenvalues, such as, the existence of real or
non-real eigenvalues and their asymptotic distribution.

We introduce two key quantities. Denote

a :=
∫ 1

0

√
η (r)dr, (1.2)

which is explained physically as the time needed for the wave to travel from r = 0 to r = 1.
Introduce the characteristic function

d (k) := y′ (1, k)
sin k

k
− y (1, k) cos k, (1.3)

where y (r, k) is the solution of y′′ + k2η (r) y = 0 with the initial conditions y (0, k) = 0 and
y′ (0, k) = 1. Obviously, the transmission eigenvalues coincide with the squares of zeros of
d (k).

For the asymptotic behavior of the transmission eigenvalues, McLaughlin and Polyakov
[16] first showed that if a 6= 1 then there are infinitely many real eigenvalues {(k′n)2}n≥n0 ,
which have the asymptotics

(k′n)
2 =

n2π2

(a− 1)2 +
1

a− 1

∫ a

0
q(x)dx + κn, {κn} ∈ l2 n→ ∞, (1.4)

where q(x) is defined in (2.3). Some aspects of the asymptotics of large (real and non-real)
transmission eigenvalues for the case a = 1 were discussed in [24].

In 2015, Colton and co-authors [8] studied the existence and distribution of the non-real
transmission eigenvalues. They showed that if a 6= 1 and η′′(1) 6= 0 (this assumption can be
weakened [9]), then there exists infinitely many real and non-real transmission eigenvalues,
moreover, the imaginary parts of the non-real eigenvalues go to infinity. In particular, they
give an example to show the distribution of the transmission eigenvalues, which is

η(r) =
16

(r + 1)2(r− 3)2 .

It is easy to calculate η(1) = 1, η′(1) = 0 and η′′(1) = 1 6= 0. For this η(r), the distribution of
the zeros of d(k) in the right half plane is shown numerically in Figure 1.1 (see [8]).

Figure 1.1: An example

From Figure 1.1, we see that the locations of the non-real zeros {xn + iyn} of d(k) in the
right half-plane seem to satisfy asymptotically a logarithmic curve yn = log(cxn), where c
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may be some complex number. We will prove in theory that this is indeed true in the more
general case (see Theorem 1.1).

For the inverse spectral problem, many scholars contribute a lot of works (see [1–7, 16,
21–26] and the references therein). Specifically, Aktosun and co-authors [1, 2] proved the
uniqueness theorems and provided reconstruction algorithms for the cases a < 1 and a = 1.
In the case a = 1, to determine the index of refraction uniquely, one has to know all the
transmission eigenvalues (including their multiplicities) and either a certain constant [1, 4] or
some knowledge of the η(r) at r = 1 [22, 23]. For the case a > 1, however, there are only
a few results. It is known [7, 16] that the determination of η(r) on [0, 1] with η(1) = 1 and
η′(1) = 0 is equivalent to the determination of q(x) on [0, a] defined in (2.3). McLaughlin and
Polyakov [16] first showed that if a > 1 and η(r) is known a priori on a subinterval [ε1, 1] with
ε1 satisfying ∫ 1

ε1

√
η(r)dr =

a + 1
2

, (1.5)

then η(r) on [0, ε1] is uniquely determined by the transmission eigenvalues {(k′n)2}n≥1 satis-
fying (1.4), where {(k′n)2}n0−1

n=1 may be non-real. In 2013, Wei and Xu [22] suggested to specify
all transmission eigenvalues (including their multiplicities) and the norming constants, corre-
sponding to the real eigenvalues, to obtain the unique determination of η(r) on [0, 1].

In this paper, we will prove a new uniqueness theorem for the inverse spectral problem
in the case a > 1 (see Theorem 1.2), by using the less known information on η(r) and all
eigenvalues (including real and non-real). Moreover, with the help of some ideas in [10,12,13,
19], we give a relationship between the proportion of the needed eigenvalues and the length
of the subinterval on the given η(r) (see Theorem 1.4).

The main results in this article are as follows.

