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1 Introduction

Instantaneous impulsive effects arise naturally in physics, biology and control theory [1-4,14].
Non-instantaneous impulsive differential equations (impulse effects start at an arbitrary point
and remain active on a finite time interval) was introduced by Hernandez and O’Regan [10]
and is an extension of classical instantaneous impulsive differential equations [19,21]; we refer
the reader to [9,11,13,15-18,22] and the reference therein for results on qualitative and stability
theory.

Invariant manifold theory plays an important role in the theory of dynamical systems. To
construct stable and unstable invariant manifolds without assuming the existence of uniform
exponential dichotomy for associated linear systems is of interest. As a result it is natural
to discuss the notion of nonuniform exponential dichotomy as it seems to be the weakest
assumption needed to find weak sufficient conditions to guarantee the existence of stable
and unstable invariant manifolds. The concept of invariant manifolds was defined first for
nonuniformly hyperbolic trajectories in [12] and in [5] the authors established the existence
of stable invariant manifold for nonautonomous differential equations without impulses in
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Banach spaces. The authors in [7] studied the existence of stable invariant manifolds and stable
invariant manifolds of C! regularity for instantaneous impulsive differential equations. The
existence of stable invariant manifold for non-instantaneous impulsive differential equations
has not been discussed.

In this paper, we consider the ideas in [5,7] to discuss the existence of stable invariant man-
ifolds for non-instantaneous nonlinear impulsive differential equations, where the linear part
has a nonuniform exponential dichotomy. Recently [20] the authors studied Lyapunov reg-
ularity, the relation between the Lyapunov characteristic exponent and stability, and nonuni-
form exponential behavior for the following non-instantaneous linear impulsive differential
equations:

y/(t) = A(t)y t), t e (Si,ti+1], i=0,12...,

y(t) = Bi(t] )y (t; ), i=12,..., o
y(t) = Bi(t)y(t;), te(ts) i=12,..., '
y(s) =y(s;), i=12,...,

in R", where we consider n x n matrices A(t) and B;(t) varying continuously for t > 0 and
i € N and impulsive point ¢; and junction point s; satisfying the relation s;_; < t; <'s;, i € IN.
The symbols y(o;") and y(o; ) represent the right and left limits of y(t) at t = ¢;, respectively
and set y(o; ) = y(0y):

In this paper we study the following perturbed equations:

y'() =AMy + f(Ly(#), L€ (sitin], 1=0,12,...,

y(£7) = Bi(t )y(t7) + it y(t)), i=12..., 12)
y(t) = Bl(t)y(tl_) +gl(t/y(tz_))/ te (tirsi]/ i = 1/2/- sy
y(si) = y(sy), i=1,2,...,

where f : Rj x R" — R" and g; : Rj x R" — R" satisfy f(t,0) = 0 and g;(t,0) = 0 for each
t > 0,i € N. We assume f is piecewise continuous in ¢ with at most discontinuities of the first
kind at t; and g; is of class cl.

We show that for a small deviation from the classical notion of uniform exponential di-
chotomy for (1.1) and for any sufficiently small perturbation term f and non-instantaneous
impulsive conditions g;, there exists a stable invariant manifold for the perturbed equation
(1.2). It was emphasized in [5] that this smallness is a rather common phenomenon at least
from the point of view of ergodic theory (almost all linear variational equations obtained from
a measure-preserving flow admit a nonuniform exponential dichotomy with arbitrarily small
nonuniformity).

The notion of nonuniform hyperbolicity plays an important role in the construction of
stable and unstable invariant manifolds and we establish a stable invariant manifold result for
sufficiently small perturbations by constructing stable and unstable invariant manifolds and
we also show that the stable invariant manifolds are of class C! outside the jumping times
using the continuous Fiber contraction principle technique.

The rest of the paper is organized as follows. In Section 2, we recall the notion of nonuni-
form exponential dichotomy and use Example 2.2 to present nonuniform exponential di-
chotomies for non-instantaneous impulsive differential equations. In Section 3, we establish
the existence of stable manifolds under sufficiently small perturbations of a nonuniform ex-
ponential dichotomy. Existence of stable manifolds are formulated and proved. In the final
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section, we establish a C! regularity result, Theorem 4.7, for stable manifolds by assuming
that (1.1) admits a nonuniform exponential dichotomy.

2 Preliminary

Set Rj = [0,+) and PC(R{,R") := {x : Rj — R" : x € C((t;,ti+1),R"),i =0,1,2,--- and
there exist x(t;) and x(t;") with x(¢;) = x(t;)} with the norm |[|x||pc := sup,_g- ||x(¢)|, and
C(R§,R") denotes the Banach space of vector-valued continuous functions from Rj — R”
endowed with the norm ||x ) = su + ||x(t)]| for a norm || - || on R™.
owed with the Ix¥llcry) = supsery I*(8)]l -
O=sp=to<ti<s1 < - <t <s5;< -+,

with limHoo t; = oo, limHoo S; = 00, and

p := limsup rt,s) < 00, (2.1)

t>s>0 LS

where r(t,s) denotes the number of impulsive points which belong to (s, f).

In [20], the authors introduced a bounded linear operator W(-, -) and any nontrivial solu-
tion of (1.1) can be formulated by y(t) = W(t,s)y(s) for every t,s € Rj. In addition, the fact
that any nontrivial solution of (1.1) has a finite Lyapunov exponent provided (2.1) holds was
obtained. Note W(t,s)W(s,T) = W(t, ) and W(t,t) = Id for every t > s > T > 0, where Id
denotes the identity operator.

Definition 2.1. (see [7]) We say that (1.1) admits a nonuniform exponential dichotomy if there
exist projections P(t) for every t > 0 satisfying

W(t,s)P(s) = P(t)W(t,s), t>s,
and there exist some constants D, a,b, ¢ > 0 such that
IW(t,5)P(s)|| < De~tlt=1es, > 2.2)

and
IW(t,5)Q(s)|| < De b=t s> ¢, (2.3)
where Q(t) = Id — P(t) is the complementary projection of P(t).

Let E(t) = P(+)(R") and F(t) = Q(¢)(IR") be the stable and unstable subspaces for each
t > 0 respectively.

Now, we consider the following examples (in the particular case P(t) = Id) of nonuniform
exponential dichotomies for non-instantaneous impulsive differential equations.

Example 2.2. Let i, v,b > 0. We consider non-instantaneous impulsive differential equations

y'(t) = (—p—vcos(t))y(t), t € (sitiv1], 1=0,1,2,...,

y(tf) = (b + e Miy(t7), i=12...,
y(t) = (b+ e My(t]), te (t,s], i=12,..., (2.4)
y(s) =y(s), i=12...,
y(s) = s, to < s <t

\
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with
u>v+pln(b+1). (2.5)

For s; < t < t;;1, the solutions are given by y(t) = W(t,s)ys, where

r(Ls) r(t,s)
—u Yt —u(t—s)+v Y (sins;—sint;)+v(sins—sint)
W(t,s) = (b+ 1)r(t,s)e =1 e i=1 )

From (2.1) and (2.5), there exists constant D > 0 such that

r(t,;s) r(t,s)
—u Yt —u(t—s)+v Y (sins;—sint;)+v(sins—sint)
W(ts) = (b+1)"e " 5 e SR
r(ts)

< D(b + 1)r(t,s)e_y P tief;t(tfs)Jrv(tfs)Jers

< De(—Htv+pIn(b+1))(t=s)+2vs (2.6)

For ti;1 < t < s;y1, the solutions are given by y(t) = (b4 1)e "y(t7 ;) = W(t,s)ys, where

r(t,s) V(f,',S)
—pu Xt —p(t—s)+v Y (sins;—sint;)4v(sins—sint,))
W(ts) = (b+1)")e "5 e = v,

From (2.1) and (2.5), there exists constant D > 0 such that

r(t,s) %
—pu Xt —p(t—s)+
W(t,s) = (b+ 1)7s)e FLE, pli=s) v

< De(*]HrVerln(bJrl))(tfs)+2vs. 2.7)

t
Y, (sins;—sint;)+v(sins—sint, )

l-,s)
=1

Throughout the paper, we will always denote the norm ||(x,y)| = ||x]| + ||y|| for (x,y) €
R". We assume that there exists sufficiently small 6 > 0 such that for each t > 0,7 € IN, we

have
{Hf(t,x) — flty)|| < 672 x —y],
Igi(t,x) — gi(t,y)|| < de= (@20t ||x —y]|.

Note in (2.8) the constant § > 0 is sufficiently small so that some constants in the following
Lemmas can be appropriately chosen.

