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Abstract. This paper is concerned with the existence of positive even homoclinic solu-
tions for the p-Laplacian equation

(|u′|p−2u′)′ − a(t)|u|p−2u + f (t, u) = 0, t ∈ R,

where p ≥ 2 and the functions a and f satisfy some reasonable conditions. Using the
Mountain Pass Theorem, we obtain the existence of a positive even homoclinic solution.
In case p = 2, the solution obtained is unique under a condition of monotonicity on
the function u 7−→ f (t,u)

u . Some known results in the literature are generalized and
significantly improved.
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1 Introduction

In this paper, we study the existence of positive even homoclinic solutions for the p-Laplacian
equation

(|u′|p−2u′)′ − a(t)|u|p−2u + f (t, u) = 0, t ∈ R, (1.1)

where p ≥ 2. We assume that

(H0) a ∈ C1(R, R), f ∈ C(R×R, R) is continuously differentiable with respect to the first
variable and there exist constants a0, A such that 0 < a0 ≤ a(t) ≤ A. Moreover, a(−t) =
a(t), f (−t, u) = f (t, u) and ta′(t) > 0, t ft(t, u) < 0 for t 6= 0, u > 0.

By a solution of (1.1), we mean a function u ∈ C1(R, R) such that (|u′|p−2u′)′ ∈ C(R, R)

and equation (1.1) holds for every t ∈ R. We say that a solution u of (1.1) is a nontrivial
homoclinic solution (to 0) if u 6≡ 0, u(t)→ 0 and u′(t)→ 0 as |t| → ∞.

When p = 2, equation (1.1) reduces to the second order differential equation

u′′ − a(t)u + f (t, u) = 0, t ∈ R, (1.2)
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which is a generalization of

u′′ − a(t)u + b(t)u2 + c(t)u3 = 0, t ∈ R. (1.3)

The existence of a nontrivial positive homoclinic solution of equation (1.3) follows from
[7], where the coefficients are either even or periodic. In the case of evenness and under the
following conditions mainly

0 < a < a(t), 0 ≤ b ≤ b(t) ≤ B, 0 < c ≤ c(t) ≤ C, for all t ∈ R, (1.4)

with a, b, c, B, C are real constants and

ta′(t) > 0, tb′(t) ≤ 0, tc′(t) < 0 for all t 6= 0,

the authors proved the existence of a unique nontrivial even positive homoclinic solution by
using variational approach. Their result extends the existence theorem established earlier by
Korman and Lazer in [10], where b(t) is identically zero. It is well known that equation (1.3)
plays a key role in biomathematics models suggested by Austin [1] and Cronin [3] to describe
an aneurysm of the circle of Willis. Also, equation (1.1) was considered, recently in [17], in
the special case where f (t, u) = λb(t)|u|q−2u, with 2 ≤ p < q, λ > 0 and the functions a and
b are strictly positive and even.

During the last decades the study of homoclinic solutions for the p-Laplacian equation
(1.1) and the more general Hamiltonian system

d
dt
(|u̇(t)|p−2u̇(t))− a(t)|u|p−2u +∇V(t, u(t)) = 0, t ∈ R,

where p > 1, V ∈ C1(R×RN , R), has been investigated by many authors with various non-
linearities (see [4, 9, 12, 16, 17] and references therein). Whereas, the existence results for even
homoclinics are scarce. Moreover, the question of uniqueness is treated only in limited cases
(see [2, 18]) and frequently remains open.

Motivated by the above works mainly, in this paper, we study the existence of positive
even homoclinic solution for the p-Laplacian equation (1.1). This will be done under assump-
tions less restrictive than the so-called Ambrosetti–Rabinowitz superquadraticity condition.
In particular, the nonlinearity f may vanish and change sign. Also, the inequalities in (1.4)
may be dropped. On the other hand, since our approach is based on critical point theory,
more efforts have to be paid to guarantee the uniqueness of the solution. In this direction, we
establish some criteria to ensure the uniqueness of the homoclinic solution obtained for (1.2).
To the best knowledge of the authors it is the first time where uniqueness of even homoclinic
solutions for second order differential equations with general nonlinearity is considered.

