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Abstract. In this paper, we discuss a superlinear Kirchhoff type problem where the
non-linearity is not necessarily odd. By using variational and perturbative methods, we
prove the existence of infinitely many solutions in the non-symmetric case.
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1 Introduction

In this paper, we are concerned with the problem

−
(

a + b
∫

Ω
|∇u|2dx

)
∆u = |u|p−1u + f (x, u) in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded open subset of RN with smooth boundary, a ≥ 0, b > 0. The function
f is a perturbative term satisfying the following condition

(C) There are two nonnegative functions α ∈ Lµ(Ω), β ∈ L∞(Ω) and constant γ ≥ 1 such
that

| f (x, u)| ≤ α(x) + β(x)|u|γ−1,

where µ > 2N/(N + 2).

When a 6= 0, b = 0 in problem (1.1), it reduces to the classic semilinear elliptic problem
and the existence of solutions for elliptic equations with zero Dirichlet boundary conditions
has been widely studied by variational methods, for example, see [2,16,18] . Further suppose
that f ≡ 0, and 1 < p < 2∗ − 1, here 2∗ = 2N/(N − 2) for N ≥ 3, 2∗ = +∞ if N = 1, 2,
it is well known that (1.1) has infinitely many distinct solutions {uk} associated with critical
values I(uk) of the functional

I(u) =
1
2

∫
Ω
|∇u|2dx− 1

p + 1

∫
Ω
|u|p+1dx
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such that I(uk) → +∞ as k → ∞. If f 6≡ 0 and f (x, u) is not odd in u, symmetry of the func-
tional corresponding the equation is lost and the Symmetric Mountain Pass Theorem cannot
be applied. A long standing question is whether the symmetry of the functional is neces-
sary for the existence of infinitely many critical points. Since the 1980s, some mathematicians
had been working on this problem for elliptic equations, see Bahri and Berestycki [4],Bahri
and Lions [5], Bolle [6], Candela, Salvatore and Squassina [9], Rabinowitz [15], Struwe [17],
Tanaka [19] and so on. Researchers gave various conditions guaranteeing the existence in-
finitely many solution when the symmetry of the problem is broken. Here we list a classical
result about the following problem

−∆u = |u|p−1u + g(x) in Ω,

u = 0 on ∂Ω,
(1.2)

where g ∈ L2(Ω).

Theorem 1.1. If 1 < p < N/(N − 2), then (1.2) has infinitely many solutions.

Theorem 1.1 is a particular case of a more general one due to Bahri and Lions [5]. It is
not known whether the bound N/(N − 2) is optimal. If Ω = BR is the open ball of radius
R > 0 and center 0 in RN(N ≥ 3), and g is a radial function, (1.2) has infinitely many radial
solutions for any 1 < p < (N + 2)/(N− 2), see Theorem 1.2 of [8]. Whether the conclusion of
Theorem 1.1 would still hold for all p up to the Sobolev exponent 2∗ − 1 = (N + 2)/(N − 2)
for the general function g when N ≥ 3 is a open problem.

When b 6= 0, (1.1) is called nonlocal because of the presence of the term (
∫

Ω |∇u|2dx)∆u,
which implies that the equation in (1.1) is no longer a point-wise identity. Kirchhoff type
problem received great attention only after Lions [13] proposed an abstract functional analysis
framework for the problem, see [1, 3, 11, 14]. The nonlocal perturbation causes that the energy
functional corresponding the equation has properties different than the case b = 0. There are
some works showing that sometime the appearance of the term (

∫
Ω |∇u|2dx)∆u is good in

some sense, see [20].
The main purpose of the present paper is to show that (1.1) has infinitely many solutions

when the exponent p is close to the Sobolev exponent if N = 2, 3. Using Morse indices,
we obtain the growth estimate of critical level for the functional without perturbative term.
Combining with the Bolle,s Perturbation arguments, we prove the following result.

Theorem 1.2. Let (C) hold. Then (1.1) has infinitely many solutions if one of the following conditions
is satisfies

(i) N = 3, 3 < p < 5 and 1 ≤ γ < (p + 13)/4,

(ii) N = 2, 3 < p < +∞ and 1 ≤ γ < (p + 5)/2.