Now we assume that (1.1) admits a nonuniform exponential dichotomy and the unique
solution (P(t)y(t), Q(t)y(t)) = (u(t),v(t)) € E(t) x F(t) of (1.2) with initial condition (&,7) €
E(s) x F(s) and fixed point s with s; < s < tj;; < c0,j = 0,1,2,... satisfies the following
conditions:

Let sji (1) <t < tirrs)41 and r(t,s) > 1, and we have

(2.8)

u(t) =Wi(t,s)¢ + /tH1 W(t, T)P(T)f(t,u(7),v(7))dt

+ / W(t, T)P(1) f(t, u(t), o(7))dT
Sj+r(ts)
r(ts)—1 btk
+ ) / W(t,T)P(7)f(t,u(7),v(7))dt
k=1 “Sj+k
r(t,s)

+ Y Wt si0k) P(5j4x) &k (S (k) 0 (tj 1)), (2.9)
P
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and

o(t) = W(t, )y + /tj“ W(t, 7)Q(7) f (T, u(t),o(t))dT

+ [ QUOf(x,u(x), o(1))dr
tjs) 1 t/+k+1
+ 5 [T WD), o)
k=1 Sj+k
r(t,s)
+ ) Wt s QUs74k) 84k (ks (k) 0 (Ek)). (2.10)
k=1

Let tiyr(s) <t <Sjyrs) and r(t,s) > 1, and we have
t,
u(t) =Wit,s)&+ / " W(t,T)P(7)f(t,u(7),v(7))dT
<t>g i+r(t,s) ( ( ]+r(ts)) (tj+r(t,s))>

/1:k+1 t, T)P(T)f(t,u(7),v(7))dt

_|_

um” imv

W(t, 541 P(8k) 8k (S U (Ejic), 0(Ejk) ). (2.11)
and

o(t) =Wi(t,s)n+ /tj+1 W(t,7)Q(t)f(7,u(t),v(t))dt

+ Q( )g]+i‘ t,s) (t u(t]Jrr(ts)) (tj+r(t,s)))
r(t,s)—1

+ Y /t”k“W(t,r)Q(r)f(T,u(T),v(T))dT

k=1 “Sj+k

Z (t,5i1) Q(8j1%)&j+k (Sj1k, u(tjsk), 0(ti1k))- (2.12)

For each (s,&,77) € Ry x E(s) x F(s) we consider the semiflow

Yi(s,&,n) = (s+tu(s+t),v(s+1t)).

3 Stable manifold results

In this section, using ideas from [7], we consider the existence of stable manifolds under
sufficiently small perturbations of a nonuniform exponential dichotomy. We first describe a
certain class of functions (in fact each stable manifold is a graph of one of these functions (see
[51)).

Let Z be the space of functions ¢ : Rj x E(-) — F(-) having at most discontinuities of the
first kind in the first variable such that for each s > 0, and x,y € E(s) we have:

1. 9(s,0) =0 and (s, E(s)) C F(s);

2. There exists a constant L > 0 such that

lp(s,x) = (s, y)ll < Lllx =yl (3.1)
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We equip the space Z with the distance
d(y, ¢) = sup{[|¢(s,x) — ¢(s,x)[|/[Ix] : s € Ry and x € E(s)\{0}},

and note Z is a complete metric space. Given a ¢ € Z we consider the set
Wi = {(5,8,9(5,0)) : (5,€) € RY x E(s)}. (62)
Definition 3.1. Wfp is called the stable manifold of (1.2) if the semiflow
Yi(s, &, (s, ¢)) € W;,, for every t > 0,
where ¢ € Z and ¢ € E(s).

Given a constant ¢ > 0 we define

r(ts)
R} = sup Y e <(tj6=5) < o, j€N. (3.3)
>s =1
Using Definition 3.1, each solution in Wy must be of the form (t,u(t), (¢, u(t))) for t > s.
In particular, the equations in (2.9); (2.10) for s .15 < t < i, (1641 and (2.11); (2.12) for
tivr(ts) <t < Siys(s) can be replaced by

u(t) = W(t,s)(;'—I— /tH1 W(t, T)P(7)f(t,u(7), ¥(t,u(7)))dt

+ Z /““ )P(x)f(x, (), (T, u(0)) )T
+/ (¥)f(x,u(x), Y, u(7)dz
+ Z W (t,5j1k) P(8j4k) 80k (8j0k u(tjk), Ytk ultik))), (3.4)

pltu() = Wit s)ps,u(s) + [ W(ED)Q (), plz,u(x)) e
r(t,s)—1

+—EZLWMHWUJKXﬂﬂnu&%WLuWDWT

Sj+k

+/ (0)f(x,u(x), p(z,u(x)))dT

]+r (ts)

+ Z W(t,5j1%) Q(5j+k) &4k (Sjtkr t(tjk), Ytk u(tjsk)))- (3.5)
k=1

and

u(t) =Wi(t,s)¢+ /stj+1 W(t, T)P(7)f(t,u(7), (T, u(7)))dt
r(t,s)—1

" kg /:jzmW(tlT)P(T)f(T’u(T)’lP(T'M(T)))dT
r(ts)—1

+ W(f Sj+k) P(80k) 84k (Sjrr (i), Y (ke k)

\_/

k=
+ P(t 8j+r(t,s) (t u(t]+r(ts)) lp(tj+r(t,s)r”(thrr(t,s))))/ (3.6)
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it () = Wit s)g(s,u(s) + [ W(E Q) (), plr,u(e)) e

r(ts)—1 Fitkt1
+ kz W(t,T)Q(t)f(t,u(t), p(t,u(t)))dt

=1 Sj+k
r(ts)—1
+ ) Wt s Qi 10084k 84k w(tisk), P (b u(tiik))
=1
+ Q(t)g]—i-r t,s) (t u(t]—i-r(ts)) Ip(tj—i-r(t,s)ru(tj+r(t,s))))' (3.7)

Define the function u = uy for ¢ € Z. We need the following impulsive Gronwall’s
inequality results.

Lemma 3.2. Let x : Rj — R be a piecewise continuous function at most with discontinuities of the
first kind at the points t;. If

x(t) <a+ /tw(r)x(r)dr+ Yo mix(t),  t>s

for some constants a,y; > 0, and some function w : R§ — R, then the following estimate holds

t
x(t) <a J] (Q+7i)exp </ w(r)dr) .
s<ti<t s

Lemma 3.3. Assume that (1.1) admits a nonuniform exponential dichotomy. Given § > 0 sufficiently
small and (s,&) € Ry x E(s), for each i € Z there exists a unique function uy : [s, +00) — R" with
uy(s) = ¢ and uy(t) € E(t) satisfying (3.4) and (3.6) with t > s. Moreover,

Ju(t)|] < 2De =% g fort > s. (3.8)

Proof. Given (s,&) € R} x E(s) with ¢ # 0, and ¢ € Z, we consider the space Q) := {u(-) :
[s, +00) — R"} such that u(s) = ¢and u(t) € E(t) foreach t > sand u is piecewise continuous

with at most discontinuities of the first kind at t; with [[u’" = sup,. {7 i Hér” Le alt=s)=es} < 2D.

One can easily verify that () is a Banach space with the norm || - ||. For arbitrary t > s,
we consider the operator A (see below) defined in the two intervals (st(t,S),thrr(tls)H] and

(titr(ts)r Sjr(ts))-

Case 1. For s, ,(15) <t < tj (1511, We consider

(A)(t) = Wtz + [ Wit 0P f(zu(e), y(ou(0)iT
r(t,s)—1

N 2 /stj+k+1 W, T)P(T)f(.r,u(T),lp(T,u(T)))dT

j+k

+ / P(0)f (x,u(v), Y(x, u(1)))dr

]+r (t,s)
+ Z W(t,541) P(Sj1k) 8k (ks Utk ), Y (s u(Ejk)))-
k=1
Given uq,up; € Q) and T > s. Note that (2.8) and (3.1), we obtain

@ (1) = [|f(t,u1 (1), ¥(7,u1 (7)) — f(T, u2(7), (T, u2(7)))
< S(1+ L& e e 2T Juy — waf, (3.9)
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and

) — &i(si, ua(ti), (ti, ua(ti)) |l

—@R2s )y |, i =j Ak k=1, ,r(t,s),

) — &i(tua(ti), Y(ti, uz(t;)))|

@2y ||, i = 4 r(ts). (3.10)

Wi = ||gi(si/ul(ti)/lp(ti,ul(ti

< O(1+L)|g e ttims)tes

w;i(t) = ||gi(t, ur (t;), P(t;, ui(t;)
< O(1+L)|g[|eltims)tes

N —

~—

x

Therefore, we obtain

[(Au) () = (Auz)(1)]]

ti )=l ot
< [T nr@le@dr+ Y [T W nP@ e
s k=1 7Sk

r(t,s)
¥ / WP (DT + L WPl o
k=1

r(t,s)
T)[|@(T)dt+ Y [IW(t,5jk) P(sj4k) | W
=1

VAN
T
=
:

D&(1+1L)

< =gl — wa e 4 D1+ L) [¢] [y — wall'e 2
Dé6(1+L
= (EHHCH 2 — 1]|'e =) + DS(1 + L) & |z — /e~ =) TR,

which implies that
1Aur = Aua||” < 6]jur — a2,

where 6 = D6(1+ L) (1 + Rf). Take ¢ sufficiently small so that 6 < 3. Therefore, the operator
A becomes a contraction mapping. Moreover

[Aull” < IW(,s)S]l" +6l[ull" < D +0]lul|" < 2D,

and hence, A(Q)) C Q. Therefore, A has a unique fixed point u € Q such that u = Au.
Moreover, for t > s we have
lu(t)|] < 2De~ =9 e ).

