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1 Introduction and main results

Let ) be a smooth bounded domain of R"”,n > 5 and let K : () — R be a given function. We
are interested in constructing a smooth positive function u on () satisfying

Au = K(x) Wi,
u>0inQ, (1.1)
Au=u =0 ondQ.

Equation (1.1) is heavily connected to the celebrated problem of prescribing Q-curvature
on closed Riemannian manifolds. See [3,9-11,14-17] and the references therein for details.
Problem (1.1) has a variational structure. The solutions correspond to positive critical
points of the functional:
Jo(Au)?

](u) = n—4

(fQ K(x) u%dx> !

defined on the function space:

2= {ueHQ)NHQ),st Ju| =1},
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where 1

Jull = ([ (Bu(x))?ax) .

One can see that, u is a critical point of ] in £+ = { ue)Y,u>0 }, if and only if ](u)%.u is
a solution of (1.1). Problem (1.1) is delicate from the variational viewpoint since the functional
J does not satisfy the Palais-Smale condition on Xt (PS. in short): There exist sequences
along which ] is bounded, its gradient goes to zero and the sequences do not converge. This
is a consequence of the lack of compactness of the embedding H3(Q)) N HL(Q) < LH%(Q)
Consequently, challenging situations where critical points at infinity are limits of non-compact
flow-lines of the gradient vector field (—d]), occur.

In [18] and [25], the authors showed the existence of solutions of (1.1), provided K = 1.
Their results hinge on the shape of (2. When K # 1, some existence results can be found for
example in [1], [9], and [13].

Recently in [1] Abdelhedi, Chtioui and Hajaiej established compactness and existence re-
sults for (1.1) under the following three conditions:

(A) % (x) £0, Vx € 2Q.

Here v is the unit outward normal vector on 9().

(f)p Kis a C'-positive function on Q) such that at any critical point y of K, there exists a real
number B = B(y) satisfying

+Zbk! x = ylf +o(lx—ylf),  Vx € B(ypo),
where py is a positive fixed constant, by = by(y) € R\ {0}, Vk =1...,n, and

n

n—4
k() + CzTH(y,y) #0, VyekK,4

where ;4 := {y € Q,VK(y) = 0Oand B(y) = n —4}. Here ¢; = [g, %dz,

= Jg 0 ; — and H(-,-) is the regular part of the Green function G(-,-) of the
(1+
b11ap1ac1an under the Navier boundary condition and

(A) B(y) = B € (1,n —4] at any y such that VK(y) = 0.

Many interesting studies were dedicated to the problem (1.1) and its related Q-curvature
problem on closed manifolds under the above (f) p-condition. See for example [19], [14] and
[12] on the standard n-dimensional sphere nn > 5, treating respectively the case of § €|n —4, ],
B €]1,n —4] and B = n. Concerning the problem on bounded domains case, we refer to [1].
We point out that (f)g-condition covers the famous non degeneracy condition corresponding
to the case of B = 2 and used in several works on (1.1) and its related curvature, see for
example [2], [8], [13], [17] and [16].

According to the above results, we observe that the flatness order g does not exceed the
value of n; the dimension of the associated domain. In this paper, we provide new existence
results to the problem and we establish a lower bound of the number of solutions thanks to
a Morse inequality. Our results are new and important as it address the case of B-flatness
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condition for any B > n —4. To state our existence results, we need to introduce some
notations and assumptions: Let

_4 n
Cl Zbk —|—C2

K:4:{y€’cn 4/_ (y/y)>0}l

and
Kon-a={y € Q,VK(y) =0, B(y) >n —4}.

For any p-tuple of distinct points 7, = (ye,,...,y¢,) € (K, UK, 4)P,1 < p, we define
a symmetric matrix M(7,) = (m;j)1<;j<p defined by:

mi; = m(Ye, Ye,)
1 n—4
— b ( —C if J=n—4,
K(ye)' ( . K(y Z k(ye,) 2 H(yq,, ye)) Bye,)
n—4 Co .
———= —H(yy.,yy. f ) >n—4,

Vi=1,...,pand

n—4 G(]/zi,]/éj)
mij = m(ye, Ye) = — 52 =
(Kwe)Ks) *

for1 <i#j<p.

(B) Assume that the least eigenvalue p(7,) of M(t,) is non zero for any 7, € (K ,U
K>n—4)p/p Z 1.

For any T = (y¢,,---,Ys,) € (Ku-a UK>y—4)P, p > 1, we define
. 4 ~
i(tp) =p—1+) n—ily),
i=1

where i(y) = #{bi(y), 1 <k <n, s.t. b(y) < 0}.
We now state our multiplicity result.