Corollary 1.3. Assume that N = 3, 3 < p < 5 and g ∈ L2(Ω), then the equation

−
(∫

Ω
|∇u|2dx

)
∆u = |u|p−1u + g(x) in Ω,

u = 0 on ∂Ω
(1.3)

has infinitely many solutions.

This paper is organized as follows. In Section 2, we present Bolle’s Perturbation method
which is useful for proving multiplicity results for perturbed problems. In section 3 we apply
this result to prove Theorem 1.2. Throughout the paper, the symbols C1, C2, . . . denote various
positive constants whose exact values are not essential to the analysis of the problem.
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2 Bolle’s perturbation arguments

In order to apply the method introduced by Bolle [6] for dealing with problems with broken
symmetry, we recall the main theorem as stated in [7]. The idea is to consider a continuous
path of functional starting from a symmetric functional and to prove a preservation result for
min-max critical levels in order to obtain critical points for a nonsymmetric functional.

Let H be a Hilbert space equipped with the norm ‖ · ‖. Assume that H = H−⊕H+, where
dim(H−) < +∞, and let (ek)k≥1 be an orthonormal base of H+. Consider

H0 = H−, Hk+1 = Hk ⊕ Rek+1, k ∈N,

so (Hk)k is an increasing sequence of finite dimensional subspaces of H.
Let J : [0, 1]× H → R be a C1-functional and, taken any θ ∈ [0, 1], set Jθ = J(θ, ·) : H → R

and J′θ(v) = ∂J(θ, v)/∂v. Assume that

(H1) Jθ satisfies the Palais–Smale condition, which means that every sequence {(θn, un)} ⊂
[0, 1]× H such that

Jθn(un) is bounded and lim
n→∞

I′θn
(un) = 0

converges up to subsequences.

(H2) For all d > 0 there is a constant C(d) > 0 such that if ∀(θ, u) ∈ [0, 1]× H, then

|Jθ(u)| ≤ d⇒
∣∣∣∣∂Jθ(u)

∂θ

∣∣∣∣ ≤ C(d)(‖J′θ(u)‖+ 1)(‖u‖+ 1).

(H3) There exist two continuous maps η1, η2 : [0, 1] × R → R Lipschitz continuous with
respect to the second variable, such that η1(θ, ·) ≤ η2(θ, ·) and if (θ, u) ∈ [0, 1]× H, then

J′θ(u) = 0⇒ η1(θ, Jθ(u)) ≤
∂

∂θ
Jθ(u) ≤ η2(θ, Jθ(u)).

(H4) J0 is even and for each finite dimensional subspace W of H it results

lim
u∈W:‖u‖→∞

sup
θ∈[0,1]

Jθ(u) = −∞.

Define

Γ = {τ ∈ C(H, H) : τ odd and there exists R > 0 s.t. τ(u) = u if ‖u‖ ≥ R},
ck = inf

τ∈Γ
sup
u∈Hk

J0(τ(u)).

For i ∈ {1, 2}, let ψi : [0, 1] × R → R be the flow associated to ηi, i.e. the solution of
problem

∂ψi

∂θ
(θ, s) = ηi(θ, ψi(θ, s)),

ψi(0, s) = s.
(2.1)

Note that ψi(θ, ·) is continuous, non-decreasing on R and ψ1(θ, ·) ≤ ψ2(θ, ·). Set

η̄1(s) = sup
θ∈[0,1]

|η1(θ, s)|, η̄2(s) = sup
θ∈[0,1]

|η2(θ, s)|.

The following abstract result is due to Bolle, Ghoussoub and Tehrani (for more details, see
Theorem 2.2 in [7]).
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Theorem 2.1. Assume Jθ satisfies hypothesis (H1)–(H4), then there exists C > 0 such that if k ∈N

then

(i) either J1 has a critical level c̄k with ψ2(1, ck) < ψ1(1, ck+1) ≤ c̄k,

(ii) or ck+1 − ck ≤ C(η̄1(ck+1) + η̄2(ck) + 1).

Remark 2.2. In case (i), c̄k ≥ ψ2(1, ck) ≥ ck = ψ2(0, ck) if η2 ≥ 0 in [0, 1]×R.

