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Abstract. We prove the existence of positive solutions for the p-Laplacian equations

—(@@) =Af(tu),  te(0,1)

with integral boundary conditions. Here A is a positive parameter, ¢(s) = |[s|P2s,
p>1 f:(01) x(0,00) - R is p-superlinear or p-sublinear at co in the second
variable and is allowed be singular at t = 0,1 and u = 0.
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1 Introduction

Consider the one-dimensional p-Laplacian equation

— (") =Af(tu), te(0,1) (1.1)
with boundary conditions
1
au(0) — bu' (0) = /0 e(Hu(tdt, (1) =0, (1.2)
or .
au(0) — bu' (0) = /0 e(u(ddt,  u(1l) =0, (1.3)

where ¢(s) = |s|P72s,p > 1,a > 0,b > 0,g:(0,1) — [0,00),f: (0,1) x (0,00) = R, and A is a
positive parameter.

Equation (1.1) arises in some physical models such as non-Newtonian fluids, chemical
reactions, and population biology, see e.g. [2,3,7,8]. The integral boundary conditions occur
in thermal conduction, semiconductor and hydrodynamic problems [5,6,11].
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In [16], Zhang and Feng studied the existence of positive solutions to (1.1)—(1.2)) with

b > 0 for a certain range for A when f(t,u) = w(t)F(t, u) is nonnegative and nonsingular in
. . . . . F(tu) . F(tu) .

u under a variety of assumptions involving lim, o+ -~ and/or lim,, - ;. In particular,
they showed in [16, Theorem 1.3] that (1.1)—(1.2) has a positive solution u, for all A > 0 if

. . F(tu) _ p F(tu)
either lim,_,g+ it =0 and lim;_, T
F(tu)

lim,,_,o+ i(;fi) = o0 and lim, e 57 = 0 (p-sublinear) uniformly for ¢ € [0,1]. In addition,
lim, ¢ [[#) |l = o0 in the former case and lim)_,¢ ||#)]| = O in the latter case. The approach
used in [16] was fixed point theory in a cone, and the nonnegativity assumption of f there
was essential to ensure that the equivalent fixed point mapping maps the cone of nonnega-
tive continuous functions into itself. In this note, we shall establish the existence of positive
solutions to (1.1) with boundary condition (1.2) or (1.3) when f(t,u) can be +oo at u = 0 and
is either p-superlinear or p-sublinear at co, which has not been considered in the literature to
the best of our knowledge.
Our results when applied to the model equation

— () = tﬁ (i n up> . e (0,1), (1.4)

ué

= oo (p-superlinear) uniformly for t € [0,1], or

where ¢ € R, «,0 € [0,1),p > 0, give the existence of a large positive solution to (1.4) with
boundary conditions (1.2) or (1.3) for A small when p > p — 1, or for A large when p < p — 1.
We refer to [4,9,10,12-15] for results related to (1.1) with integral boundary conditions.

Define g(t) = t if (1.2) holds and q(t) = min(t,1 — t) if (1.3) holds. We shall make the
following assumptions:

(A1) ¢:(0,1) — [0, c0) is integrable and fol g(f)dt < a.

(A2) f:(0,1) x (0,00) = R is a Carathéodory function, that is f(.,z) is measurable for z > 0
and f(t,-) is continuous for a.e. t € (0,1).

(A3) There exists a constant 6 € [0,1) such that for each k > 0, there exists a function
Ye: (0,1) — [0,00) with /g% € L1(0,1) such that
f(t2)] < m(b)z?
fora.e. t € (0,1) and z € (0,k].
(A4) There exist v € L'(0,1) with ¢y > 0 a.e. on (0,1) and v € {0,000} such that
fltz) _

- 7

zh—>n;lo f)/(t)zP*1

uniformly for a.e. t € (0,1).
By a solution of (1.1) with boundary condition (1.2) (resp. (1.3)), we mean a function

u € C'0,1] with ¢(u') absolutely continuous on [0,1], and satisfying (1.2) (resp. (1.3)). Our
main result is the following.

Theorem 1.1. Let (A1)-(A3) hold.

(i) If (A4) holds with v = oo then there exists a constant Ag > 0 such that for A < Ao, (1.1) with
boundary condition (1.2)) or (1.3) has a positive solution u with ||u, |l — 00 as A — 0.