Case 2. For £, ,(15) <t < Sji,(5), we have

(Au)(t) = W(t, )2+ /s "W TP (o (), ()i

r(ts)—1

+ L "W, TP (T u(t), gt u(t)))dT
=1 “Sj+k
(,) 1
+ W(t Sjrk) P (i) &k (Utsie), Ptk u(tjsn)))

k=
+P(t 8j+r( ts)(t u(t]+r(ts)) ¢(tj+r(t,s)r”(tj+r(t,s))))-

From (2.2) and (2.3) with t = s > tj, we obtain

IP(t)]] < De” and [|Q(#)]| < De™.
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Using (3.9) and (3.10), we have
[ (Au)(t) — (Auz) (1)
r(ts)—1

tir tirkt
< [Twenr@lemdr+ Y [T W DP@@(@)dr
5 k=1 YSj+k
r(t,s)—1
+ L WP e+ TP (0]
=1
r(t,s)—1

< [ W P@ e+ Y IW(500P(s 0 ey o+ 1P feyirgn ()
k=1
DS(1+L
< POy — et 1 D51+ L)l — wal'e” f”wze ()
Dé(1+ L
< POy — e t=9) 1 Do+ L)l — oo~ =R,

which implies that
[ Auy — Aup||" < 0llug — uaf’,

where § = D6(1+ L) (1 + R;?). Take 6 sufficiently small so that § < 1. Therefore, the operator
A becomes a contraction. Moreover

[Aull < [W(,s)Sl" +6llull” < D +0lul|” < 2D.

and hence, A(Q)) C Q. Therefore, A has a unique fixed point u € Q such that u = Au.
Moreover, for t > s we have
lu(t)|| < 2De =1 7).

The proof is complete. O

Now, we establish some auxiliary results for the function uy. Given § > 0 sufficiently
small, p € Z,5 > 0, and &,& € E(s), from Lemma 3.3, we consider the unique functions uy
and iy such that uy(s) = ¢ and ity (s) = ¢.

Lemma 3.4. Assume that (1.1) admits a nonuniform exponential dichotomy. Given & > 0 sufficiently
small and &, & € E(s), we have

HulP(t) o allf(t)H < 2De(7u+pln(1+D5(1+L)))(tfs)JrssHg _ gH

foreachp € Zandt > s > 0.

Proof. For each T > s, we have
1 (z,uy (), (T, 1y (7)) = F(T, (), (T, 0 (1)) | < 61+ L)e > [Juy () — iy (7],
and

18 (i, 1y (ti), Y (ti, uy(ti)) — &i(si, g (ti), Y(ti, dy(ti))) ||
<61+ L)e @25 |y (1) —ap(t)ll,  i=j+kk=12..r(s),

18 (8 1y (£), W (ti, uy (1)) — &i(t iy (£:), p(ti, iy (£:)))]

¥(
< S(L+L)lle @M uy(t) —ag(t),  i=j+r(ts).
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Set
P(t) = [Juy(t) — iy ()]l
Using (3.4) and (3.6), we have two cases to consider:

Case 1. For s; (1) <t < tjj (151, We have
¢(t) < [W(t,s)P(s)Il[IS ¢l +6(1+ L) /st IW(t, T)P(T)lle™> ¢ (T)dT
6(1+1L) (Z: W(t, 514 P(sj i)l P21t )
< Delt=9)Fes| g _ | +D5(1+L)</: alt- T)dT + Z e Ptk )
< De =)+ @ — & + Do(1 +L)</Ste at=T) =T (1) dT + Z et =te) t+k)>.

Case 2. For tj, (1) <t < Sji (1), we have

tj+r t,s
¢(t) < [W(t,s)P(s)IllIE — ¢l +6(1 +L)/s W, T)P(x)le = p(x)dr
r(t,s)—1

FO04L) Y W s P(selle @25 )
k=1

+ D(5(1 + L)egtei(ﬂ+2£)t¢<tj+r(t,s))
< De—u(t—s)—i—ss”é N é?“

¢ r(t,s)—1
+D5(1+1L) (/ e Tp(nydr+ Y e MP(tix) + e‘“fqb(tm(t,s)))
5 k=1
¢ r(t,s)
< De 9% || — &) 4+ D5(1 + L)</ eI (T)dT + Z eat¢(tj+k)>

t
SDe”“S>“5!|¢—§\|+D6<1+L></e i) dT+Ze (=) t+k>>,
S

where we use || P(t)]| < De*
Setting @1 (t) = eali= )q)( ) we obtain

~ t r(ts)
@1(t) < D =€+ Dot -+ D) [T To(@r Y gt

k=1
_ ¢ r(t,s)
< De®||¢ —¢||+Dé(1+ L) (/ e o (T)dr+ ) col(tHk)).
s k=1

Therefore, using Lemma 3.2, we have

r(ts)
@1 (t) < De®||& — gHH (1+D5(1+L))exp (/ D5(1+ L)e ”dr)

Dé( 1+L

<De o e||g — /(14 D5(1+ L))
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Using (2.1) and taking ¢ sufficiently small so that e < 2 we obtain
@1(t) < 2DePIMA+DIAFL) (t=s))+es || & _ &)

Therefore, we have
¢(t) = llug(t) — iy (1)]| < 2DelZrHPIERAAFN =T 7 Z
The proof is complete. O

Lemma 3.5. Assume that (1.1) admits a nonuniform exponential dichotomy. Given § > 0 sufficiently
small and 1,9, € Z and (s, &) € Ry X E(s), there exists B > 0 such that

it (£) = g, ()| < 20PN 1 d (yy, p2),
for every t > s.

Proof. For each T > s, we have

[1f (T 14y, (T), 1. (T, 4y, (7)) = f (T, 1, (T), (T, 1y, (7))
< 05| (1, (T) — 1y (7), 1T, 11, (7)) — (T, 10y, (7)) |
< 875 ([luy, (7) — 1y, (1)

)
91 (T 1y, (1)) = 2 (T, 1y, (7)) + $2(T, 1y (7)) = (T, 1y, (7))
< e 2 (|luy, (T)ld (1, 2) + (1 + L) [y, (7) — g (D)),

and

183 (s, 1y (£3), 1 (i, gy (83))) — &isiy 1y, (1), P2 (i, 1y, (£)))

< 8¢ @205 [y, () | A1, )+ (14 L) gy (#) = g (B)I1), i = 4k =1,...,7(t5),
183 (t wy, (£), 1 (i, wy, (£))) — Qi(E g, (£), 2 (ti, uy, (£))) ]

< 8¢~ @20 (Juy, (1) [d(91, 92) + (1 + L) gy (1) — g (t)), i = j+r(t,5).
Set

P(t) = [y, () = uy, (D).

Using (3.4), (3.6) and Lemma 3.3, we have two cases to consider:
Case 1. For s; 1) <t < tj,(15)+1, we have

§(6) < 6 [ WG DR e g, (2) |41, )

Y1+ L) /St IW(t, T)P(1) |le~27H(t)dT

r(t,s)

+6 3 (Wt sja) PUsje) lle™ @205 [y, (#1000 1 (1, p2)
k=1

r(t,s)

FO14L) Y Wt s Plsj)le 2545 (1 14)
k=1

t t
< 2D%6||E|d(r, r)e ) / e=¢(™5)dr + D§(1+ L) / a0 =¢T 5 ()
S S

(t,5) r(t,s)
225y, ga)e ) Y et A=) L DS(14 L) Y ety )
k=1 k=1

<
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t t
< 2D%5||E || (1, 2)e— ) / e~ ™5)d7 + D§(1 + L) / e~ 0U=0=ET 5 ()
S

r(t,s) r(t,s)

+2D%81& [ d(tpr, a)e ") Y e @) L DS+ L) Y e Ptk
k=1 k=1

t
< 2D (g, y2)e =) < [ Rw)

t
+D5(1+L)/ e (=G (T)dT + DS(1 + L) Z DBt ).