Theorem 1.1. Let K : Q — R be a function satisfying (A), (B) and (f)p, p € [n —4,00). If there
exists an integer ko € IN such that

(i) i(tp) # ko +1, V1, € K, where
K = {(WV---,WP) € (Ky yUKsn-a)P,p =1, yo, #ye, Vi # jand p(ye,, -, ys,) > 0}-

(ii) All the critical points of | of indices < ko + 1 are non degenerate. Then

Ny > 1= Y (=)™,

Tp GICOO, l‘(Tp)Sko

where Ny, 11 is the number of solutions of (1.1) having their Morse indices < ko + 1.
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We point out that Morse inequalities for Morse functions provide a lower bound for the
number of the associated critical points. Therefore, Theorem 1.1 can be considered as a sort
of Morse type inequality, since it provides a lower bound of the number of solutions and
consequently a lower bound of the number of critical points of J. Notice also by the Sard-
Smale theorem, see [23], the critical points of | are non degenerate for generic K. In the sense
that for any C!-function Ky, there exits a C!-function K close to K (in the C! sense) such that
J has only non degenerate critical points.

An immediate corollary of Theorem 1.1 is the following result which prove the existence
of at least one solution without assuming that (1.1) has only non degenerate solutions.

Theorem 1.2. Assume that K satisfies (A), (B), (f)p, B € [n —4,00) and the condition (i) of the

above theorem. If
Y. (=i £,
T,€K®,i(1,)<ko
then (1.1) has a solution of index < ko + 1.
Observe that the integer ko = max{i(1,), T, € K} satisfies the condition (i) of the above

Theorems. Therefore, the following two results are consequences of Theorem 1.1 and Theo-
rem 1.2.

Theorem 1.3. Assume (A), (B) and (f)p, B € [n —4,00). For generic K it holds

Nz[i- § (-1

TpEL®

4

where N is the number of solutions of (1.1).

Theorem 1.4. Under the assumptions (A), (B) and (f)g, p € [n —4,00). If

Y (=),

TpEL®

then (1.1) has at least one solution.

Our method is inspired by Bahri’s principle of critical points theory at infinity [4]. The
most important novelty of the present work is the extension of existence and multiplicity
results of [1,14] and [19], to any order of flatness larger than n — 4. The main analysis diffi-
culty in our statement comes from the divergence of integrals for  large. This leads to get
new estimates for the the associated Euler-Lagrange functional and its derivatives. Using
these estimates, we construct a suitable pseudo-gradient, completely different from the one
of [1] allowing us to describe the lack of compactness of our problem and identify the critical
points at infinity of the associated variational structure. We then use topological arguments
to prove our results. In the next section, we will state some preliminaries related to the vari-
ational structure associated to problem (1.1). In Section 3, we will study the concentration
phenomenon of the problem and identify the critical points at infinity of | and in Section 4,
we will prove our existence results.

2 Variational structure

In this section, we state some preliminary tools of the variational structure associated to (1.1).
Forae Qand A > 0, let
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A
Sar(x) = cn (W) , (2.1)

where ¢, is a positive constant chosen such that ¢, , is the family of solutions of the following
problem (see [22]):
Au=|ulisu, u>0 inR" (2.2)

Let PJ, , the unique solution of
A2P5, 5 = Gyt in O
Pda,)\ = APéa,}x =0 on 9Q).

For ¢ > 0 and p € IN*, we define the following set of potential critical points at infinity
associated to J:

uext,st, Jay,...,ap € QIN,...,Ap>¢ " and
V(p,e) = { &1, ap > 0 with[ju — 1 YF L aiPo, || <& e <e Vi#],

Aid; > e !

nﬁ()”‘*K )—1|<eVi=1,...,p.

. don
Here, d; = d(a;,0Q)) and ¢;; = (% + % + AiAjla; — a]| )2
Let w be a critical point of J in ©*. Define

V(p,e,w) = {u € ©F, s.t. there exists ap > 0 satisfying u — agw € V(p, €)

8

’U(u)ﬁ —1‘ < e}.

The following proposition describes the failure of the (P.S.)-condition of J.

Proposition 2.1 ([5,24]). Let (uy)y be a sequence in £ such that [(uy) is bounded and 0] (uy) goes to
zero. Then there exists a positive integer p, a sequence (ex) with ey — 0 as k — +oo and an extracted
subsequence of (uy)y’s, again denoted (uy )y, such that u € V(p,ex, w), Vk, where w is a solution of
(1.1) or zero.

The following proposition gives a parametrization of V(p, ¢, w).