3 Proof of main result

Consider the Banach space H = H1
0(Ω) with the norm ‖u‖2 =

∫
Ω |∇u|2dx and define the

functional J : [0, 1]× H → R by

J(θ, u) := Jθ(u) =
a
2
‖u‖2 +

b
4
‖u‖4 − 1

p + 1

∫
Ω
|u|p+1dx− θ

∫
Ω

F(x, u)dx,

where F(x, u) =
∫ u

0 f (x, r)dr. It is clear that J0 is an even functional and the solutions of
problem (1.1) are the critical points of J1. It is also easily shown that in any finite dimensional
subspace of H, supθ∈[0,1] Jθ(u)→ −∞ as ‖u‖ → ∞. Thus (H4) is satisfied.

Using Young’s inequality, we have

∫
Ω

α(x)|u|dx ≤ 1
(p + 1)∗

(
1
ε

)(p+1)∗ ∫
Ω

α(x)(p+1)∗(x)dx +
εp+1

p + 1

∫
Ω
|u|p+1dx,

∫
Ω

β(x)|u|γdx ≤ 1(
p+1

γ

)∗ (1
ε

)( p+1
γ )∗ ∫

Ω
β(x)(

p+1
γ )∗dx +

γε
p+1

γ

p + 1

∫
Ω
|u|p+1dx,

where ε > 0 and A∗ is conjugate of A, which follow that for ∀ε > 0, there is C(ε) > 0 such
that for all u ∈ H, ∫

Ω
| f (x, u)u|dx ≤ ε

∫
Ω
|u|p+1dx + C(ε), (3.1)∫

Ω
|F(x, u)|dx ≤ ε

∫
Ω
|u|p+1dx + C(ε). (3.2)

Lemma 3.1. The functional Jθ satisfies PS condition.

Proof. Assume that there exist (θn, un) ∈ [0, 1]× H and C > 0 such that

|Jθn(un)| < C, ‖I′θn
(un)‖ → 0.

Then,
a‖un‖2 + b‖un‖4 −

∫
Ω
|un|p+1dx− θn

∫
Ω

f (x, un)undx = o(1)‖un‖.

For sufficiently large n,

a‖un‖2 + b‖un‖4 + ‖un‖ ≥
∫

Ω
|un|p+1dx−

∫
Ω
| f (x, un)un|dx. (3.3)

Using (C) and (3.1), we have∫
Ω
|un|p+1dx ≤ 2a‖un‖2 + 2b‖un‖4 + 2‖un‖+ C1 ≤ C2‖un‖4 + C3 (3.4)
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for sufficiently large n and some Ci > 0, i = 1, 2, 3. Hence, for sufficiently large n

C + 1 + ‖un‖ ≥ Jθn(un)−
1

p + 1
J′θn

(un)un

=
(p− 1)a
2(p + 1)

‖un‖2 +
(p− 3)b
4(p + 1)

‖un‖4 − θn

∫
Ω

(
F(x, un)−

1
p + 1

f (x, un)un

)
dx

≥ (p− 3)b
4(p + 1)

‖un‖4 −
∫

Ω
(|F(x, un)|+ | f (x, un)un|)dx

≥ (p− 3)b
4(p + 1)

‖un‖4 − 2ε
∫

Ω
|un|p+1dx− 2C(ε)

≥
(
(p− 3)b
4(p + 1)

− 2εC2

)
‖un‖4 − 2εC3 − 2C(ε),

which implies that ‖un‖ is bounded in H. There exist {nj} ⊂ {n}, u ∈ H and θ ∈ [0, 1] such
that

uj ⇀ u in H,

uj → u in Ls(Ω), s ∈ [1, 2∗),

uj → u a.e. in Ω,

θj → θ in R,

where uj := unj , θj := θnj . From (C), we have∣∣∣∣∫Ω
(|uj|p−1uj − |u|p−1u)(uj − u)dx