Theorem 1.1. Assume that η ∈Wm+3
2 [0, 1] for some m ∈N0 := {0} ∪N. If η(1) = 1, η(u)(1) = 0

for u = 1, m + 1 and η(m+2)(1) 6= 0, then the characteristic function d(k) has the non-real zeros {k±n }
satisfying the following asymptotic behavior, when |n| → ∞, n ∈ Z,

(i) a 6= 1

k±n =± nπ ± i
2

log
(

4(2nπi)m+2

η(m+2)(1)

)
+ α±n , α±n ∈ l2 for a > 1,

k±n =± nπ

a
± i

2a
log
(
−4(2nπi)m+2

η(m+2)(1)

)
+ β±n , β±n ∈ l2 for a < 1.

(ii) a = 1 and
∫ 1

0 q(x)dx 6= 0

k±n = ±nπ ± i
2

log

(
−8(2nπi)m+1

∫ 1
0 q(s)ds

η(m+2)(1)

)
+ γ±n , γ±n ∈ l2.

Theorem 1.2. Under the assumptions in Theorem 1.1, if a > 1 and η(r) is known a priori on [ε, 1]
with ε satisfying ∫ 1

ε

√
η(r)dr =

a− 1
2

, (1.6)

then η(r) on [0, 1] is uniquely determined by all zeros of d(k) (including multiplicity).

Remark 1.3. Equations (1.5) and (1.6) lead to
∫ ε

ε1

√
η(r)dr = 1, which implies ε > ε1.
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Let N(r) be the number of non-real zeros {k j}j≥1 of the function d(k) in the disk |k| ≤ r,
namely, N(r) := #{j : |k j| ≤ r}. From [8, 9] we see that if a 6= 1 and η(r) is non-constant near
r = 1 then the density of all zeros of d(k) on the right half plane is (1 + a)/π, and the density
of the real zeros on the right half plane is |1− a|/π if a 6= 1. Note that d(k) is an even function
of k. It follows that if a > 1 and η(r) is non-constant near r = 1 then

N(r) =
4r
π
[1 + o(1)], r → +∞. (1.7)

Let D be a subset of {k j}j≥1, and denote ND(r) := #{j : k j ∈ D, |k j| ≤ r}.

Theorem 1.4. Assume that η ∈ C2[0, 1] with η(1) = 1 and η′(1) = 0, and η(r) is non-constant near
r = 1. If a > 1 and η(r) is known a prior on [ε2, 1] with ε2 satisfying∫ 1

ε2

√
η(r)dr = b, b >

a− 1
2

(1.8)

then set {k′n}n≥n0 satisfying (1.4) and the subset D satisfying ND(r) = 2αr
π [1 + o(1)] as r → +∞

with α > a + 1− 2b uniquely determine η(r) on [0, 1].

Remark 1.5. By virtue of (1.7), we know that the value of α is at most 2. Since b > (a− 1)/2,
we have a + 1− 2b < 2. Thus the condition α > a + 1− 2b makes sense. Moreover, together
with Theorems 1.2 and 1.4, we see that if the known subinterval of η(r) is a little bigger, then
infinitely many eigenvalues can be missing for the unique determination of η(r).

2 Preliminaries

In this section, we provide some known auxiliary results.
Using the Liouville transformation,

x=
∫ r

0

√
η (ρ)dρ, ϕ (x) := (η (r))

1
4 y (r) , r = r (x) , (2.1)

we can write the equation y′′ + k2η (r) y = 0 with y (0, k) = 0 and y′ (0, k) = 1 as

ϕ′′(x) +
(
k2 − q (x)

)
ϕ(x) = 0, ϕ (0) = 0, ϕ′ (0) = η(0)−

1
4 , (2.2)

where

q (x) =
η′′(r)

4(η(r))2 −
5
16

(η′(r))2

(η(r))3 . (2.3)

Using the transformation operator theory (see, e.g. [17]), we have

η(0)
1
4 ϕ(x, k) =

sin(kx)
k

+
∫ x

0
K(x, t)

sin(kt)
k

dt, (2.4)

where K(x, t) satisfies the following integral equation (see, e.g. [4])

2K(x, t) =
∫ x+t

2

x−t
2

q(τ)dτ +
∫ x

x−t
q(τ)dτ

∫ τ

τ+t−x
K(τ, s)ds

+
∫ x−t

x−t
2

q(τ)dτ
∫ τ

x−t−τ
K(τ, s)ds−

∫ x

x+t
2

q(τ)dτ
∫ τ

x+t−τ
K(τ, s)ds,

(2.5)
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where 0 ≤ t ≤ x ≤ a. In particular, 2K(x, x) =
∫ x

