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1 Introduction

In this paper, we consider the existence of weak solutions in weighted Sobolev spaces for the

singular quasilinear elliptic equation







Lu = λJuρ + f(x, u)ρ − G, in Ω,

u = 0, on ∂Ω,
(1.1)

where

Lu = −

N
∑

i,j=1

Di(p
1
2

i p
1
2

j aij(x)Dju) + a0(x)qu, (1.2)

and λJ (J > 1) is J-th eigenvalue of the operator (1.2) of multiplicity J1.

Equation (1.1) is singular arises from the fact that Ω may be unbounded or that pi may equal

zero or infinity on part or all of the boundary of Ω.

Working in Sobolev spaces, there are many existence results for linear or quasilinear elliptic

equation. For example, we can refer to [1]-[4]. However, there are seem to be relatively few papers
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that consider the quasilinear elliptic equations in weighted Sobolev spaces, because the compact

embedding theorem cannot be obtained easily.

In 2001, V.L. Shapiro[5] established a new weighted compact Sobolev embedding theorem, and

proved a series of existence problems for weighted quasilinear elliptic equations and parabolic

equations.

In 2005, working in Sobolev space H1
p,ρ(Ω, Γ) only for the first eigenvalue, A. Rumbos and V.

L. Shapiro[6] on the basis of [7] by using the generalized Landesman-Lazer conditions[8] discussed

the existence of the solutions for weighted quasilinear elliptic equations






Pu − λ1uρ = −a(x, u)u−ρ + g(x, u)ρ + h, x in Ω,

u = 0, x on Ω,

where

Pu = −
N

∑

i,j=1

Di(p
1
2

i p
1
2

j bij(x)Dju) + ρ(x)c(x)u.

The problems what we discussed have physical background. In fact, equation (1.1) is one of the

most useful sets of Navier-Stokes equations, which describe the motion of viscous fluid substances

liquids and gases.

The purpose of this paper is to obtain an existence result of the weakly result for problem (1.1).

Our results are bases on the Galerkin-type techniques[9] and the generalized Brouwer’s theorem[10]

and other methods.

2 Preliminaries and Fundamental Lemmas

Let Ω denote a bounded domain in RN (N ≥ 1), pi(x) and ρ(x) ∈ C0(Ω) be positive functions,

q(x) ∈ C0(Ω) be a nonnegative function, with the property that

∫

Ω

q(x)dx < ∞,

∫

Ω

ρ(x)dx < ∞,

∫

Ω

pi(x)dx < ∞, i = 1, 2, · · · , N. (2.1)

Let Γ ⊂ ∂Ω be a fixed closed set (it may be the empty set), q(x) maybe identically zero, Diu =

∂u
∂xi

, i = 1, 2, · · ·, N . We consider the following pre-Hilbert spaces

C0
ρ(Ω) =

{

u ∈ C0(Ω)

∣

∣

∣

∣

∫

Ω

|u|2ρdx < ∞

}

, (2.2)

with inner-product 〈u, v〉ρ =
∫

Ω uvρdx, ∀u, v ∈ C0
ρ(Ω), and

C1
p,q,ρ(Ω, Γ) =

{

u ∈ C0(Ω̄) ∩ C2(Ω)

∣

∣

∣

∣

∣

u(x) = 0, ∀x ∈ Γ;

∫

Ω

[

N
∑

i=1

|Diu|
2pi + u2(q + ρ)

]

dx < ∞

}

,

(2.3)

with inner-product

〈u, v〉p,q,ρ =

∫

Ω

[

N
∑

i=1

piDiuDiv + (q + ρ)uv

]

dx. (2.4)
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Let L2
ρ(Ω) denote the Hilbert space obtained through the completion of C0

ρ(Ω) by using the

method of Cauchy sequences with respect to the norm ||u||ρ = 〈u, u〉
1
2
ρ , H1

p,q,ρ(Ω, Γ) denote the

completion of the space C1
p,q,ρ(Ω, Γ) with respect to the norm ||u||p,q,ρ = 〈u, u〉

1
2
p,q,ρ. Obviously,

H1
p,q,ρ(Ω, Γ) is a weighted Sobolev spaces. In a similar manner we have the spaces L2

pi
(Ω), (i =

1, 2, · · ·, N) and L2
q(Ω). Hance we see from (2.4) that

〈u, v〉p,q,ρ =

N
∑

i=1

〈Diu, Div〉pi
+ 〈u, v〉ρ + 〈u, v〉q. (2.5)

Next, we make the following assumptions for the functions aij(x) and a0(x)

(a-1) aij(x), a0(x) ∈ L∞(Ω), i, j = 1, 2, · · ·, N, and a0(x) ≥ 0, a.e.x ∈ Ω;

(a-2) aij(x) = aji(x), ∀x ∈ Ω, i, j = 1, 2, · · · , N ;

(a-3)
N
∑

i,j=1

aij(x)ξiξj ≥ c0|ξ|
2, ∀x ∈ Ω, ξ ∈ RN , where c0 > 0.

f(x, s) will meet the following conditions:

(f-1) f(x, s) satisfies Caratheodory conditions[9];

(f-2) There exists a nonnegative function f0(x) ∈ L2
ρ, for ∀s ∈ R, such that |f(x, s)| ≤ 2γ

′

|s| +

f0(x), where 0 < γ
′

< γ, γ = (λJ+J1
− λJ )/2;

(f-3) f(x, s) ≥ −f0(x), s > 0 and a.e. x ∈ Ω; f(x, s) ≤ f0(x), s ≤ 0 and a.e.x ∈ Ω, where

f0(x) ∈ L2
ρ is similar with (f-2).