S

Case 2. For tj (1) <t < Sji (1), we have

i< [
r(ts)—1
L sy Plsyae) e 299 g ) [, ) + (1 L) )

j+r(t,s)

W (t, T)P(1) [ 0e ™2 ([fuy, (T) | d (1, $2) + (1 + L)(7))dT

+ De e 2N (uy, (b0 1A (1, 92) + (L L)P(E1(15))

t
< 2D%6)|l|d (¢, ¥a)e ") [ e~ T)dr 4 DS(1 + L) / e~ —¢T 5 ()t
S

s
r(t,s)—1 r(t,s)—1

+2D% gl d(pr, ga)e )Y e @) L DS 4 L) Y e F(t)
k=1 k=1

+ 2D 2| d(r, ga)e e E =) 1 DO+ L)e " tr0)
t
< 203y, ga)e 0 ( [[eer e+ Rw)
S

t
+D5(1+1L) / e DTG (T)dT + DS(1 4 L) Z W06 (t41),
S k=1

where we use ||P(t)|| < Det
Setting @, (t) = e”!=5)(t), we obtain

t
@a(t) < 2D%[Z]1d( 1, §2) ( et R?“)
r(t,s)

+ D51+ L) /t T )e T (T)dT + DS(1+ L) Y "t I (ti14)
5 k=1

r(t,s)
< 2D?%6||E|\d (1, o) C + R]?“) +D5(1+1L) (/te‘”coz(r)dr + ) C’Dz(tj+k)>.
s k=1

Using Lemma 3.2, we have

r(t,s)

@y (t) < 2D%8||&||d (1, ¢2) <1+R;?+E) [](1+Ds(1+L))exp (/ Dé(1+ L)e ”dr)

k=1

Ay, ) ( + R““) (1+ D&(1+ L)),
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Using (2.1) and taking ¢ sufficiently small so that S < 2, we obtain

@y(t) < 2pef MIFPOHNEI ] d iy, ¢2),
where g = 2D%5(1 + R™). The proof is complete. O
Now we will rewrite (3.5), (3.7) in an equivalent form.

Lemma 3.6. Assume that (1.1) admits a nonuniform exponential dichotomy. Given 6 > 0 sufficiently
small, a +b > e and € Z, the following properties hold:

1. For each (s,&) € R{ x E(s) and t > s and if

Pl u(t) = w<t,s>¢<s, 5+ / W DQf(xu(), plr () e (3.11)
+ Z / W DQUOF(T (), o u(o) T
+ / (7)f (x,u(x), p(x, u(0) T

]+r (t,5)

+ Z W(t,5;:k)Q(sj11) &k (Sjakr (), Wtk 4(t46)))s Sipr(es) <t < tigr(ts)+1s

or
tiva
Wt u(t)) =W(ts)p(s,¢) +/ W(t, T)Q(T)f(t,u(T), (7, u(t)))dt (3.12)
ts) 1 ]+k+1
+ kz [ W00 s u(o), (e () e
1 ]+k
t -1
+ Z W (t,5746) Q(8j1+k) &tk (S (i), W (Ejpk, (k)
P
+ Q(t)g]+r ts)(t u(t]Jrr(ts)) w(thrr(t,s)/u(tj+r(t,s))))/ tj+r(t,s) <t< Sitr(t,s)s
then

06,8 = - [ W DR u(0), i u(r) i
- [ W mem st u, gt u)n

— Y W5, 5j1%) Q(Sj5k)8jk (Sjskr (i) Y (Eis ultink)))- (3.13)
k=1

2. If (3.13) holds for each (s,¢) € Ry x E(s) with t > s, then (3.11) and (3.12) hold for each
(s,) € Ry x E(s)and t > s.

Proof. We first show that the integral and the series in (3.13) are well-defined for each (s,¢) €
]Rar x E(s). For each T > s, using Lemma 3.3 and (2.8), we have

I (7, u(z), p(, u(0)))|| < (1+L)de > |[u(7)]|
< 2D§(1+ L)e  XTe o T=5)%es 7|, (3.14)
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and
gi(si,u(ti), P(ti, u(ti)))|l
<2Dé(1+ L)e” (a+2e)s;—a(t; SJ“’:SHQH i=j+kk=12,...,r(ts),

18i(t (i), (i, u(ti))) |
< 2D5(1+ L)e (F2)—als)res || i — j 4 r(t,s).

(3.15)

Using (2.3), (3.14) and (3.15), we have
tit1
/S W (s, )Q(7) f (T, u(7), (7, u(1)))dT||
I Z/ jk+1 ‘

<D+ L] [ et ar
S

(W(s, T)Q(0) f (7, u(T), ¥ (7, u(7)))d|

2D25(1+L)II€H
b+a+e

IN

and

Y WS, 5j4k) Q) 8k (ks 1 (Eic) Y (Ejorer 1 (Ej))) |
k=1

< 2D2(5(1 +L)||€]] Z p(—b—a—e)(sjk—s)—a(tjix—s)
k=1

< 2D2(5(1 + L)l i e(—b—a—€)(tjpx—s)—altj—s)
k=1
< 2D%6(1+ L)[|§[|R7* < co,

This implies that the right-hand side of (3.13) is well-defined.

Assume that (3.11) and (3.12) hold for each (s,&) € R x E(s) and t > s. Therefore, we
will consider the following two cases:
Case I Let sjy,(15) < t < ti,(15)+1, the identity (3.11) can be written in the form

$(.8) = WD u(0) — [ Wi, Q0w u(0), p(x, u(r))dr

r(t,s)—1

— Y [T W6 00,y () e

k=1 “Sj+k

[ W DR (), (e u()dr

Sjtr(ts)
r(t,s)
— Y W(s, 8540 Q(5j5k) 84k (Sjies u(tiie), Ytk u(tisk))), (3.16)

k=1
where we use Q?(t) = Q(t). From Lemma 3.3 we have
IW(s, HQ(E) (¢, u(t))[| < LDe "= |lu(t) |
< ZLDZ ||€r||e(—b—a+.€)(t—s)+2£s. (317)

We note that since —b —a + ¢ < 0, the right-hand side of (3.17) tends to zero as t — +oo.
Thus, (3.16) yields (3.13) by letting t — +oc0.
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Case IL Let t;,,(;5) <t < Sj (1), the identity (3.12) can be written in the form

$(,8) = Ws DR u(t) ~ [ WS, D0 (x,u(0), (xu(x) e
r(ts)—1

)y /s,tj:kﬂ W(s, T)Q(7)f (T, u(T), (7, u(7)))dT

k=1
r(t,s)—1

— Y W(s,850) Q5j1k)& 4k (Sjaks (i), P (Eks (Eigk)))
=1

- W<S/ t>Q<t>gj+r(t,s) (t/ u<t]'+r(t,s) )/ 1lj<tj+r(1‘,s)f u(thrr(t,s) ))) (3.18)

Using Lemma 3.3 and (3.15), we have

H W(S/ t)Q(t)gj+r(t,s) (tr u(tj+r(t,s) )I lp(thrr(t,s)r u(tj+7(t,5) ))) H
< 2D?(14 L)||&]|el"b-a—e)lt=s), (3.19)

Therefore, the right-hand side of (3.19) tends to zero as t — +oc. Thus, (3.18) yields (3.13) by
letting t — +oc0.

Assume that (3.13) holds for each (s,¢) € Ry x E(s) and t > s.