Proposition 2.2 ([5]). For all p € IN*, there exists ¢, > 0 such that for any e < e, and any u in
V(p,e,w), the problem

p
min{”u — sziP(SHi,)\i —wag(w+h)||, a; >0,A; >0,a; € Qh € Tw(Wu(ZU))}.
i=1

admits a unique solution («, A, a, h). Thus, we can uniquely write u as follows

M‘u

a;jPd,, 5, + oo (w+h)+

where v € H3(Q) NHA(Q) N Tw(Ws( )) and satisfies

(Vo) (v,p) =0 forype {w,h,PcS,-, obo; oPo; . _ 1,.. ,p}.

8)\1- ! aai =
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Here, P5; = Pé,, ». and (-, -) denotes the inner product on H3(Q)) defined by

(u,v) :/QAMAU.

The following proposition deals with the v-part of u and shows that is negligible with
respect to the concentration phenomenon.

Proposition 2.3 ([4,5]). There is a C'-map which to each (;,a;, A;,h) such that Zle a;jPoy, ), +
ag(w + h) belongs to V(p, e, w) associates 0 = 0(w;, a;, A, h) such that  is the unique solution of the
following minimization problem

P
min {] (Z a;Po, .+ ao(w + h) + v) , U satisfies (Vo)} .

i=1

In addition, there exists a change of variables v — 0 — V such that

i=1

P p
](thiPéai,Ai + ao(w + h) +v> =] (sziP&ai,Ai +ao(w +h) +v> +IV]2.
i=1 j

The estimate of ||7|| is given in the following lemma.

Lemma 2.4 ([14, p. 3020]). There exists c > 0 independent of u such that the following holds

+4 n+4

2(?174) 1\ 2# .
n ng logsk , lfn Z 12
ol <ep L L VK@ OosA)E ] (1ogey')
= ) /\% )\ﬁ A A% ; % |
i=1LA; i i ZSkr(logskr> , ifn < 12.
k#r

We now state the definition of critical point at infinity.

Definition 2.5 ([4]). A critical point at infinity of | is a limit of a non-compact flow line u(s)
of the gradient vector field (—d]). By Propositions 2.1 and 2.2, u(s) can be written as:

u(s) =

=

@i (8)Pdg,(5),0,(5) T 0(5)-
=

Denoting by y; = lims_, 100 a;(s) and a; = lims_,1 a;(s), we then denote by

p
ZuciPé o OF (V1,00 Yp)eo
i=1

such a critical point at infinity.

3 Concentration phenomenon and critical points at infinity

In this section, we study the concentration phenomenon of the problem and we provide the
description of the critical points at infinity under (f)g-condition, g € [n —4, ).

Theorem 3.1. Assume (A), (B) and (f)p, B € [n — 4, 00). There exists a decreasing pseudo-gradient
W in V(p, €) satisfying the following
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i 4
(i) (@ (u), W(u)) < —c(Z ( mij(n,ﬁ) + |VK ) +Z€1]>/
i=1 Ai j#i
. - 4
O (e o)< g+ 58 5
1= i INall

In addition, W is bounded and the only case where Ai(s),i =1,...,p, tend to oo is when a;(s) goes to
Ye,Vi=1,...,p such that (ygl,...,ygp) e K.

The proof of Theorem 3.1 is based on the following sequence of lemmas which describe
the concentration phenomenon in particular regions of V(p,¢) and hint the concentration of
the required pseudo-gradient W. Let § > 0 small enough, setting:

4
Vi(p,e) = {u = szipé(aw) +v€V(pe), ai € B(ys,00), A\ Hai—ye [P <6,Vi=1,...,p,

i=1

with (e, ..., ys,) € /Coo},

Va(p,e) = {u = i"‘ip‘s(af,fu) +veV(pe), ai € B(ys,, po), VK(ye,) = O,/\?_4|ai —yg,.|’5 <4,
m(ye,ye) >0,Yi=1,....p, yo, #yo, Vj # i, and p(ye,, ..., ye,) < 0},
Vs(p,e) = {u = é“ipé(m,m) +veV(pe), ai € B(ys, po), VK(ye,) = O,/\?‘4|a1~ —yg].|ﬁ <9,
Vi=1,...,p, yi, #Ye;Vj #1, and there exists i1 € {1,...,p}, s.t. m(ygi],ygi]) < O},
Vi(p,e) = {u = i“ip‘s(ai,?w) +veV(pe), ai € B(ys,00), VK(ye,) =0,Vi=1,...,p,
Yo, # Yo, Vj # i, and there exists i1 € {1,...,p}, s.t. )‘:‘1174’“1‘1 — Y, F >0, },
Vs(p,e) = V(p,e) \ Ui Vi(p,e).