0 q(s)ds and K(x, 0) = 0. On the other hand,
from equation (1.2.9) in [17], we know that

K(x, t) = K0(x, t)− K0(x,−t), (2.6)

where K0(x, t) with 0 ≤ |t| ≤ x ≤ a satisfies that if q ∈ Cm[0, a] then K0(x, ·) ∈ Cm+1[−x, x] for
each fixed x ∈ [0, a] (see Theorem 1.2.2 in [17]). It follows from (2.6) that if q ∈ Cm[0, a] then

∂2nK(x, t)
∂t2n

∣∣∣∣
t=0

= 0 n = 0, [(m + 1)/2], (2.7)

where [(m + 1)/2] denotes the entire part of (m + 1)/2.
By virtue of (2.1) and η(1) = 1 and η′(1) = 0, we have ϕ(a, k) = y(1, k) and ϕ′(a, k) =

y′(1, k). Thus,

y (1, k)=
1

η (0)
1
4

[
sin (ka)

k
− cos(ka)

2k2

∫ a

0
q(s)ds +

∫ a

0
Kt (a, t)

cos (kt)
k2 dt

]
, (2.8)

and

y′ (1, k)=
1

η (0)
1
4

[
cos (ka) +

sin (ka)
2k

∫ a

0
q (s) ds +

∫ a

0
Kx (a, t)

sin (kt)
k

dt
]

. (2.9)

Denote K1(t) := Kx(a, t) and K2(t) := Kt(a, t). Using equation (2.5), by tedious calculation, we
have

K1(t) =
1
4

[
q
(

a + t
2

)
−q
(

a− t
2

)]
+

1
2

∫ a

a−t
q(τ)K(τ, τ + t− a)dτ

− 1
2

∫ a−t

a−t
2

q(τ)K(τ, a−t− τ)dτ+
1
2

∫ a

a+t
2

q(τ)K(τ, a + t−τ)dτ,
(2.10)

and

K2(t) =
1
4

[
q
(

a + t
2

)
+q
(

a− t
2

)]
−1

2

∫ a

a−t
q(τ)K(τ, τ + t− a)dτ

+
1
2

∫ a−t

a−t
2

q(τ)K(τ, a− t− τ)dτ +
1
2

∫ a

a+t
2

q(τ)K(τ, a + t−τ)dτ.
(2.11)

To get Theorem 1.1, we introduce the following transcendental equation

z− λ log z = w, (2.12)

where λ is a constant in C and log z = log |z|+ i arg z with −π < arg z ≤ π.

Proposition 2.1. The transcendental equation (2.12) has a unique solution

z(w) = w + λ log w + O
(

log |w|
|w|

)
(2.13)

for any sufficiently large |w|.

Using a similar discussion in [11, p. 50] or [20], one can prove Proposition 2.1. For conve-
nience of reader, we give the proof in the Appendix. We will transform the equation d(k) = 0
to the equation with the form of (2.12), and then use (2.13) to obtain the asymptotics of non-
real transmission eigenvalues.

For the inverse spectral problem, we shall use the following three lemmas.
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Lemma 2.2 (See [14, p. 28]). Let G(k) be analytic in C+ and continuous in C+ := C+ ∪R. Suppose
that

(i) log |G(k)| = O(k) for |k| → ∞ in C+ := {k ∈ C : Im k > 0},

(ii) |G(x)| ≤ C for some constant C > 0, x ∈ R,

(iii) limτ→+∞ log |G(iτ)|/τ = A.

Then, for k ∈ C+, there holds
|G(k)| ≤ CeA Im k.

Lemma 2.3 (See [19]). For an arbitrary 0 < b < ∞ and p(·) ∈ L2[0, b], if

∫ b

0
p(x)ϕ(x, k)ϕ̃(x, k)dx = 0

for all k > 0, then p(x) = 0 on the interval [0, b], where ϕ(x, k) and ϕ̃(x, k) are defined by (2.2)
corresponding to q and q̃, respectively.

Lemma 2.4 (See Chapter IV of [15]). For any entire function g(k) 6≡ 0 of exponential type, the
following inequality holds,

lim
r→∞

Ng(r)
r
≤ 1

2π

∫ 2π

0
hg(θ)dθ,

where Ng(r) is the number of zeros of g(k) in the disk |k| ≤ r (r > 0) and hg(θ) := limr→∞
log |g(reiθ)|

r
with k = reiθ .

