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Abstract. We prove the existence of positive solutions for the p-Laplacian equations

−(φ(u′))′ = λ f (t, u), t ∈ (0, 1)

with integral boundary conditions. Here λ is a positive parameter, φ(s) = |s|p−2s,
p > 1, f : (0, 1) × (0, ∞) → R is p-superlinear or p-sublinear at ∞ in the second
variable and is allowed be singular at t = 0, 1 and u = 0.
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1 Introduction

Consider the one-dimensional p-Laplacian equation

− (φ(u′))′ = λ f (t, u), t ∈ (0, 1) (1.1)

with boundary conditions

au(0)− bu′(0) =
∫ 1

0
g(t)u(t)dt, u′(1) = 0, (1.2)

or

au(0)− bu′(0) =
∫ 1

0
g(t)u(t)dt, u(1) = 0, (1.3)

where φ(s) = |s|p−2s, p > 1, a > 0, b ≥ 0, g : (0, 1) → [0, ∞), f : (0, 1)× (0, ∞) → R, and λ is a
positive parameter.

Equation (1.1) arises in some physical models such as non-Newtonian fluids, chemical
reactions, and population biology, see e.g. [2, 3, 7, 8]. The integral boundary conditions occur
in thermal conduction, semiconductor and hydrodynamic problems [5, 6, 11].
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In [16], Zhang and Feng studied the existence of positive solutions to (1.1)–(1.2)) with
b > 0 for a certain range for λ when f (t, u) = ω(t)F(t, u) is nonnegative and nonsingular in
u under a variety of assumptions involving limu→0+

F(t,u)
up−1 and/or limu→∞

F(t,u)
up−1 . In particular,

they showed in [16, Theorem 1.3] that (1.1)–(1.2) has a positive solution uλ for all λ > 0 if
either limu→0+

F(t,u)
up−1 = 0 and limu→∞

F(t,u)
up−1 = ∞ (p-superlinear) uniformly for t ∈ [0, 1], or

limu→0+
F(t,u)
up−1 = ∞ and limu→∞

F(t,u)
up−1 = 0 (p-sublinear) uniformly for t ∈ [0, 1]. In addition,

limλ→0 ‖uλ‖∞ = ∞ in the former case and limλ→0 ‖uλ‖∞ = 0 in the latter case. The approach
used in [16] was fixed point theory in a cone, and the nonnegativity assumption of f there
was essential to ensure that the equivalent fixed point mapping maps the cone of nonnega-
tive continuous functions into itself. In this note, we shall establish the existence of positive
solutions to (1.1) with boundary condition (1.2) or (1.3) when f (t, u) can be ±∞ at u = 0 and
is either p-superlinear or p-sublinear at ∞, which has not been considered in the literature to
the best of our knowledge.

Our results when applied to the model equation

− (φ(u′))′ =
λ

tα

( c
uδ

+ uρ
)

, t ∈ (0, 1), (1.4)

where c ∈ R, α, δ ∈ [0, 1), ρ > 0, give the existence of a large positive solution to (1.4) with
boundary conditions (1.2) or (1.3) for λ small when ρ > p− 1, or for λ large when ρ < p− 1.
We refer to [4, 9, 10, 12–15] for results related to (1.1) with integral boundary conditions.

Define q(t) = t if (1.2) holds and q(t) = min(t, 1− t) if (1.3) holds. We shall make the
following assumptions:

(A1) g : (0, 1)→ [0, ∞) is integrable and
∫ 1

0 g(t)dt < a.

(A2) f : (0, 1)× (0, ∞)→ R is a Carathéodory function, that is f (., z) is measurable for z > 0
and f (t, ·) is continuous for a.e. t ∈ (0, 1).

(A3) There exists a constant δ ∈ [0, 1) such that for each k > 0, there exists a function
γk : (0, 1)→ [0, ∞) with γk/qδ ∈ L1(0, 1) such that

| f (t, z)| ≤ γk(t)z−δ

for a.e. t ∈ (0, 1) and z ∈ (0, k].

(A4) There exist γ ∈ L1(0, 1) with γ > 0 a.e. on (0, 1) and ν ∈ {0, ∞} such that

lim
z→∞

f (t, z)
γ(t)zp−1 = ν,

uniformly for a.e. t ∈ (0, 1).