∣∣∣∣≤(∫Ω

(
|uj|p + |u|p

) 2∗−ς
2∗−ς−1 dx

)2∗−ς−1
2∗−ς

(∫
Ω

∣∣uj − u
∣∣2∗−ς dx

) 1
2∗−ς

→ 0,∫
Ω

f (x, uj)(uj − u)dx → 0,
∫

Ω
f (x, u)(uj − u)dx → 0

as n→ ∞, where ς = 5− p if N = 3, 2∗ − ς = 2 if N = 2. Hence,

(a + b‖uj‖2)‖uj − u‖2 = (J′θj
(uj)− J′θ(u))(uj − u) +

∫
Ω
(|uj|p−1uj − |u|p−1u)(uj − u)dx

+ θj

∫
Ω

f (x, uj)(uj − u)dx + θ
∫

Ω
f (x, u)(uj − u)dx → 0,

which follows that ‖uj − u‖ → 0 or ‖uj‖ → 0 ( when a = 0 ). If ‖uj‖ → 0, then u = 0, that is,
‖uj − u‖ → 0. Hence, (θj, uj)→ (θ, u) in [0, 1]× H. The proof is completed.

Lemma 3.2. For all d > 0 there is a constant C(d) > 0 such that∣∣∣∣∂Jθ(u)
∂θ

∣∣∣∣ ≤ C(d)(‖J′θ(u)‖+ 1)(‖u‖+ 1)

if |Jθ(u)| ≤ d.

Proof. Since J′θ(u)u = a‖u‖2 + b‖u‖4 −
∫

Ω |u|
p+1dx− θ

∫
Ω f (x, u)udx, we have

a‖u‖2 + b‖u‖4 + |J′θ(u)u| ≥
∫

Ω
|u|p+1dx−

∫
Ω
| f (x, u)u|dx.

Using (3.1), we obtain that∫
Ω
|u|p+1dx ≤ 2a‖u‖2 + 2b‖u‖4 + 2|J′θ(u)u|+ C4 ≤ C5‖u‖4 + C6 + 2|J′θ(u)u|
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for some Ci+3 > 0, i = 1, 2, 3. From |Jθ(u)| ≤ d, we have

d + |J′θ(u)u| ≥ Jθ(u)−
1

p + 1
J′θ(u)u

≥ (p− 1)a
2(p + 1)

‖u‖2 +
(p− 3)b
4(p + 1)

‖u‖4 −
∫

Ω
(|F(x, u)|+ | f (x, u)u|)dx

≥ (p− 3)b
4(p + 1)

‖u‖4 − 2ε
∫

Ω
|u|p+1dx− 2C(ε)

≥
(
(p− 3)b
4(p + 1)

− 2εC5

)
‖u‖4 − 2εC6 − 4ε|J′θ(u)u| − 2C(ε).

There exist C1(d) > 0, C2(d) > 0 such that ‖u‖4 ≤ C1(d)|J′θ(u)u|+ C2(d). Hence,∫
Ω
|u|p+1dx ≤ C3(d)|J′θ(u)u|+ C4(d)

for some C3(d) > 0 and C4(d) > 0. And∣∣∣∣∂Jθ(u)
∂θ

∣∣∣∣ ≤ ∫Ω
|F(x, u)|dx ≤ ε

∫
Ω
|u|p+1dx + C(ε)

≤ C3(d)ε|J′θ(u)u|+ C4(d)ε + C(ε)

≤ C(d)(‖J′θ(u)‖+ 1)(‖u‖+ 1),

where C(d) = C3(d)ε + C4(d)ε + C(ε). The proof is completed.

Lemma 3.3. If J′θ(u) = 0, there exists a constant C∗ > 0 such that∣∣∣∣∂Jθ(u)
∂θ

∣∣∣∣ ≤ C∗
(

J2
θ (u) + 1

) γ
2(p+1) .

Proof. Since J′θ(u) = 0, we have

a‖u‖2 + b‖u‖4 =
∫

Ω
|u|p+1dx + θ

∫
Ω

f (x, u)udx,

Jθ(u) =
(p− 1)a
2(p + 1)

‖u‖2 +
(p− 3)b
4(p + 1)

‖u‖4 − θ
∫

Ω

(
F(x, u)− 1

p + 1
f (x, u)u

)
dx.

From (3.1) and (3.2), there exist C7 > 1, C8 > 1 such that∫
Ω
|u|p+1dx ≤ C7‖u‖4 + C8,

‖u‖4 ≤ C7|Jθ(u)|+ C8.