3 Proofs

Proof of Theorem 1.1. Rewrite equations (2.8) and (2.9) as

y(1, k) =
sin(ka)

η(0)
1
4 k

[1 + P1(k)] , y′(1, k) =
cos(ka)

η(0)
1
4

[1 + P2(k)] , (3.1)

where

P1(k) = −
cot(ka)

2k

∫ a

0
q(s)ds +

1
k sin(ka)

∫ a

0
K1(t) cos(kt)dt, (3.2)

and

P2(k) =
tan(ka)

2k

∫ a

0
q(s)ds +

1
k cos(ka)

∫ a

0
K2(t) sin(kt)dt. (3.3)

By (1.3), we have

η(0)
1
4 d(k) =

sin k
k

cos(ka)[1 + P2(k)]− cos k
sin(ka)

k
[1 + P1(k)]

=
sin(k(1− a))

2k
[2 + P2(k) + P1(k)] +

sin(k(1 + a))
2k

[P2(k)− P1(k)].
(3.4)

Now we shall estimate P2(k)− P1(k) when |k| → ∞ in C. Since η ∈Wm+3
2 [0, 1] with η(u)(1) = 0

for u = 1, m + 1 and η(m+2)(1) 6= 0, it follows from (2.3) that q ∈ Wm+1
2 [0, a] with q(u)(a) = 0
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for u = 0, m− 1 and q(m)(a) = η(m+2)(1)
4 6= 0. Integrating by parts in (3.2) and (3.3) for m + 1

times, and using (2.7), we have∫ a

0
K1(t) cos(kt)dt = sin(ka)

s

∑
u=0

K(2u)
1 (a)

(−1)uk2u+1 + cos(ka)
s−1

∑
v=0

K(2v+1)
1 (a)

(−1)vk2v+2

+
ε1(k)
k2s+1 , if m = 2s, s ∈N0,

(3.5a)

or ∫ a

0
K1(t) cos(kt)dt = sin(ka)

s

∑
u=0

K(2u)
1 (a)

(−1)uk2u+1 + cos(ka)
s

∑
v=0

K(2v+1)
1 (a)

(−1)vk2v+2

+
ε2(k)
k2s+2 , if m = 2s + 1, s ∈N0,

(3.5b)

and ∫ a

0
K2(t) sin(kt)dt = cos(ka)

s

∑
u=0

K(2u)
2 (a)

(−1)u+1k2u+1 + sin(ka)
s−1

∑
v=0

K(2v+1)
2 (a)

(−1)vk2v+2

+
ε3(k)
k2s+1 , if m = 2s, s ∈N0,

(3.6a)

or ∫ a

0
K2(t) sin(kt)dt = cos(ka)

s

∑
u=0

K(2u)
2 (a)

(−1)u+1k2u+1 +sin(ka)
s

∑
v=0

K(2v+1)
2 (a)

(−1)vk2v+2

+
ε4(k)
k2s+2 , if m = 2s + 1, s ∈N0,

(3.6b)

where ε j(k) (j = 1, 4) have the form of
∫ a

0 K0(t) sin(kt)dt or
∫ a

0 K0(t) cos(kt)dt with some
K0(·) ∈ L2(0, a). We only discuss the case m = 2s, and the case m = 2s + 1 is similar. Note
that ε j(k) = o(e|Im k|a) as |k| → ∞ in C (see [18, p. 15]). Substituting (3.5) and (3.6) into (3.2)
and (3.3), respectively, and subtracting, we obtain

P2(k)− P1(k) =

∫ a
0 q(s)ds

2k
[tan(ka) + cot(ka)] +

s

∑
u=0

K2u
2 (a) + K2u

1 (a)
(−1)u+1k2u+2

+ tan(ka)
s−1

∑
v=0

K(2v+1)
2 (a)

(−1)vk2v+3 − cot(ka)
s−1

∑
v=0

K(2v+1)
1 (a)

(−1)vk2v+3

+
ε5(k)
k2s+2 , ε5(k) = o(1), |k| → ∞, k ∈ C±,

(3.7)

where C± := {k ∈ C : ±Im k > 0}. Note that for |k| → ∞ in C±,

tan(ka) = ±i + O(e−2a|Im k|), cot(ka) = ∓i + O(e−2a|Im k|). (3.8)

Substituting (3.8) into (3.7), and observing that tan(ka) + cot(ka) = 2/ sin(2ka), we get

P2(k)− P1(k) =

∫ a
0 q(s)ds

k sin(2ak)
+

s

∑
u=0

K2u
2 (a) + K2u

1 (a)
(−1)u+1k2u+2

± i
s−1

∑
v=0

K(2v+1)
2 (a) + K(2v+1)

1 (a)
(−1)vk2v+3 + O

(
e−2a|Im k|

k3

)

+
ε5(k)
k2s+2 , |k| → ∞, k ∈ C±.