(ii) If (A4) holds with v = 0 and lim,_.« f(t,z) = co uniformly for a.e. t € (0,1) then there exists a
constant Ay > 0 such that for A > Ao, (1.1) with boundary condition (1.2) or (1.3) has a positive
solution u, with ||uy||ec — 00 as A — oo.
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2 Preliminary result

We shall denote the norm in L7 (0,1) by || - ||,
Lemma 2.1. Let h € L1(0,1) and let (A1) hold. Then the equation

— (")) =h on(0,1) 2.1)
with boundary condition (1.2) or (1.3) has a unique solution u = Th € C'[0,1]. Furthermore,

[ulleo < M~ (||R]|1), (2.2)

1

where M = max(%lﬁ), and the map T : L}(0,1) — CJ[0,1] is completely continuous.

Proof. Suppose (1.2) holds. By integrating (2.1) and using (1.2), it follows that (2.1) with
boundary condition (1.2) has a unique solution u, given by

u(t):C+/0t¢_l ([h) ds,

where . ) .
_ o
C_bcp1(f0h)+f0g(t)(f0qb1<fsh>ds)dt 03
a— fol g
Since |C| < W, it follows that
a+b

Ullo < ———¢ " (IIHl1),

i.e. (2.2) holds. Since |u|c1 = |ulleo + |t/ |l < (M +1)¢p~1(||t]|1), it follows that T maps

bounded sets in L!(0,1) into bounded sets in C![0, 1] and hence relatively compact subsets in
C[0,1]. To show continuity of T, let (h,) C L'(0,1) and h € L'(0,1) be such that h, — & in
L'(0,1). Let u, = Thy, and u = Th. Then

Uy (t) = Cn+/0t<,b1 (/Slhn> ds,

where C,, is given by (2.3) with h replaced by h,. It is easy to see that C;, — C and hence
u, — uin C[0,1].

Suppose next that (1.3) holds. By integrating (2.1) and using (1.3), it follows that (2.1) with
boundary condition (1.3) has a unique solution u, given by

u(t) = /t14>1 <—C+/Osh) ds,

where C = ¢(u’(0)) € R is the unique solution of H(&) = 0, where

@ = (o= [[s) [0 (<er [)ds—vor@+ [ (['g)o (-e+ [ 0)a

Note that the existence and uniqueness of C follows from the fact that H is continuous, de-
creasing in ¢ with limg_ . H({) = —o0 and limg_, o, H({) = oo. Since H(C) < 0if C > ||k
and H(C) > 0if C < —||h||;, it follows that |C| < ||h]|;. Hence

lulleo < @ (2]IRl1).
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i.e. (2.2) holds. Since |u|c1 = ||u]leo + |||l < 2%47*1(]]}1]]1), it follows that T maps bounded
sets in L!(0,1) into bounded sets in C![0,1]. To show continuity of T, let (h,) C L'(0,1) and
h € L'(0,1) be such that h, — hin L'(0,1). Let u,, = Th, and u = Th. Then

uy(t) = /t1 (,b_l (—Cn +/OS hn> ds

for t € [0,1], where C, € R is the unique solution of H,({) = 0, where

H,(¢) = (a—/01g> [ <—c+/oshn> ds—bp )+ [ (/tlg) 9! <—¢+/0thn> dt.

Suppose C,, > C + |||, — h||1. Then

S S
0 0

for s € [0,1], which together with (A1) and the fact that ¢! is increasing imply H,(C,) <
H(C). On the other hand, if C, < C — ||h, — h||; then

S S
0 0

for s € [0,1], which implies H,(C,) > H(C). Hence we reach a contradiction in either case.
Consequently,
|Co = Cl < [l = R,

which implies C,, — C as n — oo. Using the formulas for u, and u, it is easily seen that (u,)
converges to 1 in C[0, 1], which completes the proof. O

Next, we establish a comparison principle.
Lemma 2.2. Let 0 < rg < r; < 1 and let hy,hy € L'(ro,r1) be such that hy > hy on (ro,r1). Let

u,v € Clro, 1] satisfy

1, —(¢(@) =hy on(ro,11),
au(rg) — bu'(rg) — frgl g(Hu(t)dt > av(ry) — b’ (ry) — fr:: g(H)o(t)dt,
u'(r) >v'(r1) or u(r) > o(r).

Then u > v on [ro, 1.