Lemma 3.2. There exists a pseudo-gradient Wy in Vi (p, €) such that for any u = Y.!_, a;iPég, 1) €
Vi(p, €), we have

(@] (u), Wi (1)) < —c (i (;wl4 + \VKA ) —|—Z£l]>

J#i
Wy is bounded and the concentration components A;(s) of the associated flow lines increase and go to
+oo,i=1,...,p.

Proof. Letu = Y./, a;Pé(,, 5,y € V(p,€). We increase all the A;,i = 1,...,p with respect to the
differential equation
)\i = )\i, Vi = 1,...,p.

The corresponding vector field is
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Recall that the variation of | with respect to A;,i = 1,..., p was given in ([9, Proposition 3.3])
under the so-called non-degeneracy condition. In the same way, we state here this variation
under (f)g-condition, B € [n — 4, 00). We have the following two estimates.

aPs, .
(o1, 20 )

881 n—4 H(ui,a]-)
=2coJ(u) ) wiaj ( et — ——— 1
= oA, 2 ()\i)\j)%
n _4C1 Zkzl bk(:V&) . Czn _4H(y4i’y£i) if ﬁ(]M) -
cadyy " Kt 2 A |
o A, i Blyy) > n—4
i

H(a;, a;) p
—|—O(‘tll—]/£,|.3) +o0 (]; <EZJ+W>> (Z )\d Cl],aQ)) ) (3.1)

J

and

L 9Pd,
<a]( )/ l i a)\)\>
1

agl n—4 H(ﬂi,a‘)
=2c2J(u) ) wiaj ( =T — —
J# : oA 2 (7\1'/\]')T4

iG] [ (p-] . H(a,a
cof y lmzvelT) Lo = |+olX ey + P 4) ) ) (32)
=2 A A 7 (Aidj) =

Here ¢; and ¢, are defined in the first section. The complete proof of (3.1) and (3.2) was given
in [1]. Observe that for any u € V;(p, ¢) we have

1
la; — vy |P =0 ( n_4> , as ¢ small.
Aj

dg;; —4 1 1
A= = n —+o0 e | since |a; —aj! > Po-
oA 2 (|a; —aj2Ai0)" (AiAj) T
Therefore,
_/\agl] B n—4 H(al‘,a]‘) _ n—4 |: 1 —H((,Z ﬂ):| # +o0 #
A2 (a2 e T oy ()
n—4 1 1 1
= — — HWe, ye) ToaE ol e
2| ly, —ygl" Yr ¥ (Aidj)'z (M)

n—4GWe, y,) 1
= n 4 + 0 n—4 M
2 (AT (Air)) T

Therefore,
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(9] (u), Wi (u) wig = o
121:]; : (Aidj)'z
7’1_4C 21'::1 bk(y&) _Czn_4H(yéi’y€i) If‘B(y[) —n—4
] n—4 4 i) T
cywye] T KA 2
i-1 n_4H(y€i’y£i)
2 A4

/ if‘B(y&‘) >n—4

Since J(u)m2a*K(a;) =1+0(1),Vi=1,...,p, we get

o) m(ye, ve) & mye,ye,)
)(w), Wa(w)) = —2(x) [§§ou> Loy

t
4-n 1 1 1 1
= —2J(u) = T M(ygl,...,ygp) TE T
AT A AT A

Here M(yy,, - -.,yu,) is defined in the first section. Using now the fact that p(ys,, ..., ys,) is the
least eigenvalue of M(yy,, ..., ygp), we derive that

1), Wi(w) < ~p(yiy3,) Y- 1

:1

P 1 VK
<= (£ (= )+2eq)
i=1 )\i j#i
since p(Yr,,---,Yr,) > 0, WKAM = O(A,},4) and g;; ~ ﬁ This concludes the proof of
i j AT
Lemma 3.2. : O

Lemma 3.3. There exists a pseudo-gradient W, in Va(p,€) such that for any u =Y, a;iPo,, 1)
€ Va(p, ), we have

p
wmmmwwgw(;(;4+WK )+z%)

J#i
W, is bounded and maxi<j<p Ai(s) remains bounded along the associated flow lines.

APS(, 1.
Proof. Let u =Y\ | aiP(,, 1) € Va(p,€). We set in this region W} = — Y| a;A; Pa(;’l”’). Using

the same techniques of Lemma 3.2, we have:

t
—n 1 1 1 1
<a](u),W21(u)> :2](M)4T (1/124,...,?!24) M(ygl”y‘gp) ('124,, 1124)
A Ay A Ay
1
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Lete = (e1,...,ey) € R be a unit eigenvector associated to p(yy,, ..., ye,). For 7 > 0 small
enough, we denote by B(e, ) the ball in SP~! of center e and radius vy satisfying VX € B(e, 7):