(3.9)
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Now we shall calculate K(u)
1 (a) + K(u)

2 (a) for u = 0, m. Using (2.10) and (2.11), we have

K(t) := K1(t) + K2(t) =
1
2

q
(

a + t
2

)
+
∫ a

a+t
2

q(τ)K(τ, a + t− τ)dτ.

Since q(u)(a) = 0 for u = 0, m− 1 and q(m)(a) = η(m+2)(1)
4 6= 0, we obtain

K(u)(a) = 0, u = 0, m− 1, K(m)(a) =
q(m)(a)
2m+1 =

η(m+2)(1)
2m+3 . (3.10)

Substituting (3.10) into (3.9), we get, for the case m = 2s,

P2(k)− P1(k) =

∫ a
0 q(s)ds

k sin(2ak)
+

(−1)
m
2 +1η(m+2)(1)

2m+3km+2

+ O

(
e−2a|Im k|

k3

)
+

ε5(k)
km+2 , |k| → ∞, k ∈ C±.

(3.11a)

Similarly, one can get that for the case m = 2s + 1,

P2(k)− P1(k) =

∫ a
0 q(s)ds

k sin(2ak)
± i

(−1)
m−1

2 η(m+2)(1)
2m+3km+2

+ O

(
e−2a|Im k|

k3

)
+

ε5(k)
km+2 , |k| → ∞, k ∈ C±.

(3.11b)

Let k := σ + iτ, and consider the domain

Cε
± :=

{
k ∈ C± : |τ| ≥ m + 2− ε

2a
log |σ|, 0 < ε < 1

}
if a 6= 1.

Substituting (3.11) into (3.4), we have that if a 6= 1 and |k| → ∞ in Cε
±, then, for the case

m = 2s,

η(0)
1
4 d(k) =

sin(k(1− a))
k

[
1 + O

(
1
k

)]
+

η(m+2)(1) sin(k(1 + a))
(−1)

m
2 +12(2k)m+3

[1 + ε6(k)], (3.12a)

and for the case m = 2s + 1,

η(0)
1
4 d(k) =

sin(k(1− a))
k

[
1 + O

(
1
k

)]
± i

η(m+2)(1) sin(k(1 + a))

(−1)
m−1

2 2(2k)m+3
[1 + ε6(k)], (3.12b)

if a = 1,
∫ 1

0 q(s)ds 6= 0 and |k| → ∞ in C±, then for the case m = 2s,

η(0)
1
4 d(k) =

∫ 1
0 q(s)ds

2k2

[
1 + O

(
1
k2

)]
+

η(m+2)(1) sin(2k)
(−1)

m
2 +12(2k)m+3

[1 + ε7(k)], (3.13a)

and for the case m = 2s + 1,

η(0)
1
4 d(k) =

∫ 1
0 q(s)ds

2k2

[
1 + O

(
1
k2

)]
± i

η(m+2)(1) sin(2k)

(−1)
m−1

2 2(2k)m+3
[1 + ε7(k)], (3.13b)

where
ε6(k) = c|k|m+1e−2a|Im k| + ε5(k) = o(1), |k| → ∞, k ∈ Cε

±, (3.14)
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and
ε7(k) = c|k|m−1e−2|Im k| + ε5(k) = o(1), |k| → ∞, k ∈ C±. (3.15)

The remaining proof should be divided into six subcases: (i) a > 1 and m = 2s; (ii) a > 1
and m = 2s + 1; (iii) a < 1 and m = 2s; (iv) a < 1 and m = 2s + 1; (v) a = 1 and m = 2s; (vi)
a = 1 and m = 2s + 1. We only discuss the subcases (i) and (v) in details, and the other cases
are similar and omitted.