Letsii (1) <t < tiyr(1s5)+1, We have

WiE 90 = — [ W T F(r u(x), ol u() e

r(ts) -1 titk+1

- Y [ W 0Qf(n (), e () T
k=1 “Sj+k

- [ WEDQfnu(), y(w (o)

r(t,s)

_k W(t,5i16) Q(8j14) 8k (Sjaks u(tjsk), Wtk u(tisk)))
=1

[ WD (), plmu(e) e
-3 [ W Qs ),y () e

r(t,s)+1 7 Si+k

[ee]

— Y Wt 8j50) Q(5jk) 8k (Sjkr (i), Y (Eiie u(tirk))),
r(t,s)+1

which implies that identity (3.11) holds for each (s,¢) € Rj x E(s) and t > s.
Let tjyr(15) <1t < Sji,(s) the identity in (3.12) can be obtained by a similar idea to that in
(3.11). The proof is complete. O

Lemma 3.7. Assume that (1.1) admits a nonuniform exponential dichotomy. Given 6 > 0 sufficiently
small, and a+b > pIn(1 4 Dé(1 + L)), there exists a unique function P € Z such that (3.13) holds
for every (s, &) € Ry x E(s).
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Proof. For each i € Z and (s,¢) € RJ x E(s), we define the operator .7 by
(95,8 = — [ W QO (x,u(0), iz u()dr
S5 [T Wi QM) f(r u(n) p(x u()

k=1"Sj+k
(e )

— Y W(s,8j5%) Q(Sj4k) 8k (ks (i), W (Ejres u(tjsk))), (3.20)
P

where u = uy is the unique function given in Lemma 3.3 such that uy(s) = ¢. Since f(t,0)=
gi(t,0) = 0, we have (J¢)(s,0) = 0 for every s > 0. Next, let u = uy and # = iy be the
unique functions given by Lemma 3.3 such that u(s) = ¢ and ii(s) = . Using Lemma 3.4, we
obtain

1f (T, u(), (7, u(7))) = f(T,a(7), ¢(7, ( I

< 2D§(1 + L)el- PRI DA (s bes-2 1o g

and
18 (s, ulti), (i, u(t)) — &i(si, i (t:), p(ti, a(t;))) |

< 2D§(1 + L)elmarpIn(+DoA+L))(tims)res—(at2e)si |z _ &\ j=j4+kk=1,...,7(ts).
From (2.3) and (3.20), we obtain

1(TY)(s,8) = (T9)(s, D)

< [T IWGs DRI (T u(x), gz, u(0) - Flr,a(0), plxa(0)) dx
F Y IW (s 500Q00)

k=1
X |8k (Sjkr U(tjgk), W (Ejks U(tjgk))) = &k (Sjs Bt i), Y (s (i) |
< 2(5D2(1 + L)HC _ 6” /oo efb(rfs)+sre(fa+pln(1+D5(1+L)))(Tfs)JrsszsTdT

+ 25D2(1 +L)||g =€ i o b(sj1k=8) p(—a+pIN(1+DS(1+L))) (tj:5—5) +es—(a-+e)sj4x
k=1

26D ) ,51) .
< (25 +20R) a+le-al

where 1 = —b—a—¢e+pIn(1+ D5(1+ L)). Taking 6 > 0 sufficiently small, we obtain

I(T)(s,8) = (T)(s, 0l < LIIg = Z]l

foreverys > 0and ¢, ¢ € E(s),s0o J(Z) C Z

Next, we show that operator 7 is a contraction. Given 1, ¢, € Z and (s,§) € RJ x E(s),
let uy, and uy, be the unique functions given by Lemma 3.3 such that uy, (s) = ul[]z( s) = C.
From Lemma 3.5, we obtain

L (T 1y (T), 91(T, 1, (7)) — f(T, 149, (T), Y2(T, 1y, (7))
< 862 ([luy, (T) (1, 2) + (14 L) [|uy, (7) — gy (D))
< 26(D + (14 L)B)el - ommIHDIAHL)T) 2T 2 d (9, 5 ),
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and

18i(si, 1y, (i), r (ti, 1y, (1)) — &i(siy gy (£), 2 (ti, uy, (1)) |
< S~ 2 ([fuy, () [ (1, 2) + (1+ L) [y, (1) — g (1))
<25(D+ (1+ L)IB)e(—a—l-pln(1+D(5(1+L)))(ti—s)+85—(a+2€)s,~Hé'Hd(llJllwz),
i=j+k k=1,2,...,r(ts).
From (2.3) and (3.20), we obtain
(T 1) (s,€) = (Tp2)(s, )l

< /SOO W (s, T) Q)| f (T, gy (T), 1. (T, 1y, (7)) — f(T, 10, (T), P2 (T, 14, (7)) |dT
+ki W (s, 5j11)Q(sj1x) [118i (si 1y (£i), Y1 (Ei, gy (8:))) — Gi(i, ey (£1), 2 (ti, iy, (1)) |
=1
< 2D6(D+ (1 + Pl o) [ P ar

1 2D8(D + (14 L)B) &, ) Y ebilhon—
k=1

<2080+ (1+ L)) (= + K" ) 1€l 92)

Now taking § > 0 sufficiently small, then the operator J is a contraction in the complete
metric space Z. Hence, there exists a unique function ¢ € Z such that J¢ = ¢, for every
(s,€) € Ry x E(s). The proof is complete. O

The following stable manifold theorem is in the sense that we have the unique graph of
the form Wf/‘J (for some function ¢ € Z) which is invariant under the semiflow.

Theorem 3.8. Assume that (1.1) admits a nonuniform exponential dichotomy. If a +b >
max{¢e,pIn(1+ Dé(1+ L))}, then provided that & > 0 is sufficiently small, there exists a unique
function € Z such that

Yi(s, &, 9(s,¢)) € Wy, forevery t > 0. (3.21)
Furthermore, for every s > 0, &, ¢ € E(s) and t > s, we have
[¥e-s(s, &, (5, 8)) = ¥rs(5,&,9(s, &) || < 2D(1 + L)el - HomArDIAFEms)Fes) z 7

Proof. From Lemma 3.3, for each (s,{) € R; x E(s) and ¢ € Z, there exists a unique function
uy € Q. Using Lemmas 3.6 and 3.7, for each (s, &) € RJ x E(s), there exists a unique function
¢ € Z such that (3.11) and (3.12) hold. This shows that (3.21) holds, for any sufficiently
small J.

It remains to establish the inequality in the theorem. We denote again by uy and iy the
unique functions given by Lemma 3.3 such that uy(s) = & and iiy(s) = ¢. From Lemma 3.4,
we have

[¥e-s(s, 8, (5,8)) = Frs(5,8,9(s, )
= ([ (8 uy (£), (g (£))) — (&, 2y (2), P (t, 2y (8)))
< (T+L)fJuy(t) — ay(t)|]
< 2D(1 + L)e(—a+p1n(1+D<5(1+L)))(t—s)+ssHC - 6”

The proof is complete. O
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4 (! regularity

Without loss of generality, we assume that (1.1) admits a nonuniform exponential dichotomy.
In this section (using ideas from [7]) we establish the C! regularity of the sections Wy N({s} x
R") for each s; < t < t;y1 and s9 < s < t; with i € IN, where Wf/; is the stable manifold in
Theorem 3.8. Let j = 0 and sp < s < t;. Let
r(ts)
Ry=sup Y et < oo,
t>s k=1

Now, we recall the Fiber contraction principle [7]. Given metric spaces X = (X, dx) and
Y = (Y, dy), we define a distance in X x Y by

d((x,y), (f/y)) = dX(X,Jf) +dY(y/]?)'

We consider transformations S : X x Y — X x Y of the following form

S(x,y) = (T (x), Alx, ),

for some functions J : X — X and A: X XY — Y. We say that S is a Fiber contraction if
there exists A € (0,1) such that

dy(A(x,y), Alx, 7)) < Ady(y,7)

for every x € X and y,7 € Y. For each x € X we define a transformations A, : Y — Y by
Ay(y) = A(x,y). We also say that a fixed point xy € X of J is attracting if J"(x) — xo when
n — oo, for every x € X.

Next, we need the following assumptions (for the maps below):

H1. A|S is of class C1;
H2. A(0"), A(t") and A(t") are well-defined for every ¢ > 0;

H3. A'(07), A'(t") and A'(t~) computed with respect to A(07), A(t") and A(t") are well-
defined for every t > 0;

H4. f|(S x X) is of class C!, and f(t,0) = f(t,u) = 0 for each t > 0 and u € X with |lu]| > ¢,
for some constant ¢ > 0;

H5. f(07,x), f(t",x) and f(t~,x) are well-defined for every t > 0;

Heé. %(O*,x), %—{(t*,x) and %(t*,x) computed with respect to f(07, x), f(+",x) and f(t~, x)
are well-defined for every t > 0;

H7. g; is of class C!, and g;(t,0) = gi(t,u) = 0 for each i € N and u € X with ||u|| > ¢, for
some constant ¢ > 0.

Under these assumptions we will consider the following C! regularity of the section of the
stable manifold. In order to consider the C! regularity of the stable manifold, we will give
some definitions and lemmas.