By a solution of (1.1) with boundary condition (1.2) (resp. (1.3)), we mean a function
u ∈ C1[0, 1] with φ(u′) absolutely continuous on [0, 1], and satisfying (1.2) (resp. (1.3)). Our
main result is the following.

Theorem 1.1. Let (A1)–(A3) hold.

(i) If (A4) holds with ν = ∞ then there exists a constant λ0 > 0 such that for λ < λ0, (1.1) with
boundary condition (1.2)) or (1.3) has a positive solution uλ with ‖uλ‖∞ → ∞ as λ→ 0+.

(ii) If (A4) holds with ν = 0 and limz→∞ f (t, z) = ∞ uniformly for a.e. t ∈ (0, 1) then there exists a
constant λ̃0 > 0 such that for λ > λ̃0, (1.1) with boundary condition (1.2) or (1.3) has a positive
solution uλ with ‖uλ‖∞ → ∞ as λ→ ∞.
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2 Preliminary result

We shall denote the norm in Lp(0, 1) by ‖ · ‖p.

Lemma 2.1. Let h ∈ L1(0, 1) and let (A1) hold. Then the equation

− (φ(u′))′ = h on (0, 1) (2.1)

with boundary condition (1.2) or (1.3) has a unique solution u ≡ Th ∈ C1[0, 1]. Furthermore,

‖u‖∞ ≤ Mφ−1(‖h‖1), (2.2)

where M = max
( a+b

a−‖g‖1
, 2

1
p−1
)
, and the map T : L1(0, 1)→ C[0, 1] is completely continuous.

Proof. Suppose (1.2) holds. By integrating (2.1) and using (1.2), it follows that (2.1) with
boundary condition (1.2) has a unique solution u, given by

u(t) = C +
∫ t

0
φ−1

(∫ 1

s
h
)

ds,

where

C =
bφ−1

(∫ 1
0 h
)
+
∫ 1

0 g(t)
(∫ t

0 φ−1
(∫ 1

s h
)

ds
)

dt

a−
∫ 1

0 g
. (2.3)

Since |C| ≤ (b+‖g‖1)φ
−1(‖h‖1)

a−‖g‖1
, it follows that

‖u‖∞ ≤
a + b

a− ‖g‖1
φ−1(‖h‖1),

i.e. (2.2) holds. Since |u|C1 = ‖u‖∞ + ‖u′‖∞ ≤ (M + 1)φ−1(‖h‖1), it follows that T maps
bounded sets in L1(0, 1) into bounded sets in C1[0, 1] and hence relatively compact subsets in
C[0, 1]. To show continuity of T, let (hn) ⊂ L1(0, 1) and h ∈ L1(0, 1) be such that hn → h in
L1(0, 1). Let un = Thn and u = Th. Then

un(t) = Cn +
∫ t

0
φ−1

(∫ 1

s
hn

)
ds,

where Cn is given by (2.3) with h replaced by hn. It is easy to see that Cn → C and hence
un → u in C[0, 1].

Suppose next that (1.3) holds. By integrating (2.1) and using (1.3), it follows that (2.1) with
boundary condition (1.3) has a unique solution u, given by

u(t) =
∫ 1

t
φ−1

(
−C +

∫ s

0
h
)

ds,

where C = φ(u′(0)) ∈ R is the unique solution of H(ξ) = 0, where

H(ξ) =

(
a−

∫ 1

0
g
) ∫ 1

0
φ−1

(
−ξ +

∫ s

0
h
)

ds− bφ−1(ξ) +
∫ 1

0

(∫ 1

t
g
)

φ−1
(
−ξ +

∫ t

0
h
)

dt.