Case (i): by virtue of (3.12a), we know that d(k) = 0 for |k| → ∞ in Cε
± is equivalent to that

2m+4km+2 sin(k(1− a))
[

1 + O
(

1
k

)]
= (−1)

m
2 η(m+2)(1) sin(k(1 + a))[1 + ε6(k)].

Setting k = z
i , we have (−1)

m
2 ( 1

i )
m+2 = (−1)

m
2 (−1)

m
2 +1 = −1, and furthermore,

2m+4zm+2

η(m+2)(1)
[ez(a−1) − ez(1−a)] = [ez(1+a) − e−z(1+a)][1 + ε6(k)], |z| → ∞, k ∈ Cε

±,

Taking logarithm on both sides of the above equation, we get that for sufficiently large n ∈ Z,
z− m + 2

2
log z = wn, wn := −nπi +

1
2

log
(

2m+4

η(m+2)(1)

)
+ ε8(k), Re z > 0,

z +
m + 2

2
log z = wn, wn := nπi− 1

2
log
(

2m+4

η(m+2)(1)

)
+ ε8(k), Re z < 0,

where

ε8(k) = ± log(1 + ε6(k))± log(1 + e2|Re z|(1−a))± log(1 + e−2|Re z|(1+a))

= o(1), |k| → ∞, k ∈ Cε
±.

(3.16)

It follows from (2.12) and (2.13) and z = ik that

k±n = ±nπ ± i
2

log
(

4(2nπi)m+2

η(m+2)(1)

)
+ α±n , α±n = o(1), n→ ∞. (3.17)

Clearly, the above sequences belong to the domain Cε
± for all large |n|.

Substituting (3.17) into (3.5) and (3.6), we get that ε j(k±n )e−a|Im k±n | ∈ l2 for j = 1, 4, which
implies ε5(k±n ) ∈ l2. It follows from (3.14) and (3.15) that ε8(k±n ) ∈ l2. Taking (2.12) and (2.13)
into account, we can obtain α±n ∈ l2.

Case (v): by virtue of (3.13a), we know that d(k) = 0 for |k| → ∞ in C± is equivalent to that∫ 1
0 q(s)ds

η(m+2)(1)
2m+3km+1(−1)

m
2 = sin(2k)[1 + ε′7(k)], |k| → ∞, k ∈ C±,

where ε′7(k) = ε7(k) + O(k−2). Setting k = z
i , we have (−1)

m
2 ( 1

i )
m+1 = (−1)

m
2 (−1)

m
2 1

i = 1
i ,

and ∫ 1
0 q(s)ds

η(m+2)(1)
2m+4zm+1 = [e2z − e−2z][1 + ε′7(k)], |z| → ∞, k ∈ C±,

which implies that for sufficiently large n ∈ Z
z− m + 1

2
log z = −nπi +

1
2

log

∫ 1
0 q(s)ds

η(m+2)(1)
2m+4 + ε′8(k), Re z > 0,

z +
m + 1

2
log z = nπi− 1

2
log
−
∫ 1

0 q(s)ds
η(m+2)(1)

2m+4 + ε′8(k), Re z < 0.
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It follows from (2.12) and (2.13) and z = ik that for n ∈ Z and |n| → ∞
k−n = −nπ − i

2
log

( ∫ 1
0 q(s)ds

η(m+2)(1)
2m+4(−nπi)m+1

)
+ γ−n ,

k+n = nπ +
i
2

log

(
−
∫ 1

0 q(s)ds
η(m+2)(1)

2m+4(nπi)m+1

)
+ γ+

n .

Using a similar argument, one gets γ±n ∈ l2.
Through similar arguments, one obtains asymptotics of other cases. The proof is finished.

Proof of Theorem 1.2. Since the function d(k) is an entire function of k of order 1 and even with
respect to k, by Hadamard’s factorization theorem,

d(k) = γE(k), E(k) := k2s ∏
kn 6=0

(
1− k2

k2
n

)
, (3.18)

where s is the multiplicity of the zero eigenvalue.
Using (1.2), (2.1) and (2.3), one can verify that specification of η(r) on [ε, 1] with ε satisfying

(1.6) is equivalent to specification of q(x) for x ∈ [ a+1
2 , a]. Let us prove that q(x) on [0, a] is

uniquely determined by E(k) and the known q(x) on [ a+1
2 , a]. If it is true, then η(r) on [0, 1]

with η(1) = 1 and η′(1) = 0 is uniquely determined by E(k) and the known η(r) on [ε, 1].
(See [16]).