Definition 4.1 (see [7, Lemma 9]). If S is a continuous Fiber contraction principle, xo € X is
an attracting fixed point of 7, and yy € Y is an fixed point of Ay, then (xo, yo) is an attracting
fixed point of S.
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Lemma 4.2 (see [14, Section 1.2]). Let % : lRa' — IRSr be a piecewise continuous function at most
with discontinuities of the first kind at the points t;. If

t
B i+ [(otax@)dT+ ¥ (o+a%(t), s
s s<t;<t

for some constants & > 0,0 > 0, > 0, then the following estimate holds
_ - Q) r(t,s) ,v(t—s) Q
)y <|{a+->|(1+ e - =,
(< (s+2)a+m !
Set K =R" \ {s; : i € N}. We consider the space F of continuous functions

@:{(s,8) e CxE(s)} = [] L(s)

sERS

where L(s) is the family of linear transformations from E(s) to F(s), such that ®(s,) € L(s)
for every s > 0 and ¢ € E(s), with the norm

[P := sup{[|P(s, )| : (5,) € £ x E(s)} < L, (4.1)

having an extension to R x X with at most discontinuities of the first kind in the first variable.
We will consider the subset Fy C F consisting of functions ® € F such that ®(s,0) = 0 for
every s > 0. One can easily verify that /¢ and F are complete metric spaces with the distance
in (4.1).

Given § as in Theorem 3.8 and ¢ € Z, we consider the unique solution uy(t,¢) given by
Lemma 3.3 for each { € E(s) with t > s > 0. Due to the continuous dependence of the
solutions of an impulsive differential equation on the initial conditions (see [14, Section 1.2])
and Lemma 3.7, the solution (t,1,s,§) — uy(t,¢) is continuous on K x Z x {(s,&) € K x
E(s)}. We let

yp(t) = (Luy(t, Q) w(tup(t,0))),  Fylsioti) = (siyuy(ti, §), (ki uy(£:, ),
and zy(t) = (t,uy(t,&)). We define a linear transformation A(¢, ®) for each (¢, @) € Z x F
by

AW ®)(5,2) = = [ W1 (5L ()T + 5L (190 @(ay(x) ) e

oY
_ki/s:m W(s, 7)Q(t )<an (yy(7))T(T )+;];(y¢(r))q>(zlpm)) it
_I:ilW(s,sk)Q(Sk)(aai];(ﬂw(sk,tk))T( )+%§b (y¢(sk,tk))®(z¢(tk))> (4.2)

for s € K and ¢ € E(s), and where the function T = Ty ¢ is uniquely determined by

T() = Wit )P(s) + [ WO TP 5 (g ()T + Fr (1) 00z (1)) e

5[ W ope (2L )T + ity ar

+/s”s W(t, T)P(7) (;:;(W(T))T(T) + gljlc)(ylp(r))d)(zw(r))) dr

S ai S ai 3 z )
- k:zl W(t, 1) P(s ><a (7 (st ) T () + 5 K (5 (51 ti))D( w(tk))> (4.3)
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for t > s. We note that T(t) is a linear transformation from E(s) — E(t) with T(s) = Idg).
From the continuity of the functions (t,,s,¢) +— uy(t,¢), ¢ and @, the function (t,¢,s,&) —
Ty,o,¢ is also continuous on £ x Z x {(s,¢) € K x E(s)}.

Lemma 4.3. Let § > 0 be sufficiently small. If b+¢ > D6 + pIn(1 + D), then the operator A is
well-defined, and A(Z x F) C F.

Proof. In order to show that operator A is well-defined, we let Y be equal to || A(y, P)(s,{)||,

that is
Y= [M|we e (5w + Fuyme )|
' i [ [memem (L were + Luoe ) i
W(s,5)Q(s) (;{kpm(sk, T () + 257y s 0) 2z ) |
For every t > 0, k € N, and u € X. From (2.8) and as x — y, we have
H f < e % and H (t,u)|| < e~ (@2, (4.4)

From (2.3) and (4.4) we have that
t
Y < Ds( [ et ¢ e 1 [ et ()] 4 Ly
+ D6 Z et (|| T (1) | + L)

< Dg [ e M) 4 Lydr 4+ Db 3 o) T(a) | 1)
k=1

< D(g/ ()T (| T(7) || + L)dt + D3 Y et~ =) (|| T(8) || + L)
k=1

<D‘5/ (T (o)l + L)dT + Do Y eI T (k) + L), (45)
k=1

Using (2.2), (4.3) and (4.4), we have

IT(H]) < Det=% 4D [0 T(0)] + L)de
r(ts)
+D5 3 e (T + 1)

1(t5)
< Dees+/ (DeL + Dé|T(x)l)dr + 1. (DSL + DS T(tI).

It follows from Lemma 4.2 that
T(t De® + L) (1 + D§)"(t9)ePolt=s) _ [
[T < (

<
< (Dess + L)e(D5+pln(l+tSD))(t—s) —L
< (Destl + L)e(D5+pln(1+5D))(t75) — L. (4.6)
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Put (4.6) into (4.5) and we have

Y < 6D(De + 1) < / £Sgr 1 Y e(m)(tks))
s k=1

<éD <1 + Rg‘f) (De' + L),
—C
where
=—-b+pIn(1+ D)+ Dé—¢; 4.7)

note ¢ < 0. Let § > 0 be sulfficiently small. Then, A(y, @) is well-defined and A(Z x F) C F.
The proof is complete. O

Next, we consider the transformation § : Z x F — Z x F given by
Sy, ®) = (T (), Ay, P)),
where the operator J is defined in (3.20).

Lemma 4.4. Let 6 > 0 be sufficiently small. If b+ ¢ > Dé + pIn(1 + DJ), then the operator S is a
Fiber contraction.

Proof. Let ¢ € E(s), p € Z and ®,P € F. Let Tp and T satisfy the following
Tq> = Tlﬂ,@,é and T@ = T¢,¢,§.
Using (4.2) and (4.4), we have

1A, @)(s,8) — A, ®) (s, O

< D/ (T—s)+et f <ylp( )) (T) + %(%IJ(T))Q)(ZIP(T)) — i(ylp(T))T@(T)

duy oy duy
- S e () D Y et B s ) Tar
+ 985 (1) 22y 1)) ~ §2<9¢<sk, ) Tot) = Sy, tk))é(zw(tk))H

<5D/ (| To (1) = To (0| + [19(24 (7)) — B(zy(7)))dT
+4D Z e PSR (| T (1) — Top () | + | D2 () — Bz (1)) )

<5D/ 7| To (1) — Ta (0| + 19(24 (7)) — B(zy(7))DdT
+5D28_“_b_5 O (1 To (1) — T () | + 1929 (81) — Dz (1)) )

<5D/ (|| To (1) — Ta (T) 1| + | @(29(7)) — B(2y(1)) )T

+0D Z eI (| T (1) — T (1) | + 19 (2 (1)) — D2y (86))]])- (4.8)
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Using (4.3) and (4.4), we have

1 To(t) — Ta ()
t
<5D/ =)= | T (1) — T@(T)Hd’c—i—(SDHq)_cj)H/ Jalt—T)—et g
) r(t,s)

+ D Z e 0(t=sk)— (a+€)sk||Tq>(i’k) — T(i)(tk)H —|—(5DH(I)_(T)|| Z o 0t—esy
k=1 =

t
< 6D[|® - P (e_‘”/ e(”_S)TdTﬂLRS)
S
r(t,s)
+5D/ W0 Ty (1) — To(7)[|dT + 0D Y e || T (tx) — Top (£ |
k=1

< oD||® — q>y|(| ! ‘+R€)
vap( [ Tate) - Tl + Y Tatt) ~ Tulal )
§ k=1

Setting K = 6D (-1 i+ R§), it follows from Lemma 3.2 that

la—e

ITa(t) — To(1)]] < 6D|| — <I>||(| !

< KHCD _ CDHE D5+pln(1+D5))(tfs)_ (4.9)

| +Re> (1 + D(S)r(t,s)eDé(t—s)

Put (4.9) into (4.8) and we have

A, @) (s,8) — A, ) (s,
SK(SDH(P—CT)H/ ec‘(r—s)dT_i_(SDebsH(D_cT)H/ e(—b—s)rdT

+ KéD||® — D|| Z e(—a O (f—s) 4 6D||® — D Z p(—a—b—e)(t;—s)
k=1 k=1
ot

<
_5D< +b+

—i—KRa ¢ + Rg+b+g) Hq) - CTDH

Let 6 > 0 be sufficiently small, and then the operator S is a fiber contraction. The proof is
complete. O

To apply Definition 4.1 it remains to verify that S is continuous.

Lemma 4.5. Let 6 > 0 be sufficiently small. If b+¢ > Dé + pIn(1 + DJ), then the operator S is
continuous.