1
XM(ye,, - y0,) X' < >PWer - ye,)-

In the next, we denote by

Thus, if ﬁ € B(e,7v), we get

1), WA (w)) < 5p(yers -,

LV |v1<
i=1 i j#i

Therefore we take W, = WJ in this region as the required vector field.
If HFII & B(e,7), in this case we move HFH along the path c(t) = % Observe that
all A;,1 =1,..., p remain bounded along this path. Therefore, the Palais-Smale condition is

satisfied along this piece of flow line. Let in this case

P oPé
j (ai,Ai)
Wz(u) = E WA ———
i=1 dA;

where

le(0)l le(0)11°

Here c; and ¢; are the i’ component of ¢ and e respectively. Notice that we can choose e such
thate; > 0,Vi = 1,...,p. This is due to the fact that m(y,,y,) > 0,Vi = 1,...,p. Using the
estimates (3.1), we have

Ai =

<||FH€1 —T;  «¢i(0) < |[T]le—T,c(0) >>'

1, 0@ (CBMe,---ye,)e(t)!
() (u), Wa(u)) < | FHZat< ROIE >/t .

< —c| T

‘ t
9 (CG)M(W“""W”)CU) < —¢, see [7, p. 650]. Therefore,

lle()]2 )/f:0

(9] (u), W

(B ) ) :

j#i
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Lemma 3.4. There exists a pseudo-gradient W3 in V3(p,€) such that for any u = Zle a;iPo, 1))
€ Va(p, ), we have

@100, watw)) < —<( 35 ( gt ) D)

i=1

W3 is bounded and max, <<, Ai(s) remains bounded along the associated flow lines.

Proof. Letu =Y | ;iP5 € Va(p,€) and let iy, . .., i, be the indices such that m(y;, y;;) <O0.
We point out that the only cases where m(y,y) is negative is when B(y) = n — 4. Otherwise
m(y,y) ~ H(y,y) is therefore positive. Define

I = {i,lgigp, Ap > % min Aij} and J={1,...,p}\L

1<j<t
Let Mj = (m;j)1<;j<yy be the matrix defined by:
mii = mm(ye,ye), Vi€] and miy=mm(ye,y,), V1<izFj<4]

Observe that m;; is positive Vi € J. Thus, we can apply the arguments of Lemmas 3.2 and 3.3.
Let p(M) be the least eigenvalue of M;. Define for m > 0 and small

Wi=m <(1 + sign p(M;)) Wy <Z“ip5(ﬂi//\i)> + (1 — sign p(M;)) W, ( leipé(ﬂz‘/)\i)>)’
icJ i€]

where sign p(Mj) = 1 if p(Mj) > 0 and sign p(M;) = —1 if p(M;) < 0. Using Lemmas 3.2
and 3.3 we have

(9 (1), Wi(u)) < _C<Z<A;4+ |V§Ea")|> + ) €ij) +O< ) Sij>.

i€] jEiAjE] €] jel

Observe that our upper bound is limited to those indices i € . We must add the indices

i € I. For this let
4 apé(ai.,/\.v)

W2(u) = — Y Ay —— 0
]Zl Z] Z] aAl]

Using (3.1) and the fact that m(y;, y;,) <0,V1 <j < ¢, we get

(] (u), W3(u)) < —C( i ();4 n ‘Vlf\(aij)!> N i Y Si]-k>

Therefore, for m small, we derive that

(0] (1), Ws(u)) < _c< ZPJ (An1_4 N |Vlf\(iai)‘) N Zgi]),

where W3 (u) = Wi (u) + W2(u). O
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Lemma 3.5. There exists a pseudo-gradient Wy in Vi(p,€) such that for any u = Zle a;iPo, 1)
€ Va(p, €), we have

(0] (1), Wy(u)) < —C<Zp: <)\r.nir}(ﬁ,n) + NK > +Z£”>

i=1

Wy is bounded and max, <<, A;(s) remains bounded along the associated flow lines.

Proof. Letu = Y} a;Pd(, ) € Va(p,e). Let L= {j, 1 <j < p, AT *|a; — yy | > &}. We claim
the following:

(C) Vj1 € L, 3 a pseudo-gradient Y, such that

1 VK(
(9] (u), Yj, (u)) < —c (/\min(ﬁ,n) + | /\ah +) 5]]1) t+o (Z%) :

]'1 71 ]#]1 k#i’

The proof of (C) depends to the fourth following cases. Let i € L.
Case 1: If B(y,,) = n — 4 and A|a; — y;,| < 3. Define in this case

_ | + Ai(a; — y&)k‘ﬁxk 1 ap(s(“ir)\i)
= Zbk/n 1+ ]x| )n—H dxxi a(al.>k :

The variation of | with respect to (a;)x,1 < k < n; the k" coordinate of 4; is given by the
following two estimates:

(@100, 07. G ) = — o) ilﬁ”g < signn;— i ul(a; — il

[min(n, ‘LZ o B—j
A 1
+0 oIl V4o —
( ;; A, ) (Aﬁnm("’ﬁ )>

13811
+O<A >+O<;\A 3 > (3.3)

(@103 G ) = = (n =41 )

o Aﬁ/ 6+ i = i )l

xk 1 agz]
i j#i

See [1,9]. The last estimate yields

<a](u),Xi(u)> < _)\;4 </R |x, +(/1\ij_a‘ix_|2¥£i+)ll<a’ﬁ9€ka dx)z Lo (A ) +o <Zsl]>

j#i

since |Aik%‘gak£ o(exr), Yk # r such that |ay —ar| > po. Here k, satisfies |(a; — vy, )x,|

maxq<k<n | (4 — y¢,)x|. Using the fact that A;|a; — yy,| > 6, therefore Ajfa; — ye, | > ¢(d) > 0.

We obtain ,
/ |xk, + Ai(ai — ye )i, [P, i) >c
; (1+ [x[2)r+T
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and thus

(a1), Xi(w))

An 4 +o (281]>
j#i

_C<A;"l4 +\VI<AE ) (;s,]>

This is comes from the fact that |VK(a;)| = O(|a; — yg,|[P71).

IN

OPS ;. 5.
To add — );; €;; to the upper bound of the last estimates, we define Z;(u) = —a;A; g%’m .

Using (3.1) and

0¢;i C
/\ia—)z ~ —cg;jj, Vi#j, such that |a; —a;| > po,
we get
1
<a](”)/zi(”)> —c) & +0 (An 4>
i#i
Therefore,
1 VK
(31(u), Xiu) + mZi(u)) < —c —= + VK@) ye) w0 Lo ),
Af Ai j#i k#r

for m small enough.

Case 2: If B(y;,) = n — 4 and Aj|a; — y,,| > 3. In this case we define:

N n ) 1 9P6 g, 5,
Xi(u) = a; Y by sign (a; — ye, )i Y a((a) )

Using (3.3), we have

(3100 1) = chz|>|+o<'§wi—Ay;A“>+o(A)+o(zek,)

5=2 k#r
Using the fact that
oy, B F— . |PL
w _ 0(“11%4"), Vs > 2, as 6 small, (3.5)
; i
oy, |B-1
1_, lai =yl , asJsmall, (3.6)
AP Ai
1

we get
<8](u) X(u)> < —CM + 0( Y e >
7 AN = )\ kr
k#r
Now using Z;(u) be the vector field defined in the first case and (3.2), we have:

(3)(w), Zi(u)) < _czsij+o<fw> +O<Alf?> +O<Zsk,>.

j#i s=2 k#r
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By (3.5) and (3.6), we have:
A B-1
<a](u),Zi(u)> < —chij +o0 (W) + o( Z ekr> .
j#i ! k#r

Therefore,

<B](u), i(u) +Zi(u >—_C<ZSU W|)+O<Z€k7>.

jF#i Ai k#r

Using again (3.5) and (3.6) and the fact that |[VK(a;)| ~ |a; — v, [P, we get

<a](u), (1) + Zi(u > —C(Zsz] A”14 IVI;( >+o<):sz<r>

j#i k#r

Case 3: If B(y,,) > n — 4. We use X;; the vector field defined in the second case. We have:

2 [min(n,B)] a |B—s
(81(u), Ri(w) ) < chz W)"‘ +o< y |1yfl’>+o< ﬂ>+o<zekr>
s=2 % Al k#r
Observe that ; b1
R —S R -
mi/ff' :o(W) Vs > 2, as A — +co. (3.7)
i i
Indeed,
RS S W\ G
A la; —yo, [P o=y lP70 N6/ 1=t
In the same way, we have:
. -1
iﬁ - 0(M> as A — oo, (3.8)
Al Ai
. B—-1
% = o(W), as A — +oo. (3.9)
i i

Therefore,
. a;i — Yo )x|P7!
(210, Zi(u) ) < —e Vel o( )y ekr>.
1 k#r
Now let Z; be the vector field defined in the above cases. By using (3.2), (3.7) and (3.8), we

have: <a](u),Zi( > —chljJro('Z )I{zl )+0<Z€kr>

j#i kr

Therefore, we get

(810, ¥iw)) < —C(Zeu minﬁ“wﬁ( >+<2>

j#i k#r

where Y;(u) = X;(u) + Z;(u). Hence claim (C) follows.
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Let us denote by Afz = min;¢y, A? and define
7ol B 1.8
L= ],1_]_p,)\j_§}ti0 .