Note that the existence and uniqueness of C follows from the fact that H is continuous, de-
creasing in ξ with limξ→∞ H(ξ) = −∞ and limξ→−∞ H(ξ) = ∞. Since H(C) < 0 if C > ‖h‖1

and H(C) > 0 if C < −‖h‖1, it follows that |C| ≤ ‖h‖1. Hence

‖u‖∞ ≤ φ−1(2‖h‖1).
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i.e. (2.2) holds. Since |u|C1 = ‖u‖∞ + ‖u′‖∞ ≤ 2
p

p−1 φ−1(‖h‖1), it follows that T maps bounded
sets in L1(0, 1) into bounded sets in C1[0, 1]. To show continuity of T, let (hn) ⊂ L1(0, 1) and
h ∈ L1(0, 1) be such that hn → h in L1(0, 1). Let un = Thn and u = Th. Then

un(t) =
∫ 1

t
φ−1

(
−Cn +

∫ s

0
hn

)
ds

for t ∈ [0, 1], where Cn ∈ R is the unique solution of Hn(ξ) = 0, where

Hn(ξ) =

(
a−

∫ 1

0
g
) ∫ 1

0
φ−1

(
−ξ +

∫ s

0
hn

)
ds− bφ−1(ξ) +

∫ 1

0

(∫ 1

t
g
)

φ−1
(
−ξ +

∫ t

0
hn

)
dt.

Suppose Cn > C + ‖|hn − h‖1. Then

−Cn +
∫ s

0
hn < −C +

∫ s

0
h

for s ∈ [0, 1], which together with (A1) and the fact that φ−1 is increasing imply Hn(Cn) <

H(C). On the other hand, if Cn < C− ‖hn − h‖1 then

−Cn +
∫ s

0
hn > −C +

∫ s

0
h

for s ∈ [0, 1], which implies Hn(Cn) > H(C). Hence we reach a contradiction in either case.
Consequently,

|Cn − C| ≤ ‖hn − h‖1,

which implies Cn → C as n → ∞. Using the formulas for un and u, it is easily seen that (un)

converges to u in C[0, 1], which completes the proof.

Next, we establish a comparison principle.

Lemma 2.2. Let 0 ≤ r0 < r1 ≤ 1 and let h1, h2 ∈ L1(r0, r1) be such that h1 ≥ h2 on (r0, r1). Let
u, v ∈ C1[r0, r1] satisfy

−(φ(u′))′ = h1, −(φ(v′))′ = h2 on (r0, r1),
au(r0)− bu′(r0)−

∫ r1
r0

g(t)u(t)dt ≥ av(r0)− bv′(r0)−
∫ r1

r0
g(t)v(t)dt,

u′(r1) ≥ v′(r1) or u(r1) ≥ v(r1).

Then u ≥ v on [r0, r1].

Proof. Suppose on the contrary that there exists r∗ ∈ (r0, r1) such that u(r∗) < v(r∗). Let
(α, β) ⊂ (r0, r1) be the largest open interval containing r∗ such that u < v on (α, β). Then
u(α) ≤ v(α) and u(β) ≤ v(β). Multiplying the equation

− (φ(u′)− φ(v′))′ = h1 − h2 ≥ 0 on (r0, r1) (2.4)

by u− v and integrating on (α, β), we obtain

Cα − Cβ +
∫ β

α
(φ(u′)− φ(v′))(u′ − v′) =

∫ β

α
(h1 − h2)(u− v) ≤ 0, (2.5)

where Cκ = (φ(u′(κ))− φ(v′(κ))(u(κ)− v(κ)), κ ∈ {α, β}. We claim that Cα = 0 and Cβ ≤ 0.
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To show Cα = 0, we verify that u(α) = v(α). If α > r0 then clearly u(α) = v(α). Suppose
α = r0 and u(r0) < v(r0). We show that this will lead to a contradiction.

Case 1: u′(r1) ≥ v′(r1) .
Then, since φ(u′) − φ(v′) is nonincreasing, it follows that u′ ≥ v′ on [r0, r1]. Hence

min[r0,r1](u − v) = (u − v)(r0), which together with the boundary inequality at r0 and (A1)
imply

0 ≤ b(u′ − v′)(r0) ≤ a(u− v)(r0)−
∫ r1

r0

g(u− v)dt ≤
(

a−
∫ r1

r0

g
)
(u− v)(r0) < 0, (2.6)

a contradiction.

Case 2. u(r1) ≥ v(r1).
Then u(β) = v(β) and hence u′(β) ≥ v′(β), which implies u′ ≥ v′ on [r0, β]. In particular,

min[r0,β](u− v) = (u− v)(r0). If β = r1 then we reach a contradiction as in case 1. Suppose
β < r1. We shall verify that u ≥ v on [β, r1]. If not, then there exists an interval (α0, β0) ⊂
(β, r1) such that u < v on (α0, β0) and (u− v)(α0) = (u− v)(β0) = 0.