Proof. Let ¢ € E(s), ¢, ¢ € Z and ® € F. Let Ty, and T, satisfy the following

Tl/; = Tu,,@,g and Tq, = qu,‘b,@-
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Using (4.2) and (4.4), we have

A, @) (s,¢) — Ale, ®)(s, )l
<D/ b(t—s)+et

duy

oy
dt+ D i e—b(sk—s)+ssk
k=1

8u¢

- ez ()

985 (7, (55, 10)) Ty (1)
Uy

o

<D/ b(t—s)+et
u

S 0s(2)) = 5 (00 1Ty ) e

4D [T et aajq) ()| I1Ty(2) = Tyl

+0 [T \%( 0) = Z () 0G40 i

+0 [T ”*Ef\gg{,w )| 1otz - @yl

+D 3 et 8 g, 1) = 28570 10) Ty )

—0(Sk—S €8 a i7
D 5 oo | 28 g, 1) Ty 1) — Ty
k=1

o sp—8)+es d = 9 i
#0370 | B g5, 10) — B3 5000z 0]

k=1 % %
D 3ot B g s, )0z 1) — Dy )

Let K = (Deft 4 L). From (4.6) and (4.7), we have

A, ®)(s, &) — Ale, @) (s, &)
< 46DRe~* /°° p(—b+DS+pIn(14+3D) ~e)(T=3) 4 1 45D /°° pbT—s) et

S

+ 46D i e(—a—b—e)(sk—s)+(D(5+pln(1+5D))(tk—s) +45DL i e—b(sk—s)—(u+e)sk

k=1 k=1

< 46DKe™* / Tt 4+ 46DL / e bT=s)—ergy
s s

145D Y el | 45DL Y el b-9 o)
k=1 k=1

< 46DK / (9t 1 46DLeM / " b0 (r=5) g
S

S

445D i o0 O(65) | 45DL f J(—a-b—e)(s-5).

23

2 N To(0) + 2L (1)@ (1) — 2L (yp () Ty (1)

1385 (50 1)) Bz (1)) — §gg’;<y¢<sk, Tyt~ Syl tk>><1><z¢<tk>>H

(4.10)
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Now given arbitrarily € > 0, there exists ¢ > 0 (independent of s and &) such that

45DK / “(t=5) 47 + 45D Leb" / (b)) gp
+0o

< 45D1<ea, N 45DLebt S(-b-e)c
- —C b+e

<2, (aso — o).
and

46D Y et 145D Y o006 <26, (as o — o0).

ty>s+0 Sk=>s+0

Next, we consider the integrals and series from s to s 4 ¢. Define the functions

Bl (U/ l[J) (S, ‘:) _ DKeese(—b+D(5+pln(1+(5D)+e)vaal/{(ylp(v —I—S)),
[

Ba(v,9)(s,8) = Dée™ =Ty (v +5),

Bs(v, ) (5,8) = DLebv+€(U+S)aaj; (yy(v+5)),

Bu(v,9)(s,8) = Dée "~ HD(z (v +5)),
for each v € [0,0] and ¥ € Z. We write

s+o
DKess/ ( b+Dé+pIn(146D)+e)(T—s) af (ylp( ))d’l’

Bty
+D(5/ (=)=t (1 )dT+DL/ (r- SW%( p(1))dT
+D<S/ b(T=9)=€T (2, (1) )dT

= /0 (Bi(v,9) + Ba(v, ) + Bs(v, ) + Ba(v,$)) (s, &)dv.

Therefore, from (4.10), it is sufficient to show that the maps

W [ (Bilop) + Bav,9) + Balv, ) + Balv, )5, 8)dv @11

and

P DK Z eb(sks)+ssk+(D(5+pln(1+J5D))(tks)gik(ylp(sk/ tk))
s<tx<s+o Y

o)
+ Do Z e~ b(sk—s) = (ate)si Tlp(tk) + DL Z o~ blsk—s)+esk agk (]/I/J(Sk/ tk>)
s<tp<s+o s<sp<s+0 ll]

+Do Y ettt (2, (1)) (4.12)

s<sp<s+0

are continuous. Since the functions

(t,9,5,8) —=uy(t,8) and (¢,s,8) = Ty(p, P, 0)(t)
are continuous, the integral in (4.11) and the sum in (4.12) are continuous as functions of

(£,¢,5,C)-

Finally, repeat the procedure in the proof of [7, Lemma 12] and we obtain that the map
Y — A(¢,®) is continuous, and the operator J in (3.20) is continuous. Thus the Fiber
contraction § ia also continuous. The proof is complete. O
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To establish the C! regularity, we establish the following.

Lemma 4.6. If ¢ is of class C' in &, then J is of class C! in &, and
ITY) _ 9P

(where we use ag = 8—4’ . a—g)

Proof. If ¢ is of class C! in ¢, then the solution uy(t,¢) is also of class C! in ¢ for t € K.
Furthermore, denoting ® = Z;%: the solution of (4.3) is given by T(t) = aaig. Therefore, using
Lemma 3.7 and (4.2), we have

i ( s r)Q(r)f(r,u¢<r>,w<r,uw))))

o
= W(s, 1) (L (N FEr.2) + 00 (1) g (g (1) 525, 0))
= W(s, 1)) (515 oy (T(X) + (1) 00z (1))
and similarly
S (V5,500 Qs )i (1), Wt (1))
= (s Q) ( 55 9 o 1) G 01 2)+ o)) 5 1 (1) G 01,2) )
= (55122050 555 (50 8 T(0) + o Gyt b)) ).

which implies that
d b9
Al 3E) = = [ 5 (We Dot g0, v upe)) ) e
s fkv1 9
-3 / 32 (W Q@ (1 0), p(r g (1)) ) e
- Z BC W(s, 5k) Q(sk)8x (sk, u(ti), P(te, u(te)))) -
From Lemma 4.3, we can conclude that J¢ is of class C! in &, and (4.13) holds. The proof is

complete. O

Theorem 4.7. Assume that (1.1) admits a nonuniform exponential dichotomy, and (2.8) holds with
0 > 0 sufficiently small. Then for the unique function  in Theorem 3.8, the map & — (s, &) is of
class C! for each s > 0.

Proof. We consider the pair (91, P1) = (0,0) € Z x F. From Lemma 4.6, we obtain ®; = aallg
From Lemmas 4.4 and 4.5, the operator S is a continuous Fiber contraction. Therefore, we can
define recursively a sequence (¢, P,) € Z x F by

(lrbn+1rq>n+1) = S(lpnrq)n) = (ijmA(¢nrq)n))~
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One can verify that each function ¢, is of class C! in ¢ using Lemma 3.7. Therefore, we assume
that ¢, is of class Clin ¢ with ®, = agpg”, and it follows from Lemma 4.6 that ¢, is of class
Clin & with

i1 _ a(jlpn)
g g

Now let 1 be the unique fixed point of 7, and let ®( be unique fixed point ® — A(ypy, P). It
follows from Definition 4.1 that the sequences 1, and ®,, uniformly converge respectively to
1o and @y on bounded subsets. Next, we recall that if a functions sequence h,, of C 1 uniformly
converges, and the sequence h), of its derivatives also uniformly converges, then the limits of
h, is of class C!, and its derivative is the limit of h!,. Therefore, it follows from (4.14) that the
function 1y is of class of C! in &, and that

= A(lpnrch) =®d,4. (4.14)

oy

The proof is complete. O

Acknowledgements

The authors are grateful to the referees for their careful reading of the manuscript and valuable
comments. We also thank the editor. This work is supported by the National Natural Science
Foundation of China (11661016), Training Object of High Level and Innovative Talents of
Guizhou Province ((2016)4006) and Major Research Project of Innovative Group in Guizhou
Education Department ([2018]012).