Our main results are the following.

Theorem 1.1. Under the assumptions (H0) and

(H1) f (t, u) = o(|u|p−1) as |u| → 0 uniformly in t,

(H2) there exists µ > p such that

µF(t, u) ≤ f (t, u)u, ∀ t ∈ R, u ≥ 0,

where F(t, u) =
∫ u

0 f (t, s)ds,
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(H3) F(t0, u0) > 0 for some t0 ∈ R and u0 > 0,

the equation (1.1) has at least one positive nontrivial homoclinic solution. Moreover this solution is an
even function with u′(t) < 0 for t > 0.

Example 1.2. Let
f (t, u) = (e−t2 − 1)u2 + u3, ∀ (t, u) ∈ R2.

It is easy to see that the function f satisfies all the assumptions of Theorem (1.1) with p = 2
and µ = 3 but does not satisfy neither the (AR)-condition nor the condition (1.4) above. Hence
Theorem (1.1) extends the results in [7, 10, 17] mainly.

In case p = 2, we have the following result.

Theorem 1.3. Under the assumptions (H0)–(H3) and

(H4) for a.e. t ∈ R, the function u 7→ f (t,u)
u is increasing on ]0,+∞[,

the homoclinic solution obtained above for equation (1.2) is unique.

2 Preliminary results

We shall obtain a solution of (1.1) as the limit as T → ∞ of the solutions of{
(|u′|p−2u′)′ − a(t)|u|p−2u + f (t, u) = 0, t ∈ (−T, T)

u(−T) = u(T) = 0.
(2.1)

For each T ≥ 1, we define the Sobolev space

ET =
{

u ∈W1,p((−T, T), R) : u(−T) = u(T) = 0
}

,

endowed with the norm

‖u‖ =
(∫ T

−T
(|u′(t)|p + |u(t)|p)dt

) 1
p

.

To prove our theorems we need the following theorem introduced in [14]:

Theorem 2.1 (Mountain Pass Theorem). Let E be a real Banach space and I ∈ C1(E, R) satisfy
(PS)-condition. Suppose that I satisfies the following conditions:

(i) I(0) = 0;

(ii) there exists ρ, α > 0 such that I|∂Bρ(0) ≥ α;

(iii) there exists e ∈ E\Bρ such that I(e) ≤ 0, where Bρ(0) is an open ball in E of radius ρ centered
at 0;

then I possesses a critical value c ≥ α. Moreover, c can be characterized as

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where
Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e} .
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Proposition 2.2 ([17]). Let u ∈W1,p
loc (R). Then:

(1) If T ≥ 1, for t ∈ [T − 1
2 , T + 1

2 ],

max
t∈[T− 1

2 ,T+ 1
2 ]
|u(t)| ≤ 2

p−1
p
( ∫ T+ 1

2

T− 1
2

|u′(s)|p + |u(s)|pds
) 1

p
. (2.2)

(2) For every u ∈W1,p
0 (−T, T),

‖u‖L∞(−T,T) ≤ 2‖u‖. (2.3)

Lemma 2.3. Let p ≥ 2, u ∈ C1(R) and (|u′|p−2u′)′ ∈ C(R). Then

(|u′(t)|p)′ = p
p− 1

(|u′(t)|p−2u′(t))′u′(t). (2.4)

Proof. Let
(|u′(t)|p)′ = p|u′(t)|p−2u′(t)u′′(t), (2.5)

on the other hand, one has

(|u′(t)|p)′ = (|u′(t)|p−2u′(t)u′(t))′ = (|u′(t)|p−2u′(t))′u′(t) + (|u′(t)|p−2u′(t))u′′(t). (2.6)

Combining (2.5) with (2.6), we establish (2.4).

Let us consider the problem{
(|u′|p−2u′)′ + g(t, u) = 0, t ∈ (−T, T)

u(−T) = u(T) = 0,
(2.7)

where g ∈ C1([−T, T]×R+) and satisfies

g(−t, u) = g(t, u), t ∈ (−T, T), u > 0,

g(t, 0) = 0, t ∈ (−T, T)

tgt(t, u) < 0, t ∈ (−T, T) \ {0}, u > 0.