Multiplying (2.4) by u− v and integrating on (α0, β0) gives∫ β0

α0

(φ(u′)− φ(v′))(u′ − v′) = 0,

which implies u′ = v′ on [α0, β0]. Hence u = v on [α0, β0], a contradiction. Thus u− v ≥ 0
on [β, r1], which, together with min[r0,β](u − v) = (u − v)(r0) and (u − v)(r0) < 0, gives
min[r0,r1](u− v) = (u− v)(r0) and again (2.6) holds, a contradiction.

Thus u(α) = v(α) in both cases. Next, we claim that Cβ ≤ 0. If u(r1) ≥ v(r1) then u(β) =

v(β) while if u′(r1) ≥ v′(r1) then u(β) = v(β) if β < r1 and Cβ = (φ(u′(β))− φ(v′(β))(u(β)−
v(β)) ≤ 0 if β = r1. This proves the claim. Hence (2.5) gives∫ β

α
(φ(u′)− φ(v′))(u′ − v′) = 0,

which implies u′ = v′ on [α, β] and so u = v+ c on [α, β], where c is a negative constant. Hence
α = r0 and β = r1. Using the assumption on the boundary at r0, we obtain

(
a−

∫ r1
r0

g
)
c ≥ 0.

Thus c ≥ 0, a contradiction. Hence u ≥ v on [r0, r1], which completes the proof.

Lemma 2.3. Let h ∈ L1(0, 1) with h ≥ 0 and let u ∈ C1[0, 1] with φ(u′) absolutely continuous on
[0, 1] satisfying

(φ(u′))′ ≤ h on (0, 1), (2.7)

with either

au(0)− bu′(0) ≥
∫ 1

0
g(t)u(t)dt, u′(1) ≥ 0, (2.8)

or

au(0)− bu′(0) ≥
∫ 1

0
g(t)u(t)dt, u(1) ≥ 0. (2.9)

Suppose ‖u‖∞ > Lφ−1(‖h‖1), where L = 2ma+b
a−‖g‖1

and m = 2
(

2−p
p−1

)
+ . Then

u(t) ≥ c‖u‖∞q(t) (2.10)

for t ∈ [0, 1], where c = 1/L.
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Proof. By Lemma 2.2, u ≥ v on [0, 1], where v satisfies

(φ(v′))′ = h on (0, 1)

with

av(0)− bv′(0) =
∫ 1

0
g(t)v(t)dt, v′(1) = 0

if (2.8) holds, and

av(0)− bv′(0) =
∫ 1

0
g(t)v(t)dt, v(1) = 0

if (2.9) holds. Suppose ‖u‖∞ = |u(τ)| for some τ ∈ [0, 1]. Then u(τ) > 0. Indeed, if u(τ) ≤ 0
then in view of (2.2), we get

‖u‖∞ = −u(τ) ≤ −v(τ) ≤ Mφ−1(‖h‖1) ≤ Lφ−1(‖h‖1),

where M is defined in Lemma 2.1. This contradicts the assumption on ‖u‖∞.
Suppose τ ∈ (0, 1). Let w ∈ C1[0, τ] be the solution of{

(φ(w′))′ = h on (0, τ),

aw(0)− bw′(0) =
∫ 1

0 g(t)w(t)dt, w(τ) = ‖u‖∞.

A calculation shows that

w(t) = KC +
∫ t

0
φ−1

(
C +

∫ s

0
h
)

ds (2.11)

for t ∈ [0, 1], where

KC =
bφ−1(C) +

∫ 1
0 g(t)

(∫ t
0 φ−1 (C +

∫ s
0 h
)

ds
)

dt

a− ‖g‖1
, (2.12)

and C = φ(w′(0)) is the unique solution of Hτ(ρ) = ‖u‖∞, where

Hτ(ρ) = Kρ +
∫ τ

0
φ−1

(
ρ +

∫ s

0
h
)

ds.