Proof. Suppose on the contrary that there exists r* € (rp,r1) such that u(r*) < v(r*). Let
(a, B) C (ro,r1) be the largest open interval containing r* such that u < v on (&, ). Then
u(e) < ov(a)and u(p) < v(p). Multiplying the equation

—(¢p(u') = (")) =h1 —hy >0 on (ro,11) (2.4)

by u — v and integrating on (&, B), we obtain

Co —Cp+ /aﬁ(fl’(“') — (V) —v') = /ﬁ(hl —hy)(u—v) <0, (2.5)

o

where Cy = (¢(u'(x)) — ¢(v'(x))(u(x) —v(x)),x € {a,B}. We claim that C, =0 and Cg < 0.
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To show C, = 0, we verify that u(a«) = v(a). If « > r then clearly u(a) = v(a). Suppose
a =rog and u(rg) < v(rg). We show that this will lead to a contradiction.

Case 1: u'(r1) > v'(r1) .
Then, since ¢(u’') — $(v') is nonincreasing, it follows that u’ > ¢’ on [rg,71]. Hence
min, ., (4 —v) = (u —v)(rg), which together with the boundary inequality at ro and (A1)

imply

0<bu' —v)(ro) <a(u—0)(ro) — /r1 g(u—0)dt < (a — /r: g) (u—0)(r9) <0, (2.6)

1o
a contradiction.

Case 2. u(r1) > v(ry).

Then u(B) = v(B) and hence u'(B) > v'(B), which implies ' > v’ on [ry, B]. In particular,
ming, 5 (# —v) = (u—0)(ro). If B = r1 then we reach a contradiction as in case 1. Suppose
B < ri. We shall verify that u > v on [B,71]. If not, then there exists an interval («o, Bo) C
(B, 1) such that u < v on (ag, Bo) and (u —v)(ag) = (4 —v)(Bo) = 0.

Multiplying (2.4) by u — v and integrating on (g, o) gives

0
[ o) - e - =0,
which implies u’ = v’ on [wo, Bo]. Hence u = v on [ag, Bo], a contradiction. Thus u —v > 0
on [B,r1], which, together with min, g(u —v) = (u —v)(r9) and (u —v)(r0) < 0, gives
miny, ,.1(#4 —v) = (u—v)(ro) and again (2.6) holds, a contradiction.

Thus u(a) = v(a) in both cases. Next, we claim that Cg < 0. If u(r1) > v(r;) then u(B) =
o(B) while if ' (ry) = o' (1) then u(B) — o(B) if B < r1 and Cy — (9(u'(B)) — 9(o'(B)) (u(B) -
v(B)) < 01if B = ry. This proves the claim. Hence (2.5) gives

[ o)~ p@ ) ~o) =0,

which implies ' = v’ on [«, B] and so u = v+ c on [«, B], where ¢ is a negative constant. Hence
a = rp and B = r1. Using the assumption on the boundary at o, we obtain (a — [ rgl g)c > 0.
Thus ¢ > 0, a contradiction. Hence u > v on [ro, 1], which completes the proof. ]

Lemma 2.3. Let h € L'(0,1) with h > 0 and let u € C'[0,1] with ¢(u') absolutely continuous on
[0, 1] satisfying

(p(u)) <h on(0,1), (2.7)
with either .
au(0) — bu' (0) > /0 e(Hultydt, (1) >0, (2.8)
or 1
au(0) — bu (0) > /O g(Hu(tdt,  u(1) > 0. 2.9)
Suppose ||u||e > Lo~ 1(||h]|1), where L = ET‘T;HI’] and m = 2(%)+ . Then
u(t) = cflulleq(t) (2.10)

fort € [0,1], where c = 1/L.
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Proof. By Lemma 2.2, u > v on [0, 1], where v satisfies

(¢(v)) =h on(0,1)

with

if (2.8) holds, and
1

av(0) — bo' (0) = / g(Ho(dt,  o(1)=0
0
if (2.9) holds. Suppose ||u||cc = |u(T)| for some T € [0,1]. Then u(t) > 0. Indeed, if u(7) <0

then in view of (2.2), we get
lulle = —u(7) < —v() < Mg~ (||1]1) < Lo~ (|[h]]1),

where M is defined in Lemma 2.1. This contradicts the assumption on ||u||c.
Suppose T € (0,1). Let w € C![0, 7] be the solution of

{«p(w’»' =1 on (0,7),
aw(0) — bw'(0) = fol g(Hw(t)dt, w(t) = ||t c-

A calculation shows that t
S
w(t) = Kc+/ o1 (c+/ h> ds @.11)
0 0

for t € [0,1], where

b1 (C)+ fy (1) (Jy @t (C+ fy ) ds) at
fe= a3l ' .

and C = ¢(w'(0)) is the unique solution of H(p) = ||u||co, where

H+(p) :K,O—I—/OT(P_1 (p—l—/osh> ds.