We have:

<a””%zjyxu)>55_C<23<AmJWn>+|V€$m”)'+‘2:‘QO'+O<238”>'

iel = ieL,j#i k#r

Using the preceding computation, we have for m > 0 and small:

<a](u),ZYi(u) +m Yy Zi(u)> < —C<Z <)\?ﬁr}(ﬁ,n) + WI; ) + ) 81])+0< Eekr>

el icL\L ieL i€L,j#i kr

Observe now that 1 = ):iﬁ ;P 5, € Vz-(ttfc,e),i = 1,2,3, (defined in the above lemmas).
Let W(u) = W;(i1) where W (i7) is the corresponding vector field in V;(4L¢, ¢). It satisfy:

<a](u),17v(u)> < _C(Z (Ami(ﬁn) I |V§(j¢i)|> + Y 8ij> +O( Y €ij>.

i¢L i,j¢L,j#i i¢Ljel

For m > 0 and small, setting

W, (1) = W (u )+ Y Yi(u)+m Y Zi(u),
ieL i€L\L

we have

i=

<8](u),Wu(u)>S—C<Zp;<Amij(ﬁ,n)+’VK >+28”> -

Lemma 3.6. There exists a pseudo-gradient W5 in Vs(p,¢) such that for any u = Zle a;iPo, 2,
€ Vs(p, ), we have

(9] (1), Ws(u)) < —C< i (Amij(ﬁ,n) + Wil > +Z€”>

i=1 j#Ei

Ws is bounded and maxi<j<p Ai(s) remains bounded along the associated flow lines.

Proof. We divide V5(p, €) into two regions:

i=1

4
Ry = {u = Z“im(ai,A,-) € V(p,e),a; € B(ys,p0), VK(y,,) =0,Vi=1,...,p

and there exists j # i such that y,, = yy, },

R, = {u = th iPoa, 0y € V(p,e), Ji, 1<i<p, a; & Uyvky)—oBY, po)
i=1

We will give the construction of W5 in Ry. The construction in R; proceeds under the assump-
tion (A) asin [9]. Letu = Y/, 2;Pé,, 2,y € Ry. To any index i,i = 1,...,p, we define

Bi={j,1<j<p, aj € B(ys,p)}
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We suppose that B, , ..., B;, are the sets such that §B; > 1,Vk=1,...,/. Let ¢ : R — R be a
smooth positive function such that

p(t) =0 if|t| <,
(1) =1 it >n.

Here 7 is a small positive function. For j € B;, define:

w= T o(3)

Setting
¢ i APs.,
Wha) = = ¥ & ad(apn— .
k=1j€B;, i

Using (3.2) we obtain
¢ [min(B,n)] |a, _ y€_|ﬁfs
<a](u),w51(u)> <cy (2 H(A ]aA + Y o( y ).
JE€B;, s=1 ]

For j € B;, such that ¢(A;) # 0, there exists iy # j € B;, such that
1 1
7 =o(gj;,) and SV o(gji,)-
i ]

Observe that if i € Bfk, then [a; — a;| > po. Therefore,

de €ij 8
)\] a/\ < C81‘]' and )\1 a)& CEZ']'.
Thus,
[min(B, |IZ y ‘|/S—s
- j l
<a]( ) > CZ(Z(P( (Zgl] mmﬁn>+zo< Z /\s]> '
j€EB ] j€B s=1 ]
Let jo denote the index such that
min(n,f) min(#, ‘B) .
A]-O = min {/\Z 1<i< p}.
We have two cases:
mm(n B)

Case 1: There exists j € B; ,k = 1,...,¢, with $(A ) # 0 such that > m, where m is a

mm ~ min(1,8)
]
fixed positive constant small enough. In this case we get:

n(Bn) ’g “5‘5
<8](u), > CZ< mmﬁn +2817>+Z ZO< Z ])%SE/>
1jeB s=1 ]
Therefore,

P p 7
<a]<”)'W§(“) +m in(“)> < ¢ (Z (Amij(ﬁ,n) - Wi(i lﬂ) +Z€zj> ,

i=1 i=1 i#]
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for m; > 0 small enough.

mm(n B)
Case 2: Vj € B,k =1,...,{, we have W < m or if there exists j € B; ,k = 1,...,¢{, with
min(n,B) i
)\ .
A]anﬁ > m we have ¢(A;) = 0. Define

]

A;nin(n/.B) 1 B ¢ c

E= k/ /\min(n,ﬁ) < a U {kl (P(Ak) - O} U (UkilBik) .
Jo

For all k # j € E, we have ax € B(yy,p0) and a; € B(ys, po) with y,, # yg. Let @ =