Note that the existence and uniqueness of C follows from the fact that Hτ is increasing in ρ

and limρ→∞ Hτ(ρ) = ∞, limρ→−∞ Hτ(ρ) = −∞.
Using Lemma 2.2 with r0 = 0 and r1 = τ, we deduce that u ≥ w on [0, τ]. If w′(0) ≤ 0

then C ≤ 0 and hence

‖u‖∞ = Hτ(C) ≤

∫ 1
0 g(t)

(∫ t
0 φ−1 (∫ s

0 h
)

ds
)

dt

a− ‖g‖1
+
∫ τ

0
φ−1

(∫ s

0
h
)

ds

≤ a
a− ‖g‖1

φ−1(‖h‖1) < Lφ−1(‖h‖1),

a contradiction. Hence w′(0) > 0 i.e. C > 0.
Using the inequality (x + y)r ≤ 2

(r−1)+
(xr + yr) for x, y ≥ 0 with r = (p− 1)−1, we obtain

φ−1
(

φ(w′(0)) +
∫ s

0
h
)
≤ m

(
w′(0) + φ−1(‖h‖1)

)
,
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where m = 2
(

2−p
p−1

)
+. Hence it follows from (2.11)–(2.12) that

‖u‖∞ ≤
bw′(0) + m‖g‖1

(
w′(0) + φ−1(‖h‖1)

)
a− ‖g‖1

+ m
(

w′(0) + φ−1(‖h‖1)
)

= m1w′(0) + M1φ−1(‖h‖1),

where m1 = b+ma
a−‖g‖1

and M1 = ma
a−‖g‖1

. Consequently,

w′(0) ≥ ‖u‖∞ −M1φ−1(‖h‖1)

m1
≥ ‖u‖∞

m1

(
1− M1

L

)
=
‖u‖∞

L
, (2.13)

where we have used the assumption ‖u‖∞ > Lφ−1(‖h‖1).
Since KC, h ≥ 0, it follows from (2.11) and (2.13), that

u(t) ≥ w(t) ≥ φ−1(C)t = w′(0)t ≥ ‖u‖∞t
L

(2.14)

for t ∈ [0, τ].
Next, we establish a lower bound estimate for u(t) in terms of ‖u‖∞ on [τ, 1]. By Lemma 2.2,

u ≥ z on [τ, 1], where z ∈ C1[τ, 1] satisfies{
(φ(z′))′ = h on (τ, 1),

z(τ) = ‖u‖∞, z′(1) = 0

if (2.8) holds, and {
(φ(z′))′ = h on (τ, 1),

z(τ) = ‖u‖∞, z(1) = 0

if (2.9) holds.
Suppose first that (2.8) holds. Then

z(t) = D +
∫ 1

t
φ−1

(∫ 1

s
h
)

ds,

where D = ‖u‖∞ −
∫ 1

τ φ−1(∫ 1
s h
)
ds. Since L ≥ 2m ≥ 2, it follows from Lemma 2.2 with

r0 = τ, r1 = 1, b = 0, g ≡ 0 that

u(t) ≥ z(t) ≥ ‖u‖∞ − φ−1(‖h‖1) ≥ ‖u‖∞/2 (2.15)

for t ∈ [τ, 1]. Next, suppose (2.9) holds. Then

z(t) =
∫ 1

t
φ−1

(
−D−

∫ s

0
h
)

ds, (2.16)

where D = φ(z′(0)) is the unique solution of∫ 1

τ
φ−1

(
D +

∫ s

0
h
)

ds = −‖u‖∞. (2.17)

Since h ≥ 0, it follows from (2.17) that

(1− τ)φ−1(D) ≤ −‖u‖∞,
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which implies D ≤ −φ(‖u‖∞). Hence, since ‖u‖∞ ≥ 2mφ−1(‖h‖1), it follows that

− D−
∫ s

0
h ≥ φ(‖u‖∞)− ‖h‖1 ≥

(
1− 1

φ(2m)

)
φ(‖u‖∞) ≥

φ(‖u‖∞)

2
. (2.18)

Using (2.16)–(2.18), we obtain

u(t) ≥ z(t) ≥ (1/2)
1

p−1 ‖u‖∞(1− t) (2.19)

for t ∈ [τ, 1]. Since

L ≥ 2m =

{
2 if p ≥ 2,

2
1

p−1 if 1 < p < 2
= max

(
2

1
p−1 , 2

)
,

it follows that min
(

L−1, 2−1, 2
1

1−p
)
= L−1, it follows from (2.14), (2.15), and (2.19) that (2.10)

holds for the case τ ∈ (0, 1).
If τ = 1 then w ∈ C1[0, 1] and (2.14) holds for t ∈ [0, 1], which implies (2.10) since t ≥ q(t)

for t ∈ [0, 1]. Finally, if τ = 0 then z ∈ C1[0, 1] and (2.15), (2.19) hold for t ∈ [0, 1], which
implies (2.10). This completes the proof of Lemma 2.3.