Note that the existence and uniqueness of C follows from the fact that H; is increasing in p
and lim, . Hz(p) = o0, lim, , o H¢(p) = —o0.

Using Lemma 2.2 with rp = 0 and r; = 7, we deduce that u > w on [0,7]. If w'(0) <0
then C < 0 and hence

[4]|o = H(C)

IN

Jy&® (oot (fohyds)dt e oo
Tl wf ot ()
< e ) < o (),

a contradiction. Hence w’(0) > 0i.e. C > 0.

-1t

Using the inequality (x +y)" <2 (x" +y") for x,y > 0 with r = (p — 1) 7!, we obtain

o (o) + [Tn) <m (w0 (),
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2-p
where m = 2(*”*1

)+. Hence it follows from (2.11)—(2.12) that
bw'(0) + mgll1 (w'(0) + ¢~ (I|]l1))
a—|iglh

= mw'(0) + Mg~ ([|1]1),

[ufleo <

+m (w/(0) +¢7(|IAll))

where m; = 21 and M; = %. Consequently,

a—[iglh
o = Mg~ ([[]l1) o Jlulleo MiY _ [l
/ > HMH 1 > 2 = .
@' (0) > o > (1T =, (2.13)
where we have used the assumption ||u]|co > Lo 1(||1]]1)-
Since K¢, h > 0, it follows from (2.11) and (2.13), that
u(t) = w(t) > g7 (C)t = w/(0)t > 11! (214)

fort € [0, T].
Next, we establish a lower bound estimate for u(t) in terms of || ||« on [T, 1]. By Lemma 2.2,
u >z on [t,1], where z € C![t, 1] satisfies

{<¢(z’>>’=h on (7,1),
2(7) = [Jullo, Z'(1) =0

if (2.8) holds, and
{(cp(z’))’ =h on(71),
z2(7) = |lullo, 2(1) =0

if (2.9) holds.
Suppose first that (2.8) holds. Then

z(t):D+/tl<,b_1 (/slh>ds,

where D = ||u]|e — le ! (fsl h)ds. Since L > 2m > 2, it follows from Lemma 2.2 with
ro =71, =1,b=0,g =0 that

u(t) > z(t) > flulleo — ¢ (II1]l1) > |lufleo/2 (2.15)

for t € [1,1]. Next, suppose (2.9) holds. Then

2(t) = /tl ¢! (—D—/Os h) ds, (2.16)

where D = ¢(2/(0)) is the unique solution of

/14>—1 (D+/Sh> ds = —|u (2.17)
T 0 = .

Since h > 0, it follows from (2.17) that

(1-1)¢7 (D) < —lufle,
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which implies D < —¢(||u]|e0). Hence, since ||u||c > 2m¢p~1(||h]|1), it follows that

=0 [z gl — i 2 (1= 5 ) alal) = 2U8I=L iy

Using (2.16)—(2.18), we obtain

u(t) > z(£) > (1/2)77 [[ul|o(1 — £) (2.19)
for t € [t,1]. Since
2 ifp>2, 1
L=, "F= :max(zﬁl,z),
2T ifl<p<2

it follows that min(L_l,Z_l,lep) = L71, it follows from (2.14), (2.15), and (2.19) that (2.10)
holds for the case T € (0,1).

If T = 1 then w € C![0,1] and (2.14) holds for ¢ € [0, 1], which implies (2.10) since ¢ > gq(t)
for t € [0,1]. Finally, if T = 0 then z € C![0,1] and (2.15), (2.19) hold for t € [0,1], which
implies (2.10). This completes the proof of Lemma 2.3. O

3 Proof of the main result

Proof. Let E = C[0,1] be equipped with || - ||c. For the rest of the proof, we set 9x = 7¢/q°,
where 7 is defined in (A3), and recall that 7, € L!(0,1). For v € C[0,1] with ||v||e < k for
some k > 1, it follows from (A3) that there exists v € L!(0,1) with 94 > 0 such that

F(£,0)] < ()% < Fi(t) (3.1)

forae. t € (0,1), where ¥ = max(v,q). Let A > 0. Then, by Lemma 2.1, the equation

—(¢(") =Af(t,0), te(0,1)

with boundary condition (1.2) or (1.3) has a unique solution u = Av € C![0,1]. Let S, :
E — L'(0,1) be defined by Syv = Af(t,%). Then S, is continuous by the Lebesgue dominated
convergence Theorem. By (3.1), S, maps bounded sets in E into bounded sets in L!(0, 1). Since
Ay = ToS), where T is defined in Lemma 2.1, it follows that A) : E — E is completely
continuous.