Yice aiPd,, z,. 1 lies in V;(4E,¢),i = 1,2,3,4, (defined in the above lemmas). We denote W; the
related vector field in V;($E, ¢). We have:

(37(u), Wiu)) < ~c (_Z (Am}(ﬁm n |V1f\<iﬂi>‘> Y 817) +0 ( )3 si]-> .

i€E i i#j,i,jeE icE,j¢E
Therefore
2o P 1 |VK
(ort, waw) < mown) + £ 5000 ) < e (£ (S + 7520 ) £ ) -
i=1 Ai ’ i#j
Proof of Theorem 3.1. It follows from Proposition 2.3 and Lemmas 3.2-3.6. ]

Corollary 3.7. Under the assumptions (A),(B) and (f)p, B € [n —4,00), the critical points at
infinity in V(p,€),p > 1 are

p
Jeoeoy = 7”_1)(5 00) 7
Wty ) 1= 1 Kigo )= ot
where (Yo, - .., Ye,) € K. Theindex of (Yo, -, Ve, oo 18 i(Yers - Y1, )oo = p— 1+ X0 n—i(ys,).

The following result exclude the possibility of existence of critical points at infinity in
V(p,e,w) when w # 0.

Theorem 3.8. Let w be a critical point of | in %7, Assume (A), (B) and (f)p, B € (%52, 00). There
exists a decreasing pseudo-gradient W on V (p, e, w) satisfying the following

(i) 4
(@1(u), W(w)) < —c (2( AL ’) F¥e) +h2)
i=1 \ A.? ! j#i

1

.. 7 P a
(i) <a](u+z7),W(u) +a(ai’aw(w<u))> < _c<i; (Al + !VIj(i z)!> +];gij+ ||h||z>.

(iii) W is bounded and all A;'(s),i =1,...,p, decrease along the W flow lines.

Proof. The proof of Theorem 3.8 proceeds exactly as the one of Theorem 3.1 of [14]. O
As a consequence of Theorem 3.8, we have the following result.

Corollary 3.9. Under the assumptions of Theorem 3.8, there is no critical points at infinity of | in
V(p, e w).
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4 Proof of results

Assume that K satisfies (A), (B) and (f)p, B > n—4. For any 7, = (y¢,...,ys,) € K%, we
denote 7, , = (Y,,---,Y¢,)e the corresponding critical point at infinity. The dimension of

the unstable manifold at infinity W, (1) of 75 is equal to i(Ty)eo = p — 1+ Yign—i (ve,)-
Define

Y = U Wi (Tp) o
TpE’Coo, i(Tp)mSkg
Y is a manifold in dimension less or equal to ko in . For simplicity, we assume that Yy is
in dimension ky. For A >> 1 and vy € Y,?;’ we set

Ore : [0,1] x Y2 — Z7F
_ sv4(1—s)vg
Iso+ (1 = s)ool|

Therefore, ©, 5, ([0, 1] x Y{*) is a contraction of Y? in ¥ of dimension ko + 1. @, 4,([0, 1] x Y{°)
can be deformed by using the gradient flow-lines of J. Once the possibility of existence of
mixed critical points at infinity of | is excluded, see Corollary 3.9, the only critical points
at infinity of | are (. where Ty € K. Observe that by a dimension argument, the stable
manifold at infinity of each 7, of index larger or equal to ko + 2 can be avoided along such a
deformation. Therefore, by the deformation lemma of Bahri and Rabinowitz [6] we have

(5,0) = Ony(s,0)

Or,([0,1] X Yg7)  retracts on U Wi (Tp)eo U U Wy(w).  (4.1)
T K, i(Tp) oo <ko+1 9] (w)=0, i(w)<ko+1

Observe that from the deformation retract (4.1) and from the condition (i) of Theorems 1.1
and 1.2, the functional | admits at least a critical point w in 7. Otherwise, it follows from
(4.1) that:

@0, ([0,1] X V') retracts on Y.

By applying the Euler-Poincaré characteristic, we get
1=y -y
T, €K, i(Ty)e0<ko

which is a contradiction. This completes the proof of Theorem 1.2 and therefore the proof of
Theorem 1.4.

Now for generic K, we can assume that all the critical points of | are non degenerate.
This is a consequence of the Sard-Smale Theorem, see [23]. By applying the Euler-Poincaré
characteristic on each manifold of (4.1), we obtain under the condition (i) of Theorem 1.1

- Y (@4 Yy (-1,

1,eK%,i(t,) <ko 3J(w)=0,i(w) <k +1
where i(w) is the Morse index of | at w. Thus,
N >|1— Y (1)@
T,€K%,i(Ty) <ko

This finishes the proof of Theorem 1.1 and therefore the proof of Theorem 1.3.
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