(2.8)

The following lemma is an extension of Lemma 1 of [11] for p-Laplacian nonlinear equations.

Lemma 2.4 ([17]). Assume that g ∈ C1([−T, T]×R+) satisfies (2.8). Then any positive solution of
(2.7) is an even function such that max{u(t),−T ≤ t ≤ T} = u(0) and u′(t) < 0 for t ∈ (0, T).
Moreover, any two positive solutions of (2.7) do not intersect on (−T, T)

(
and hence they are strictly

ordered on (−T, T)
)
.

Proposition 2.5. Under the assumptions (H0)–(H3), the problem (2.1) possesses a nontrivial positive
solution uT for any T ≥ 1. Moreover, there exist constants K, c > 0, such that

(i) ∫ T

−T
(|u′T(t)|p + |uT(t)|p)dt ≤ K, ∀ T ≥ 1, (2.9)

(ii)
uT(0) > c, ∀ T ≥ 1. (2.10)
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Proof. Consider the modified problem{
(|u′|p−2u′)′ − a(t)|u|p−2u + f (t, u+) = 0, t ∈ (−T, T)

u(−T) = u(T) = 0,
(2.11)

where u+ = max(u, 0). By (H1), we have f (t, 0) = 0 for all t ∈ R. So, analogously to [5, 17], it
is easy to see that solutions of (2.11) are positive solutions of (2.1).
To prove the existence of a solution to (2.11), we consider the functional IT defined on ET by

IT(u) =
1
p

∫ T

−T

(
|u′(t)|p + a(t)|u(t)|p

)
dt−

∫ T

−T
F(t, u+(t))dt, (2.12)

for all u ∈ ET. It is well known that under the assumptions of Theorem (1.1), IT ∈ C1(ET, R)

and

I′T(u).v =
∫ T

−T

(
|u′(t)|p−2u′(t)v′(t) + a(t)|u(t)|p−2u(t)v(t)

)
dt−

∫ T

−T
f (t, u+(t))v(t)dt, (2.13)

for all u, v ∈ ET.

Step 1: The functional IT satisfies the (PS)-condition.
Let {uj} ⊂ ET be such that IT(uj) is bounded and I′T(uj) → 0 as j → +∞. Then, by (H2),

(2.12) and (2.13), there exists a constant MT > 0 such that

MT + ‖uj‖ ≥ µIT(uj)− I′T(uj)uj

= (
µ

p
− 1)

∫ T

−T

(
|u′j(t)|p + a(t)|uj(t)|p

)
dt +

∫ T

−T

(
f (t, u+

j )u
+
j − µF(t, u+

j )
)

dt

≥ â
µ− p

p
‖uj‖p,

where â = min{1, a0}. Since µ > p, then the sequence {uj} is bounded in ET. By the compact
imbedding ET ⊂ C[−T, T], there exists u ∈ ET and a subsequence of {uj}, still denoted by
{uj} such that

uj ⇀ u in ET, (2.14)

uj → u in C[−T, T]. (2.15)

From equation (2.13), one has

(I′T(uj)− I′T(u)).(uj − u) =
∫ T

−T

(
|u′j(t)|p−2u′j(t)− |u′(t)|p−2u′(t)

)
(u′j − u′)dt

+
∫ T

−T
a(t)

(
|uj(t)|p−2uj(t)− |u(t)|p−2u(t)

)
(uj − u)dt

−
∫ T

−T

(
f (t, u+

j )− f (t, u+)
)
(uj − u)dt.

(2.16)

Since I′T(uj)→ 0 as j→ +∞, we have

lim
j→+∞

(I′T(uj)− I′T(u)).(uj − u) = 0 (2.17)

and by continuity of f and (2.15), we have

lim
j→+∞

∫ T

−T

(
f (t, u+

j )− f (t, u+)
)
(uj − u)dt = 0. (2.18)
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For any ξ, η ∈ R; we have the following inequality (see Remark 3.2 in [15])

(|ξ|p−2ξ − |η|p−2η)(ξ − η) ≥ 2
p
|ξ − η|p
2p−1 − 1

, p ≥ 2.