3 Proof of the main result

Proof. Let E = C[0, 1] be equipped with ‖ · ‖∞. For the rest of the proof, we set γ̃k = γk/qδ,
where γk is defined in (A3), and recall that γ̃k ∈ L1(0, 1). For v ∈ C[0, 1] with ‖v‖∞ ≤ k for
some k ≥ 1, it follows from (A3) that there exists γk ∈ L1(0, 1) with γk ≥ 0 such that

| f (t, ṽ)| ≤ γk(t)ṽ−δ ≤ γ̃k(t) (3.1)

for a.e. t ∈ (0, 1), where ṽ = max(v, q). Let λ > 0. Then, by Lemma 2.1, the equation

−(φ(u′))′ = λ f (t, ṽ), t ∈ (0, 1)

with boundary condition (1.2) or (1.3) has a unique solution u ≡ Aλv ∈ C1[0, 1]. Let Sλ :
E→ L1(0, 1) be defined by Sλv = λ f (t, ṽ). Then Sλ is continuous by the Lebesgue dominated
convergence Theorem. By (3.1), Sλ maps bounded sets in E into bounded sets in L1(0, 1). Since
Aλ = T ◦ Sλ, where T is defined in Lemma 2.1, it follows that Aλ : E → E is completely
continuous.

(i) Suppose (A4) holds with ν = ∞.

Let λ ∈ (0, 1) satisfy M (λ‖γ̃L‖1)
1

p−1 < L, where M and L are defined in Lemma 2.1 and
Lemma 2.3 respectively. We claim that

(a) If u ∈ E satisfies u = θAλu for some θ ∈ (0, 1] then ‖u‖∞ 6= L.
Indeed, let u ∈ E satisfy u = θAλu for some θ ∈ (0, 1], and suppose ‖u‖∞ = L. Then

u/θ = T(Sλu) and (2.2) gives

‖u‖∞ ≤ Mθφ−1(‖Sλu‖1) ≤ M (λ‖γ̃L‖1)
1

p−1 < L,

a contradiction, which proves the claim.
Next, we show that
(b) There exists a constant Rλ > L such that if u ∈ E satisfies u = Aλu + ξ for some ξ ≥ 0 then

‖u‖∞ 6= Rλ.
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Let u ∈ E satisfy u = Aλu + ξ for some ξ ≥ 0. Then u− ξ = Aλu and therefore u satisfies

−(φ(u′))′ = λ f (t, ũ) on (0, 1)

with

au(0)− bu′(0)−
∫ 1

0
g(t)u(t)dt =

(
a−

∫ 1

0
g
)

ξ ≥ 0, u′(1) = 0 (3.2)

if (1.2) holds, and

au(0)− bu′(0)−
∫ 1

0
g(t)u(t)dt =

(
a−

∫ 1

0
g
)

ξ ≥ 0, u(1) = ξ ≥ 0 (3.3)

if (1.3) holds.
Let K > 0 be such that f (t, z) > 0 for a.e. t ∈ (0, 1) and all z ≥ K. For z ∈ (0, K), | f (t, z)| ≤

γK(t)z−δ for a.e. t ∈ (0, 1) in view of (A3). Consequently,

f (t, ũ) ≥ −γK(t)ũ−δ ≥ −γ̃K(t) (3.4)

for a.e. t ∈ (0, 1). Hence Lemma 2.3 holds with h = λγ̃K if ‖u‖∞ > Lφ−1(λ‖γ̃K‖1).
Let ω ∈ C1 [ 1

4 , 1
2

]
satisfy{

−(φ(ω′))′ = γ(t) on (1/4, 1/2),

ω(1/4) = ω(1/2) = 0,

and let R0 > 0 be such that (λR0)
1

p−1 L−1‖ω‖∞ > 4.
Since limz→∞

f (t,z)
γ(t)zp−1 = ∞ uniformly for t ∈ (0, 1), there exists k0 > 1 such that

f (t, z) ≥ R0γ(t)zp−1

for a.e. t ∈ (0, 1) and all z ≥ k0. Suppose |u‖∞ = Rλ > L max(φ−1(λ‖γ̃K‖1), 4k0). Then (2.10)
holds.