(i) Suppose (A4) holds with v = oo.

Let A € (0,1) satisfy M (/\H'?L||1)ﬁ < L, where M and L are defined in Lemma 2.1 and
Lemma 2.3 respectively. We claim that

(a) If u € E satisfies u = 0 A u for some 6 € (0,1] then ||u|| # L.

Indeed, let u € E satisfy u = 0A,u for some 6 € (0,1], and suppose ||u|lc = L. Then
u/0 = T(Syu) and (2.2) gives

1

lullo < MO~ (ISrull1) < M (A Fell) 7 < L,
a contradiction, which proves the claim.
Next, we show that
(b) There exists a constant Ry > L such that if u € E satisfies u = Aju + ¢ for some ¢ > 0 then
[#]leo 7 Ri-
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Let u € E satisfy u = Aju + ¢ for some ¢ > 0. Then u — ¢ = A,u and therefore u satisfies

—(¢(')) = Af(t, @) on(0,1)

with
1 1
au(0) — bu' (0) —/0 g(tu(t)dt = <a—/0 g> >0, u'(1)=0 (3.2)
if (1.2) holds, and
1 1
au(0) — bu' (0) —/0 g(t)u(t)dt = (a —/O g) >0, u(1)=¢>0 (3.3)
if (1.3) holds.

Let K > 0 be such that f(t,z) > 0 fora.e. t € (0,1) and allz > K. For z € (0,K), |f(t,z)| <
vk (t)z=% fora.e. t € (0,1) in view of (A3). Consequently,

ft, i) > —yx(t)ia° > =y (t) (3.4)

for a.e. t € (0,1). Hence Lemma 2.3 holds with & = Ak if ||u]|e > L~ (A]|Fk]|1)-
Let w € C! [, 3] satisfy

—(p(w)" =7(t) on(1/4,1/2),
w(1/4) =w(1/2) =0,

and let Ry > 0 be such that ()\Ro)ﬁL*HaJHoo > 4.
f(t2)

Since lim,_,eo ST

= oo uniformly for t € (0,1), there exists ko > 1 such that

£(t,2) > Roy (1)

for a.e. t € (0,1) and all z > ko. Suppose |u| = Ry > Lmax(¢~1(A||§«l1),4ko). Then (2.10)
holds.

In particular, u > c||u||oq > gon [0,1] and u > (c/4)||u|lc > ko on [1/4,1/2]. Hence i = u
and

I - cllufl )"
(P()) = Af(t,u) > ARy (P~ > ARy (1= ) ()

forae. t € (1/4,1/2). By Lemma 2.2 with ro = 1/4,r, = 1/2,b = 0,¢ = 0, we obtain

1> (ARo)7 (¢/4)|u]lcotv

on [1/4,1/2], which implies ()\Ro)ﬁcHaJHOo < 4, a contradiction with the choice of Ry
(c = L71'). Hence ||u||« # Ry i.e. (b) holds.

Let A also be small enough so that ¢~1(A||§«||1) < 1. Then it follows from Lemma A in
the Appendix that A) has a fixed point u) € E with |Juy]|e > L > Lo~ 1(A||§x|l1). Hence
Lemma 2.3 gives, uy > c|lup]|l«q > q on [0,1] and so u, = 7, is a positive solution of (1.1)
under boundary condition (1.2) or (1.3). We verify next that ||u,]|c — o0 as A — 0. Suppose
on the contrary that ||u, || /> 00 as A — 07. Then there exist a constant C > 0 and a sequence
(Ay) converging to 0 such that |[u,, ||« < C for all n. By (A3),

F(tun,)| < ve(H)uy® < e(t)
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for a.e. t € (0,1), from which (2.2) gives

L < lua,lloo < M~ (Aullf(t,10,) 1) < M~ (AnllFc ),
a contradiction for n large. Thus ||, [|cc — o0 as A — 07, which completes the proof of (i).
(ii) Suppose (A4) holds with v = 0.
Let Ly > Lo !(||9k]|l1), where K is defined in (3.4). Let Cy > (Lo/||@]|e)? ", where @ is
the solution of
—(¢(@)) =1 on (1/4,1/2),
@(1/4) = @(1/2) = 0.