Suppose that there are two functions q and q̃ corresponding to the same E(k) defined by
(3.18). Let (a, ϕ) and (ã, ϕ̃) be their corresponding quantities in (1.2) and (2.2). By virtue of
(1.4) and a > 1, we obtain

a = ã.

Denote

g(k) :=
∫ a+1

2

0
[q̃(x)− q(x)]ϕ(x, k)ϕ̃(x, k)dx. (3.19)

It follows from (2.4) that

|g(k)| ≤ M0
e(1+a)|Imk|

|k|2 for some M0 > 0. (3.20)

Since q(x) = q̃(x) on [ a+1
2 , a], together with (2.2), we get

g(k)=
∫ a

0
[q̃(x)− q(x)]ϕ(x, k)ϕ̃(x, k)dx = ϕ̃′(a, k)ϕ(a, k)− ϕ̃(a, k)ϕ′(a, k). (3.21)

Note that equation (2.1) with η(1) = 1 and η′(1) = 0 implies that

ϕ(a, k) = y(1, k) and ϕ′(a, k) = y′(1, k). (3.22)

It yields from (1.3) that

d(k) =
sin k

k
ϕ′(a, k)− ϕ(a, k) cos k =

sin k
k

[ϕ′(a, k)− ϕ(a, k)k cot k],

which implies

ϕ′(a, k) =
k

sin k
d(k) + ϕ(a, k)k cot k. (3.23)
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Together with (3.23) it follows from (3.21) that

g(k) =
k

sin k
[ϕ(a, k)d̃(k)− ϕ̃(a, k)d(k)]

=
kE(k)
sin k

γγ̃

[
ϕ(a, k)

γ
− ϕ̃(a, k)

γ̃

]
.

Set

G(k) :=
g(k)
E(k)

=
k

sin k
γγ̃

[
ϕ(a, k)

γ
− ϕ̃(a, k)

γ̃

]
. (3.24)

Observing that d(k)/γ = d̃(k)/γ̃, one has

1
γ

[
sin k

k
ϕ′(a, k)− ϕ(a, k) cos k

]
=

1
γ̃

[
sin k

k
ϕ̃′(a, k)− ϕ̃(a, k) cos k

]
,

which implies
ϕ(a, nπ)

γ
− ϕ̃(a, nπ)

γ̃
= 0, n = ±1,±2, . . . ,

and so G(k) is an entire function of k from (3.24).
Due to (3.20), we know that G(k) satisfies the condition (i) in Lemma 2.2. From (3.12) and

(3.18) it follows that

E(±iτ) =
ce(a+1)τ

τm+3 [1 + o(1)], c 6= 0, τ → +∞, (3.25)

which implies from (3.20) and (3.24) that

|G(iτ)| ≤ Cτm+1, τ → +∞,

where m ≥ 0 appears in Theorem 1.1. It yields limτ→+∞ log |G(iτ)|/τ := A ≤ 0. If we can
prove |G(k)| ≤ C for k ∈ R (see (∗) below), then it follows from Lemma 2.2 that for all k ∈ C+

|G(k)| ≤ C. (3.26)

Note that G(k) is even, so equation (3.26) holds on the whole complex plane. This implies
that G(k) is a constant from Liouville’s theorem. In addition, for the sequence {nπ}n≥1 there
holds G(nπ)→ 0 as n→ ∞ (see (∗) below). It follows that G(k) ≡ 0, which implies g(k) ≡ 0,
and so q(x) = q̃(x) for x ∈ [0, a] by Lemma 2.3.

Now, we shall prove (∗): G(k) is bounded on R and G(nπ) tends to zero as n→ ∞. Using
(3.2), (3.3), (3.4) and (3.18), we get

E(k) =
sin(k(1− a))

kγη(0)1/4

[
1 + O

(
1
k

)]
, |k| → ∞, k ∈ R,

which implies γη(0)1/4 is uniquely determine by E(k) if a 6= 1. Substituting (2.4) into (3.24),
we have

G(k) =
γ̃

η(0)1/4 sin k

∫ a

0

(
K(a, t)− K̃(a, t)

)
sin(kt)dt. (3.27)