In particular, u ≥ c‖u‖∞q ≥ q on [0, 1] and u ≥ (c/4)‖u‖∞ ≥ k0 on [1/4, 1/2]. Hence ũ ≡ u
and

−(φ(u′))′ = λ f (t, u) ≥ λR0γ(t)up−1 ≥ λR0

(
c‖u‖∞

4

)p−1

γ(t)

for a.e. t ∈ (1/4, 1/2). By Lemma 2.2 with r0 = 1/4, r1 = 1/2, b = 0, g ≡ 0, we obtain

u ≥ (λR0)
1

p−1 (c/4)‖u‖∞ω

on [1/4, 1/2], which implies (λR0)
1

p−1 c‖ω‖∞ ≤ 4, a contradiction with the choice of R0

(c = L−1). Hence ‖u‖∞ 6= Rλ i.e. (b) holds.
Let λ also be small enough so that φ−1(λ‖γ̃K‖1) < 1. Then it follows from Lemma A in

the Appendix that Aλ has a fixed point uλ ∈ E with ‖uλ‖∞ > L > Lφ−1(λ‖γ̃K‖1). Hence
Lemma 2.3 gives, uλ ≥ c‖uλ‖∞q ≥ q on [0, 1] and so uλ = ũλ is a positive solution of (1.1)
under boundary condition (1.2) or (1.3). We verify next that ‖uλ‖∞ → ∞ as λ→ 0+. Suppose
on the contrary that ‖uλ‖∞ 6→ ∞ as λ→ 0+. Then there exist a constant C > 0 and a sequence
(λn) converging to 0 such that ‖uλn‖∞ ≤ C for all n. By (A3),

| f (t, uλn)| ≤ γC(t)u−δ
λn
≤ γ̃C(t)



10 D. D. Hai and X. Wang

for a.e. t ∈ (0, 1), from which (2.2) gives

L < ‖uλn‖∞ ≤ Mφ−1(λn‖ f (t, uλn)‖1) ≤ Mφ−1(λn‖γ̃C‖1),

a contradiction for n large. Thus ‖uλ‖∞ → ∞ as λ→ 0+, which completes the proof of (i).
(ii) Suppose (A4) holds with ν = 0.
Let L0 > Lφ−1(‖γ̃K‖1), where K is defined in (3.4). Let C0 > (L0/‖ω̄‖∞)

p−1 , where ω̄ is
the solution of {

−(φ(ω̄))′ = 1 on (1/4, 1/2),

ω̄(1/4) = ω̄(1/2) = 0.

Since limz→∞ f (t, z) = ∞ uniformly for t ∈ (0, 1), there exists a constant c0 > 1 such that

f (t, z) ≥ C0 (3.5)

for a.e. t ∈ (0, 1) and z ≥ c0.
Suppose λ > λ̃0, where λ̃0 =

( 4c0L
L0

)p−1. We claim that

(c) If u ∈ E satisfies u = Aλu + ξ for some ξ ≥ 0 then ‖u‖∞ 6= λ
1

p−1 L0.
Let u ∈ E satisfy u = Aλu + ξ for some ξ ≥ 0. Then (3.4) and either (3.2) or (3.3)

hold. Suppose ‖u‖∞ = λ
1

p−1 L0. Then ‖u‖∞ > Lφ−1(λ‖γ̃K‖1) and therefore Lemma 2.3 with
h = λγ̃K gives

u(t) ≥ c‖u‖∞q(t) = cλ
1

p−1 L0q(t) > 4c0q(t)

for t ∈ (0, 1). In particular, u ≥ c0 on [1/4, 1/2], which, together with (3.5), implies

−(φ(u′))′ = λ f (t, ũ) = λ f (t, u) ≥ λC0 on (1/4, 1/2).