Hence, ∣∣∣∣∂Jθ(u)
∂θ

∣∣∣∣ ≤ ∫Ω
|F(x, u)|dx ≤

∫
Ω

α(x)|u|dx +
1
γ

∫
Ω

β(x)|u|γdx

≤ C9

(∫
Ω
|u|p+1dx

) 1
p+1

+ C10

(∫
Ω
|u|p+1dx

) γ
p+1

≤ (C9 + C10)

(∫
Ω
|u|p+1dx

) γ
p+1

+ C9

≤ (C9 + C10)
(
C2

7 |Jθ(u)|+ C7C8 + C8
) γ

p+1 + C9

≤ C∗
(

J2
θ (u) + 1

) γ
2p+2 ,

where C∗ = 2(C9 + C10)(C2
7 + C7C8 + C8 + 1). The proof is completed.
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Now let Hk be the subspace of H spanned by the first k eigenfunctions of ∆. In order to
estimate critical levels ck of J0, we need the following classical result.

Lemma 3.4 ([12, 19]). Let Ω be a bounded smooth domain in RN(N ≥ 2), let q > 1 with q = N
2 if

N ≥ 3, and let V ∈ Lq(Ω). Denote by m(V) the number of non-positive eigenvalues of the following
eigenvalue problem

−∆u−Vu = λu, in Ω

u = 0, on ∂Ω.
(3.5)

Then there is a constant Cq > 0 such that m(V) ≤ Cq
∫

Ω |V|
qdx.

Lemma 3.5.

(1) If N = 3, there exists Ĉ > 0 such that

ck ≥ Ĉk
4
3 ·

p+1
p−3 . (3.6)

(2) If N = 2, for any 1 < ε < (p + 1)/(p− 1), there exists Cε > 0 only dependent of ε such that

ck ≥ Cεk
2
ε ·

p+1
p−3 . (3.7)

Proof. We prove the lemma by using Morse indices. One identifies a cohomotopic family F

of dimension k (see Definition 5.1 in [10] ) in such a way that if Dk denotes the ball in Hk of
radius Rk and if τ ∈ Γk, then τ(Dk) ∈ F. It follows from Theorem 5.1 in [10] that there exist
vk ∈ H such that

J0(vk) ≤ ck, J′0(vk) = 0, index0 J′′0 (vk) ≥ k,

where

index0 J′′0 (v) = max{dimW : W ⊂ H is a subspace such that J′′0 (v)(h, h) ≤ 0 for h ∈W}.

Noting that

J′′0 (v)(h, h) = a
∫

Ω
|∇h|2dx + 2b

(∫
Ω
∇v∇hdx

)2

+ b
∫

Ω
|∇v|2dx

∫
Ω
|∇h|2dx− p

∫
Ω
|v|p−1h2dx

≥
(

a + b
∫

Ω
|∇v|2dx

) ∫
Ω
|∇h|2dx− p

∫
Ω
|v|p−1h2dx

=

〈(
−
(

a + b
∫

Ω
|∇v|2dx

)
∆− p|v|p−1

)
h, h
〉

=

(
a + b

∫
Ω
|∇v|2dx

)〈(
−∆− p|v|p−1

a + b
∫

Ω |∇v|2dx

)
h, h

〉
,

where 〈·, ·〉 denotes the duality product between H−1(Ω) and H, one have〈(
−∆− p|vk|p−1

a + b
∫

Ω |∇vk|2dx

)
h, h

〉
≤ 0

if J′′0 (vk)(h, h) ≤ 0, which follows that

−∆− p|vk|p−1

a + b
∫

Ω |∇vk|2dx
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possesses at least k non-positive eigenvalues. In addition,

a‖vk‖2 + b‖vk‖4 =
∫

Ω
|vk|p+1dx.

Set

V =
p|vk|p−1

a + b
∫

Ω |∇vk|2dx
, ε =

{
3
2 , if N = 3,

1 < ε < p+1
p−1 , if N = 2.

It is easy to check that (p− 1)ε < p + 1 < 2∗ and V ∈ Lε(Ω). Applying Lemma 3.4 to V, we
have

k ≤ C̃pε

∫
Ω |vk|(p−1)εdx(

a + b
∫

Ω |∇vk|2dx
)ε ≤ C̃pε

(∫
Ω dx

)1− (p−1)ε
(p+1)

(∫
Ω |vk|p+1dx

) (p−1)ε
(p+1)(

a + b
∫

Ω |∇vk|2dx
)ε

= C̃pε|Ω|1−
(p−1)ε

p+1

(∫
Ω |vk|p+1dx

) (p−1)ε
(p+1)( ∫

Ω |vk |p+1dx
‖vk‖2

)ε

= C̃pε‖vk‖2ε|Ω|1−
(p−1)ε

p+1

(∫
Ω
|vk|p+1dx

)− 2ε
p+1

.