Note that G(k) is an entire function of k from the above argument, thus, zeros of sin k can not
be poles of G(k). Thus, it follows from (3.27) that∫ a

0

(
K(a, t)− K̃(a, t)

)
sin(nπt)dt = 0, n = 0,±1,±2, . . .
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Letting k→ nπ in (3.27), we get from the L’Hospital principle that

G(nπ) =
γ̃
∫ a

0

(
K̃(a, t)− K(a, t)

)
t cos(nπt)dt

η(0)1/4(−1)n , n = 0,±1,±2, . . . (3.28)

Thus, G(k) is bounded on R and G(nπ) tends to zero as n → ∞ from (3.28). Therefore, we
have finished the proof.

Proof of Theorem 1.4. By a similar argument to the proof of Theorem 1.2, we know that it is
enough to show the function g(k) ≡ 0, where g(k) is defined in (3.19) with (a+ 1)/2 replacing
by a− b (because now q(x) = q̃(x) on [a− b, a] from (1.8)). From (3.21) and (3.22), together
with the boundary condition in (1.1), we get

g(k) = 0 for k ∈ D ∪ {k′n}n≥n0 . (3.29)

Since |Im k| = r| sin θ|, where k = reiθ , it follows from (3.20) with a+ 1 replacing by 2(a− b)
that

hg(θ) := lim
r→∞

log |g(reiθ)|
r

≤ 2(a− b)| sin θ|,

which implies
1

2π

∫ 2π

0
hg(θ)dθ ≤ 2(a− b)

π

∫ 2π

0
| sin θ|dθ =

4(a− b)
π

. (3.30)

On the other hand, from (3.29) and (1.4) we have

Ng(r) ≥ ND(r) +
2(a− 1)r

π
[1 + o(1)] =

2(α + a− 1)r
π

[1 + o(1)], r → ∞.

It follows from Lemma 2.4 and (3.30) that if the entire function g(k) 6≡ 0 then

2(α + a− 1)
π

≤ lim
r→∞

Ng(r)
r
≤ 1

2π

∫ 2π

0
hg(θ)dθ ≤ 4(a− b)

π
,

which yields α ≤ a + 1− 2b. However, now α > a + 1− 2b, it yields g(k) ≡ 0. The proof is
complete.

Appendix

Let us give the proof for Proposition 2.1. Consider the equation for ξ

ξ − λ

(
log w

w
+

log(1 + ξ)

w

)
= 0. (3.31)

where w is fixed with sufficiently large modulus such that
∣∣λ log w

w

∣∣ =: δ < 1/4. Denote

f (ξ) := ξ, h(ξ) := −λ

(
log w

w
+

log(1 + ξ)

w

)
.

Consider the contour Γδ := {ξ ∈ C : |ξ| = 3δ} and the disk Dδ := {ξ ∈ C : |ξ| ≤ 3δ}. Since
log(1 + ξ) is bounded for ξ ∈ Dδ, we can choose w (only need to be sufficiently large) such
that

|h(ξ)| ≤ |λ|
(∣∣∣∣ log w

w

∣∣∣∣+ ∣∣∣∣ log(1 + ξ)

w

∣∣∣∣) ≤ 2δ, ξ ∈ Dδ.
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It follows that when ξ ∈ Γδ, | f (ξ)| = 3δ > 2δ ≥ |h(ξ)|. Using the Rouché theorem, we
conclude that f (ξ) + h(ξ) has a unique (simple) zero inside Γδ. Therefore, the equation (3.31)
has a unique solution ξ = ξ(w) for any sufficiently large |w|.

For the equation (2.12), by changing the variable z = w(1 + ξ), we can transform it into
(3.31). Conversely, from (3.31), by letting ξ = z/w− 1, we can get (2.12). Hence the equation
(2.12) is equivalent to (3.31). So equation (2.12) has a unique solution for any sufficiently large
|w|.

Next, let us prove (2.13). Using (3.31) again, we have

|ξ| ≤ C1
log |w|
|w| ,

∣∣∣∣ξ − λ
log w

w

∣∣∣∣ ≤ C2
log(1 + |ξ|)
|w| ≤ C3

log |w|
|w|2

for sufficiently large |w|, where Cj > 0 (j = 1, 3) are constants. It follows from (3.31) and
z = w(1 + ξ) that

z = w + λ log w + O
(

log |w|
|w|

)
.
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