Lemma 2.2 then gives u ≥ (λC0)
1

p−1 ω̄ on [1/4, 1/2].
Consequently,

λ
1

p−1 L0 = ‖u‖∞ ≥ (λC0)
1

p−1 ‖ω̄‖∞

i.e. C0 ≤ (L0/‖ω̄‖∞)p−1, a contradiction with the choice of C0. Hence (c) holds. Next, we
verify

(d) There exists Rλ � 1 such that if u ∈ E satisfies u = θAλu for some θ ∈ (0, 1] then
‖u‖∞ 6= Rλ.

Let u ∈ E satisfy u = θAλu for some θ ∈ (0, 1]. Then

−(φ(u′))′ = λθp−1 f (t, ũ) on (0, 1).

Using (3.4), we see that (2.7) holds with h = λθp−1γ̃K. Let σ > 1 be such that 0 < f (t, z) ≤
γ(t)zp−1 for a.e. t ∈ (0, 1) and all z ≥ σ.

Let f1(z) = supt∈(0,1)
f (t,z)
γ(t) for z ≥ σ and f1(z) = f1(σ) for z ∈ (0, σ). Then f1 > 0 and

therefore (A3) gives
f (t, z) ≤ γσ(t)z−δ + γ(t) f1(z) (3.6)

for a.e. t ∈ (0, 1) and all z > 0.

Suppose ‖u‖∞ = Rλ > max((λ‖γ̃K‖1)
1

p−1 , L, λ
1

p−1 L0). Then u ≥ q on (0, 1) by Lemma 2.3
and therefore (3.6) gives

f (t, ũ) ≤ γ̃σ(t) + γ(t) f̂1(‖u‖∞),
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where f̂1(z) = sup0<t≤z f1(t). This, together with (2.2), implies

‖u‖∞ ≤ Mφ−1(λ‖γ̃σ‖1 + λ‖γ‖1 f̂1(‖u‖∞)),

i.e.
‖γ̃σ‖1 + ‖γ‖1 f̂1(‖u‖∞)

‖u‖p−1
∞

≥ 1
λMp−1 . (3.7)

Since limz→∞
f̂1(z)
zp−1 = 0, the left side of (3.7) goes to 0 as ‖u‖∞ → ∞, we reach a contradiction

if Rλ is large enough. Hence (d) holds.

By Lemma A in the Appendix, Aλ has a fixed point uλ with ‖uλ‖∞ ≥ λ
1

p−1 L0. Using
Lemma 2.3, we see that uλ is a positive solution of (1.1) under boundary condition (1.2) or
(1.3). Clearly, ‖uλ‖∞ → ∞ as λ→ ∞, which completes the proof of Theorem 1.1.
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Appendix

We shall state a version of Krasnoselskii’s fixed point theorem in a Banach space. The proof
presented here is essentially done in [1, Theorem 12.3], but with no cones involved.

Lemma A. Let E be a Banach space and T : E → E be a completely continuous operator. Suppose
there exist h ∈ E, h 6= 0 and positive constants r, R with r 6= R such that

(a) If y ∈ E satisfies y = θTy, θ ∈ (0, 1] then ‖y‖ 6= r,

(b) If y ∈ E satisfies y = Ty + ξh, ξ ≥ 0 then ‖y‖ 6= R.

Then T has a fixed point y ∈ E with min(r, R) < ‖y‖ < max(r, R).

Proof. Define H : [0, 1] × E → E by H(θ, y) = θTy. Then H is completely continuous and
H(θ, y) 6= y for ‖y‖ = r in view of (a).

By the homotopy invariance property,

deg(I − H(1, ·), Br, 0) = deg(I − H(0, ·), Br, 0) = deg(I, Br, 0) = 1,

where Br denotes the open ball centered at 0 with radius r in E. Hence

deg(I − T, Br, 0) = 1.

By (b) and the homotopy invariance property,

deg(I − (T + ξh), BR, 0) = C

for all ξ ≥ 0. We claim that C = 0. Suppose on the contrary that C 6= 0. Let M = sup{‖Ty‖ :
‖y‖ ≤ R} and choose ξ = M+R

‖h‖ . Then there exists y ∈ BR such that y = Ty + ξh. Hence

‖y‖ ≥ ξ‖h‖ − ‖Ty‖ ≥ ξ‖h‖ −M = R,

a contradiction which proves the claim. In particular, deg(I − T, BR, 0) = 0, and Lemma A
follows from the excision property of degree theory.
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