References

[1] R. P. AGarRwaL, M. BENCHOHRA, S. HAMANI, A survey on existence results for bound-
ary value problems of nonlinear fractional differential equations and inclusions, Acta
Appl. Math. 109(2010), No. 3, 973-1033. https://doi.org/10.1007/s10440-008-9356-6;
MR2596185; Zbl 1198.26004

[2] M. U. AKHMET, ]. ALZABUT, A. ZAFER, Perron’s theorem for linear impulsive differential
equations with distributed delay, J. Comput. Appl. Math. 193(2016), No. 1, 204-218. https:
//doi.org/10.1016/j.cam.2005.06.004; MR2228715; Zbl 1101.34065

[3] D. D. BamNov, P. S. StMeoNov, Impulsive differential equations: Asymptotic properties of the
solution, World Scientific, 1995. https://doi.org/10.1142/2413

[4] D. D. BamNov, P. S. SimeoNov, Oscillation theory of impulsive differential equations, Interna-
tional Publications, 1998. MR1459713

[5] L. BarreIrRA, C. VALLS, Stable manifolds for nonautonomous equations without expo-
nential dichotomy, J. Differential Equations 221(2006), No. 1, 58-90. https://doi.org/10.
1016/j.jde.2005.04.005; MR2193841; Zbl 1098.34036

[6] L. BARREIRA, C. VALLS, Smooth invariant manifolds in Banach spaces with nonuniform
exponential dichotomy, J. Funct. Anal. 238(2006), No. 1, 118-148. https://doi.org/10.
1016/j.jfa.2006.05.014; MR2253010; Zbl 1099.37020,


https://doi.org/10.1007/s10440-008-9356-6
https://www.ams.org/mathscinet-getitem?mr=2596185
https://zbmath.org/?q=an:1198.26004
https://doi.org/10.1016/j.cam.2005.06.004
https://doi.org/10.1016/j.cam.2005.06.004
https://www.ams.org/mathscinet-getitem?mr=2228715
https://zbmath.org/?q=an:1101.34065
https://doi.org/10.1142/2413
https://www.ams.org/mathscinet-getitem?mr=1459713
https://doi.org/10.1016/j.jde.2005.04.005
https://doi.org/10.1016/j.jde.2005.04.005
https://www.ams.org/mathscinet-getitem?mr=2193841
https://zbmath.org/?q=an:1098.34036
https://doi.org/10.1016/j.jfa.2006.05.014
https://doi.org/10.1016/j.jfa.2006.05.014
https://www.ams.org/mathscinet-getitem?mr=2253010
https://zbmath.org/?q=an:1099.37020

Stable manifolds for non-instantaneous impulsive nonautonomous differential equations 27

[7] L. BARREIRA, C. VALLS, Stable manifold for impulsive equation under nonuniform hyper-
bolicity, J. Dynam. Differential Equations 22(2010), No. 4, 761-785. https://doi.org/10.
1007/s10884-010-9161-6; MR2734479

[8] L. BaArrEIRA, C. VALLS, Robustness for impulsive equations, Nonlinear Anal. 72(2010),
No. 5, 2542-2563. https://doi.org/10.1016/j.na.2009.10.049; MR2577818

[9] M. FECkAN, ]J. WANG, Y. ZHou, Periodic solutions for nonlinear evolution equations with
non-instantaneous impulses, Nonauton. Dyn. Syst. 1(2014), No. 1, 93-101. https://doi.
org/10.2478/msds-2014-0004; MR3378311; Zbl 1311.34094

[10] E. HERNANDEZ, D. O’REGAN, On a new class of abstract impulsive differential equations,
Proc. Amer. Math. Soc. 141(2013), No. 5, 1641-1649. https://doi.org/10.1090/S0002-
9939-2012-11613-2; MR3020851

[11] E. HERNANDEZ, M. PIERRI, D. O’'REGAN, On abstract differential equations with non in-
stantaneous impulses, Topol. Meth. Nonlinear Anal. 46(2015), No. 2, 1067-1088. https:
//doi.org/10.12775/TMNA.2015.080; MR3494983

[12] Y. PesiN, Families of invariant manifolds for corresponding to nonzero charac-
teristic exponents, Math. USSR-Izv. 10(1976), 1261-1305. https://doi.org/10.1070/
IM1976v010n06ABEH001835

[13] M. P1err1, D. O'REGAN, V. RoLNIK, Existence of solutions for semi-linear abstract differ-
ential equations with not instantaneous impulses, Appl. Math. Comput. 219(2013), No. 12,
6743-6749. https://doi.org/10.1016/j.amc.2012.12.084; Zbl 1293.34019

[14] A. M. SamoiLENKO, N. A. PERESTYUK, Impulsive differential equations, Singapore, World
Scientific, 1995. https://doi.org/10.1142/2892

[15] J. WANG, Stability of noninstantaneous impulsive evolution equations, Appl. Math.
Lett. 73(2017), 157-162. https://doi.org/10.1016/j.am1.2017.04.010; MR3659922;
Zbl 1379.34056

[16] J. WANG, M. FECKAN, Y. T1AN, Stability analysis for a general class of non-instantaneous
impulsive differential equations, Mediterr. |. Math. 14(2017), No. 2, Art. 46, 1-21. https:
//doi.org/10.1007/s00009-017-0867-0; MR3619407; Zbl 1373.34031

[17] J. WANG, M. FECkAN, A general class of impulsive evolution equations, Topol. Meth.
Nonlinear Anal. 46(2015), No. 2, 915-934. https://doi.org/10.12775/TMNA.2015.072;
MR3494977

[18] J. WANG, M. FECKAN, Y. ZHOU, Random noninstantaneous impulsive models for studying
periodic evolution processes in pharmacotherapy, in: Mathematical modeling and appli-
cations in nonlinear dynamics, Nonlinear Syst. Complex., Vol. 14, Springer, Cham, 2016.
https://doi.org/10.1007/978-3-319-26630-5; MR3469210; Zbl 1419.34133

[19] J. WANG, M. FECKAN, Y. ZHOU, Fractional order differential switched systems with cou-
pled nonlocal initial and impulsive conditions, Bull. Sci. Math. 141(2017), No. 7, 727-
746.https://doi.org/10.1016/j.bulsci.2017.07.007; MR3710675; Zbl 1387.34012


https://doi.org/10.1007/s10884-010-9161-6
https://doi.org/10.1007/s10884-010-9161-6
https://www.ams.org/mathscinet-getitem?mr=2734479
https://doi.org/10.1016/j.na.2009.10.049
https://www.ams.org/mathscinet-getitem?mr=2577818
https://doi.org/10.2478/msds-2014-0004
https://doi.org/10.2478/msds-2014-0004
https://www.ams.org/mathscinet-getitem?mr=3378311
https://zbmath.org/?q=an:1311.34094
https://doi.org/10.1090/S0002-9939-2012-11613-2
https://doi.org/10.1090/S0002-9939-2012-11613-2
https://www.ams.org/mathscinet-getitem?mr=3020851
https://doi.org/10.12775/TMNA.2015.080
https://doi.org/10.12775/TMNA.2015.080
https://www.ams.org/mathscinet-getitem?mr=3494983
https://doi.org/10.1070/IM1976v010n06ABEH001835
https://doi.org/10.1070/IM1976v010n06ABEH001835
https://doi.org/10.1016/j.amc.2012.12.084
https://zbmath.org/?q=an:1293.34019
https://doi.org/10.1142/2892
https://doi.org/10.1016/j.aml.2017.04.010
https://www.ams.org/mathscinet-getitem?mr=3659922
https://zbmath.org/?q=an:1379.34056
https://doi.org/10.1007/s00009-017-0867-0
https://doi.org/10.1007/s00009-017-0867-0
https://www.ams.org/mathscinet-getitem?mr=3619407
https://zbmath.org/?q=an:1373.34031
https://doi.org/10.12775/TMNA.2015.072
https://www.ams.org/mathscinet-getitem?mr=3494977
https://doi.org/10.1007/978-3-319-26630-5
https://www.ams.org/mathscinet-getitem?mr=3469210
https://zbmath.org/?q=an:1419.34133
https://doi.org/10.1016/j.bulsci.2017.07.007
https://www.ams.org/mathscinet-getitem?mr=3710675
https://zbmath.org/?q=an:1387.34012

28 M. Li, |. R. Wang and D. O’Regan

[20] J. WanG, M. Li, D. O’'REGaN, Lyapunov regularity and stability of linear non-
instantaneous impulsive differential systems, IMA J. Appl. Math. 84(2019), No. 4, 712-747.
https://doi.org/10.1093/imamat/hxz012; MR3987832

[21] T. YANG, Impulsive control theory, Springer-Verlag Berlin Heidelberg, 2001. MR1850661

[22] D. YaNG, J. WaNG, D. O’ReGaN, On the orbital Hausdorff dependence of differential
equations with non-instantaneous impulses, C. R. Acad. Sci. Paris, Ser. 1. 356(2018), No. 2,
150-171. https://doi.org/10.1016/j.crma.2018.01.001; MR3758718; Zbl 1384.34023


https://doi.org/10.1093/imamat/hxz012
https://www.ams.org/mathscinet-getitem?mr=3987832
https://www.ams.org/mathscinet-getitem?mr=1850661
https://doi.org/10.1016/j.crma.2018.01.001
https://www.ams.org/mathscinet-getitem?mr=3758718
https://zbmath.org/?q=an:1384.34023

	Introduction
	Preliminary
	Stable manifold results
	CÂ¹ regularity