Since lim,_,« f(t,z) = co uniformly for t € (0,1), there exists a constant ¢y > 1 such that
f(t,z) > Co (3.5)

forae. t € (0,1) and z > ¢.

Suppose A > Ay, where A9 = ( %)p 1 We claim that

(c) If u € E satisfies u = Ayu + ¢ for some & > 0 then ||u||e # AﬁLO.
Let u € E satisfy u = Ayu + ¢ for some ¢ > 0. Then (3.4) and either (3.2) or (3.3)
1
hold. Suppose ||u|lee = AP TLy. Then ||ul|e > Ly~ (A]|Fk||1) and therefore Lemma 2.3 with
h = Ayk gives
1
u(t) > cllufleoq(t) = A>T Loq(t) > 4eoq(t)

for t € (0,1). In particular, u > co on [1/4,1/2], which, together with (3.5), implies

—(p(u'))" = Af(t,i1) = Af(t,u) = ACo on (1/4,1/2).

1

Lemma 2.2 then gives u > (ACp)» '@ on [1/4,1/2].
Consequently,
1 1
AP Lo = [[ufleo > (ACo) 7 |@]|oo
ie. Co < (Lo/||@|l)? !, a contradiction with the choice of Cy. Hence (c) holds. Next, we
verify
(d) There exists Ry > 1 such that if u € E satisfies u = 0A,u for some 6 € (0,1] then

[ulleo # R
Let u € E satisfy u = 0 A u for some 6 € (0,1]. Then

—(¢p(u)) = AOP7Lf(t, i) on (0,1).

Using (3.4), we see that (2.7) holds with 1 = A0P~14x. Let ¢ > 1 be such that 0 < f(t,z) <
Y(t)zP~1 fora.e. t € (0,1) and all z > 0.

Let fi(z) = sup,(g) %tz)) for z > o and fi(z) = fi(c) for z € (0,0). Then f; > 0 and
therefore (A3) gives

f(62) S 7o)z +7(DAG) (3.6)

fora.e. t € (0,1) and all z > 0.

Suppose ||u||c = Ry > max((Al|9kl|l1)7?,L, A7 *Ly). Then u > q on (0,1) by Lemma 2.3
and therefore (3.6) gives

1 1

F(t, 1) < Fo () + (1) filllullo),
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where f1(z) = sup,_, <. fi(t). This, together with (2.2), implies

lulleo < M@~ (Aol + Alv1 /i),

ie.
1Fells + Il Alele) o 1
uf! —AMPL

(3.7)

Since lim;_ % = 0, the left side of (3.7) goes to 0 as ||| — 0, we reach a contradiction
if R, is large enough. Hence (d) holds.

By Lemma A in the Appendix, A, has a fixed point u, with |[u)[|ec > AT Ly. Using
Lemma 2.3, we see that u, is a positive solution of (1.1) under boundary condition (1.2) or
(1.3). Clearly, ||t1)]Jec — 00 as A — oo, which completes the proof of Theorem 1.1. O
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Appendix
We shall state a version of Krasnoselskii’s fixed point theorem in a Banach space. The proof
presented here is essentially done in [1, Theorem 12.3], but with no cones involved.

Lemma A. Let E be a Banach space and T : E — E be a completely continuous operator. Suppose
there exist h € E, h # 0 and positive constants r, R with r # R such that

(a) If y € E satisfies y = 0Ty, 6 € (0,1] then |ly|| # r,
(b) Ify € E satisfies y = Ty + ¢h, & > 0 then ||y|| # R.
Then T has a fixed point y € E with min(r, R) < ||y|| < max(r,R).

Proof. Define H : [0,1] x E — E by H(6,y) = 6Ty. Then H is completely continuous and
H(6,y) # y for ||y|| = r in view of (a).
By the homotopy invariance property,

deg(I — H(1,-),B,,0) = deg(I — H(0,-),B,,0) = deg(I,B;,0) =1,
where B, denotes the open ball centered at 0 with radius r in E. Hence
deg(I —T,B,,0) =1.
By (b) and the homotopy invariance property,
deg(I — (T + ¢h),Bg,0) =C

for all ¢ > 0. We claim that C = 0. Suppose on the contrary that C # 0. Let M = sup{|| Ty| :
lly]] < R} and choose ¢ = % Then there exists y € Bg such that y = Ty + ¢h. Hence

Iyl = &lipll = 1Tyl = ¢llAll = M =R,

a contradiction which proves the claim. In particular, deg(I — T, Bg,0) = 0, and Lemma A
follows from the excision property of degree theory. O
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