By the last inequality, one has(
|u′j(t)|p−2u′j(t)− |u′(t)|p−2u′(t)

)
(u′j(t)− u′(t))

+ a(t)
(
|uj(t)|p−2uj(t)− |u(t)|p−2u(t)

)
(uj(t)− u(t))

≥ 2
p(2p−1 − 1)

|u′j(t)− u′(t)|p + a
2

p(2p−1 − 1)
|uj(t)− u(t)|p

≥ 2â
p(2p−1 − 1)

(
|u′j(t)− u′(t)|p + |uj(t)− u(t)|p

)
.

This coupled with (2.16)–(2.18), implies

lim
j→+∞

‖uj − u‖p ≤ 0.

So uj → u in ET.

Step 2: Obviously IT(0) = 0. Furthermore, in view of (H1), we see that,

F(t, u) = o(|u|p) as |u| → 0, uniformly in t ∈ R,

that is, there exists δ ∈ (0, 1) such that

F(t, u) ≤ a0

2p
|u|p, for |u| ≤ δ. (2.19)

Letting ρ := δ
2 and u ∈ ET, such that ‖u‖ = ρ, then 0 < ‖u‖∞ ≤ δ.

By (2.19), we have

IT(u) =
∫ T

−T

1
p

(
|u′(t)|p + a(t)|u(t)|p

)
dt−

∫ T

−T
F(t, u+)dt

≥ 1
p

∫ T

−T
|u′(t)|pdt +

a0

2p

∫ T

−T
|u(t)|pdt

≥ â
2p
‖u‖p =

â
2p

ρp =: α > 0.

Hence, the functional IT satisfies the condition (ii) of the Mountain Pass Theorem.

Step 3: Firstly, without loss of generality, we may assume u0 = 1 in (H3). Then, by the
continuity of F, there exist constants c1 > 0, η > 0 such that

F(t, 1) ≥ c1, ∀t ∈ [t0 − η, t0 + η]. (2.20)

On the other hand, by (H2), it’s easy to check that

F(t, u) ≥ F(t, 1)uµ, ∀t ∈ R, u ≥ 1. (2.21)

Combining (2.20) and (2.21), one obtains

F(t, u) ≥ c1uµ − c2, ∀t ∈ [t0 − η, t0 + η], u ≥ 0, (2.22)
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where c2 = max{|F(t, u)− c1uµ|; 0 ≤ u ≤ 1, |t− t0| ≤ η}.
Now, let û ∈ E be given by

û(t) =

{
cos[ π

2η (t− t0)], if t ∈ [t0 − η, t0 + η];

0, if t ∈ [−T, T]\[t0 − η, t0 + η].
(2.23)

Then, for all s > 0 we have by (2.22),

I(sû) =
sp

p
‖û‖p −

∫ t0+η

t0−η
F(t, sû)dt

≤ sp

p
‖û‖p − c1sµ

∫ t0+η

t0−η
ûµ(t)dt + 2c2t0.

Since µ > p then I(sû) < 0 = I(0) for some s > 0 such that ‖sû‖ > ρ, where ρ is defined
in Step 2. So, the functional IT satisfies all the conditions of the Mountain Pass Theorem and
therefore there exists a solution uT ∈ ET such that

cT = IT(uT) = inf
w∈ΓT

max
ξ∈[0,1]

IT(w(ξ)), I′T(uT) = 0, (2.24)

where
ΓT = {w ∈ C([0, 1], ET) : w(0) = 0, w(1) = sû}.

Using the variational characterization (2.24), we have

cT ≥
â
p

ρp > 0.

Hence, uT is a nontrivial positive solution of (2.1). Moreover, by Lemma (2.4), one gets

max
−T≤t≤T

uT(t) = uT(0) and u′T(t) < 0, ∀ t ∈ (0, T).