Hence, there are ρ1 > 0, ρ2 > 0 such that

‖vk‖ ≥ ρ1k
1
2ε

(∫
Ω
|vk|p+1dx

) 1
p+1

, (3.8)

∫
Ω
|vk|p+1dx ≥ ρ2k

(p+1)
ε(p−1)

(
a + b‖vk‖2) p+1

p−1 . (3.9)

From (3.8) and (3.9), one have∫
Ω
|vk|p+1dx ≥ ρ2b

p+1
p−1 k

(p+1)
ε(p−1) ‖vk‖

2(p+1)
p−1

≥ ρ2b
p+1
p−1 k

(p+1)
ε(p−1)

(
ρ1k

1
2ε

(∫
Ω
|vk|p+1dx

) 1
p+1
) 2(p+1)

p−1

≥ ρ2b
p+1
p−1 ρ

2(p+1)
p−1

1 k
2(p+1)
ε(p−1)

(∫
Ω
|vk|p+1dx

) 2
p−1

,∫
Ω
|vk|p+1dx ≥ ρ

p−1
p−3
2 b

p+1
p−3 ρ

2(p+1)
p−3

1 k
2(p+1)
ε(p−3) .

Hence,

ck ≥ Jθ(vk) =
a
2
‖vk‖2 +

b
4
‖vk‖4 − 1

p + 1

∫
Ω
|vk|p+1dx

=
a
4
‖vk‖2 +

(
1
4
− 1

p + 1

) ∫
Ω
|vk|p+1dx

≥
(

1
4
− 1

p + 1

)
ρ

p−1
p−3
2 b

p+1
p−3 ρ

2(p+1)
p−3

1 k
2(p+1)
ε(p−3) =: Cεk

2(p+1)
ε(p−3) .

The proof is completed.
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Remark 3.6. Similar to [15], by applying the Borsuk–Ulam theorem, one can obtain a new
estimate of ck with

ck ≥ Mk
(

1
N−

1
2+

1
p+1

)
· 4(p+1)

p−3 (3.10)

for some M > 0. Obviously,

4
3
· p + 1

p− 3
>

(
1
N
− 1

2
+

1
p + 1

)
· 4(p + 1)

p− 3
if N = 3,

2
ε
· p + 1

p− 3
>

(
1
N
− 1

2
+

1
p + 1

)
· 4(p + 1)

p− 3
if N = 2, 1 < ε <

p + 1
p− 1

.

Proof of Theorem 1.2. Note that (H1)–(H4) in Section 2 hold with

η2(θ, s) = C∗
(
s2 + 1

) γ
2(p+1) , η1(θ, s) = −C∗

(
s2 + 1

) γ
2(p+1) .

If we assume that alternative (ii) occurs for k large, by the form of ηi it follows that

ck+1 − ck ≤ C
(

c
γ

p+1

k+1 + c
γ

p+1

k + 1
)

(3.11)

for some C > 0. Therefore, since {ck} is a nondecreasing sequence, from (3.11) we can find a
constant C1 > 0 and integer k0 such that

ck ≤ C1k
p+1

p+1−γ for all k ≥ k0. (3.12)

Noting
4(p + 1)
3(p− 3)

>
p + 1

p + 1− γ
if p > 3, p + 13 > 4γ; (3.13)

2(p + 1)
ε(p− 3)

>
p + 1

p + 1− γ
if p > 3, p + 5 > 2γ, 1 < ε < min

{
2p + 2− 2γ

p− 3
,

p + 1
p− 1

}
, (3.14)

we can obtain a contradiction. Hence, alternative (i) of Theorem 2.1 occurs for finitely many
integers k ∈N. Thus, in correspondence of these integers, there are critical levels c̄k of J1 such
that c̄k ≥ ck. Since ck → +∞ as k→ ∞, it follows that J1 has finitely many critical points.
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