Step 4: Uniform estimates.
Let T1 ≥ T ≥ 1. By continuation with zero of a function u ∈ ET to [−T1, T1], we have ET ⊂

ET1 and ΓT ⊂ ΓT1 . Using the variational characterization (2.24), we infer that cT1 ≤ cT ≤ c1

and then ∫ T

−T

( 1
p
(|u′T(t)|p + a(t)|uT(t)|p)− F(t, uT)

)
dt ≤ c1,

therefore, by (H2)∫ T

−T

1
p

(
|u′T(t)|p + a(t)|uT(t)|p

)
dt ≤

∫ T

−T
F(t, uT)dt + c1,

≤ 1
µ

∫ T

−T
f (t, uT)uTdt + c1.

(2.25)

Multiplying the equation (2.1) by uT and integrating by parts, we get∫ T

−T
(|u′T(t)|p + a(t)|uT(t)|p)dt =

∫ T

−T
f (t, uT)uTdt. (2.26)

Using (2.26) in (2.25), we obtain

c1 ≥
(

1
p
− 1

µ

) ∫ T

−T
(|u′T(t)|p + a(t)|uT(t)|p)dt ≥ â(µ− p)

µp
‖uT‖p, (2.27)
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which gives (2.9) with K = c1µp
â(µ−p) .

Step 5: It remains to show that there is a constant c > 0 such that

uT(0) > c uniformly in T. (2.28)

With this aim, we introduce the “energy function” for t ≥ 0 (where uT(t) ≥ 0), by

E(t) =
p− 1

p
|u′T(t)|p −

a(t)
p
|uT(t)|p + F(t, uT(t)).

Differentiating E(t) and using (2.11), (2.4) and (H0), we obtain

E′(t) = − 1
p

a′(t)|uT(t)|p + Ft(t, uT(t)) ≤ 0 for all 0 ≤ t ≤ T.

Hence
E(0) ≥ E(T) =

1
p
|u′T(T)|p ≥ 0.

Since uT(t) is even, u′T(0) = 0, then

E(0) = − a(0)
p
|uT(0)|p + F(0, uT(0)) ≥ 0,

which implies

F(0, uT(0)) ≥
a(0)

p
|uT(0)|p,

and consequently
F(0, uT(0))
|uT(0)|p

≥ a(0)
p

. (2.29)

On the other hand, by (H1), one gets

F(t, u)
|u|p → 0 as |u| → 0, uniformly in t. (2.30)

Comparing (2.29) with (2.30), we obtain the estimate (2.28).

3 Proof of Theorem 1.1

Take Tn → ∞ and consider the problem (2.11) on the interval (−Tn, Tn),{
(|u′|p−2u′)′ − a(t)|u|p−2u + f (t, u+) = 0, t ∈ (−Tn, Tn)

u(−Tn) = u(Tn) = 0.
(3.1)

Let un be the solution of (3.1) given by Proposition 2.5 and extended by zero outside the
interval [−Tn, Tn].

Claim 1: Arguing as in [17], we see that the sequence (un)n admits a subsequence, still denoted
by (un)n, that converges to a certain function u in C1

loc(R). Hence, we can pass to the limit in
the equation (3.1), and we conclude that u(t) solves (1.1). Moreover, we have∫ +∞

−∞
(|u′(t)|p + |u(t)|p)dt < ∞. (3.2)
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Since by Lemma 2.4 the functions un(t) are even, with the only maximum at t = 0, the same
is true for their limit u(t). That u′(t) < 0 for t > 0 is easily seen by differentiating (1.1) (a
similar argument can be found in [11]).

Claim 2: We will prove that u(t) is nonzero and u(±∞) = u′(±∞) = 0.
Firstly, by (2.28), there is a constant c > 0 such that

un(0) > c uniformly in n ∈N. (3.3)

By passing to the limit as n→ ∞ in (3.3), we obtain

u(0) ≥ c > 0,

which implies that u is not identically zero. Moreover, from (3.2) and Proposition 2.2, it follows

lim
Tn→±∞

max
t∈[Tn− 1

2 ,Tn+
1
2 ]
|u(t)| ≤ lim

Tn→±∞
2

p−1
p
( ∫ Tn+

1
2

Tn− 1
2

|u′(t)|p + |u(t)|pdt
) 1

p
= 0, (3.4)

so u(±∞) = 0.
Next we prove that u′(+∞) = 0 (the arguments for u′(−∞) = 0 are similar). By the

assumptions (H0), (H1) and equation (1.1) there exists M > 0 such that∣∣∣(|u′(t)|p−2u′(t)
)′∣∣∣ ≤ M, ∀ t ∈ R.

If u′(+∞) 6= 0, there exist ε1 > 0 and a monotone increasing sequence tk −→ +∞ such that
|u′(tk)| ≥ (2ε1). Then for t ∈ [tk, tk +

ε1
M ], one has

|u′(t)|p−1 =
∣∣∣|u′(tk)|p−2u′(tk) +

∫ t

tk

(
|u′(s)|p−2u′(s)

)′
ds
∣∣∣

≥ |u′(tk)|p−1 −
∫ tk+

ε1
M

tk

∣∣∣(|u′(s)|p−2u′(s)
)′∣∣∣ds

≥ 2ε1 −
ε1

M
M = ε1,

which is in contradiction with (3.4).

4 Proof of Theorem 1.3

Let v be another positive solution of (1.2) (which is also an even function with the only maxi-
mum at t = 0). Multiplying both sides of (1.2) by v and integrating by parts on R we get∫ +∞

−∞

[
− u′v′ − a(t)uv + f (t, u)v

]
dt = 0. (4.1)

Also, we have ∫ +∞

−∞

[
− u′v′ − a(t)uv + f (t, v)u

]
dt = 0. (4.2)

Subtracting (4.2) from (4.1), we get∫ +∞

−∞

[ f (t, u)
u
− f (t, v)

v

]
uvdt = 0.
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It follows from (H4) that u and v cannot be ordered, and so they have to intersect. By the
existence-uniqueness theorem for initial value problems, two cases are possible: either u and
v have at least two positive points of intersection, or only one positive point of intersection.

Assume first ξ1 > 0 is the smallest positive point of intersection and ξ2 > ξ1 the next
one, and u(t) < v(t) on (ξ1, ξ2). Multiply the equation (1.2) by u′ and integrate from ξ1 to
ξ2. Denoting by t = t1(u) the inverse function of u(t) on (ξ1, ξ2). Also, denoting by g(t, u) =
−a(t)u + f (t, u), and u1 = u(ξ1) = v(ξ1), u2 = u(ξ2) = v(ξ2), we get

1
2

u′2(ξ2)−
1
2

u′2(ξ1) +
∫ u2

u1

g(t1(u), u)du = 0, (4.3)

Doing the same for v(t), and denoting its inverse on (ξ1, ξ2) by t = t2(v), we obtain

1
2

v′2(ξ2)−
1
2

v′2(ξ1) +
∫ u2

u1

g(t2(v), v)dv = 0, (4.4)

Subtracting (4.4) from (4.3), we get

1
2

(
u′2(ξ2)− v′2(ξ2)

)
+

1
2

(
v′2(ξ1)− u′2(ξ1)

)
+
∫ u1

u2

[
g(t1(u), u)− g(t2(u), u)

]
du = 0, (4.5)

Note that u2 < u1 and t2(u) > t1(u) for all u ∈ (u2, u1). Since g(t, u) is decreasing in t, then∫ u1

u2

[
g(t1(u), u)− g(t2(u), u)

]
du ≤ 0. (4.6)

On the other hand , it is easy to see that

u′(ξ1) ≤ v′(ξ1) ≤ 0, v′(ξ2) ≤ u′(ξ2) ≤ 0,

which imply
1
2

(
u′2(ξ2)− v′2(ξ2)

)
+

1
2

(
v′2(ξ1)− u′2(ξ1)

)
< 0. (4.7)

Combining (4.6), (4.7) with (4.5) we obtain a contradiction, which rules out the case of two
positive intersection points. If ξ1 is the only intersection point, we integrate from ξ1 to ∞,
obtaining a similar contradiction. Uniqueness of the solution follows.
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