Hence (f-2) and (f-3) together imply

|f(x, s) − γ
′

s| ≤ γ
′

|s| + f0(x), ∀s ∈ R, a.e.x ∈ Ω. (2.6)

Now we introduce the two-form for the operator L

L(u, v) =

N
∑

i,j=1

∫

Ω

p
1
2

i p
1
2

j aij(x)DjuDiv + 〈a0u, v〉q, (2.7)

∀u, v ∈ H1
p,q,ρ(Ω, Γ). We say L satisfies VL(Ω, Γ) conditions if the following two facts obtain:

(VL − 1) There exists a complete orthonormal system {ϕn}
∞

n=1 ⊂ L2
ρ, and for arbitrary n,

ϕn ∈ H1
p,q,ρ(Ω, Γ) ∩ C2(Ω);

(VL − 2) There exists a sequence of eigenvalues {λn}
∞

n=1 with 0 < λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λn →

∞, such that

L(ϕn, v) = λn〈ϕn, v〉ρ, ∀v ∈ H1
p,q,ρ(Ω, Γ).

Let Sn be the subspace of H1
p,q,ρ(Ω, Γ) spanned by ϕ1, ϕ2, · · · , ϕn. For un ∈ Sn, ∃(α1, α2, · · · , αn) ∈

Rn, s.t.

un =

J−1
∑

k=1

αkϕk +

J+J1−1
∑

k=J

αkϕk +

n
∑

k=J+J1

αkϕk.

From (VL − 1), we see that ||un||
2
ρ = |α|2. Setting

vn =

J−1
∑

k=1

αkϕk +

n
∑

k=J+J1

αkϕk, wn =

J+J1−1
∑

k=J

αkϕk, (2.8)
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then un = wn + vn, and 〈vn, ϕj〉 = 0, j = J, J + 1, · · · , J + J1 − 1, and wn is an eigenfunction of

the operator L corresponding to eigenvalue λJ .

We say functional G satisfies G∗− conditions if the following two facts obtain:

(G-1) G ∈ (H1
p,q,ρ(Ω, Γ))∗, the dual of H1

p,q,ρ(Ω, Γ), that is, G : H1
p,q,ρ(Ω, Γ) → R linearly and

|G(u)| ≤ K0||u||p,q,ρ, ∀u ∈ H1
p,q,ρ(Ω, Γ), where K0 is a constant;

(G-2) For un ∈ Sn, un = wn + vn (same as (2.8)), if

lim
n→∞

||vn||p,q,ρ

||un||p,q,ρ
→ 0,

then

lim sup
n→∞

[(1 − n−1)〈f(x, un), wn〉ρ − G(wn)] > 0. (2.9)

We need the following lemmas in section three.

Lemma 2.1 Assume that operator L is given by (1.2) and that the conditions (a-1)-(a-3) are

valid, and that VL(Ω, Γ) conditions hold, and that v ∈ L2
ρ(Ω). Set v̂(n) = 〈v, ϕn〉ρ, n = 1, 2, · · · ,

then v ∈ H1
p,q,ρ(Ω, Γ) if and only if

∞
∑

n=1

λn|v̂(n)|2 < ∞.

Furthermore if v ∈ H1
p,q,ρ(Ω, Γ), then

L(v, v) =

∞
∑

n=1

λn|v̂(n)|2.

Lemma 2.2 Assume that operator L is given by (1.2) and that the conditions (a-1)-(a-3) are

valid, for ∀u ∈ H1
p,q,ρ(Ω, Γ). Then, there exist constants K1 > 0 and K2 > 0, such that

K1||u||
2
p,q,ρ ≤ L(u, u) ≤ K2||u||

2
p,q,ρ.

Lemma 2.3 Assume that operator L is given by (1.2) and that the conditions (a-1)-(a-3) are

valid, and that VL(Ω, Γ) conditions hold. Then H1
p,q,ρ(Ω, Γ) is compactly imbedded in L2

ρ(Ω).

Proofs of the Lemma 2.1 and Lemma 2.2 can be refer to [6,P.9-10], Lemma 2.3 can be refer to

[5, P.38], so the proofs are omitted.

3 Main Results and Their Proofs

In this section, we prove that problem (1.1) has at least one solution, which is the main result

of this paper stated as Theorem 3.3.

In order to prove the problem (1.1) has a weak solution, we first discuss it in a finite dimension

space Sn, where Sn is the subspace of H1
p,q,ρ(Ω, Γ) spanned by ϕ1, ϕ2, · · · , ϕn, then we extend the

result to the infinite dimension space H1
p,q,ρ(Ω, Γ).

Theorem 3.1 Let Ω denote a bounded domain in RN (N ≥ 1), pi(x) and ρ(x) ∈ C0(Ω)

be positive functions, q(x) ∈ C0(Ω) be a nonnegative function and assume that (2.1) holds. Let
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Γ ⊂ ∂Ω be a fixed closed set (it may be the empty set), the operator L be given by (1.2) and

assume (a-1)-(a-3), that VL(Ω, Γ) conditions hold. Suppose that f(x, u) satisfies (f-1)-(f-3), that

the functional G satisfies (G-1). Then if n ≥ n0 = J + J1 + 1, there exists u∗
n ∈ Sn with the

property that

L(u∗
n, v) = (λJ + γ

′

n−1)〈u∗
n, v〉ρ + (1 − n−1)〈f(x, u∗

n), v〉ρ − G(v), ∀v ∈ Sn. (3.1)

Proof We only consider the situation for J > 1. The case J = 1 has already been treated in

[6]. We set

u =

n
∑

k=1

αkϕk, ũ =

n
∑

k=1

δkαkϕk, (3.2)

δk =







−1, k = 1, · · · , J + J1 − 1,

1, k = J + J1, J + J1 + 1, · · · , n,
(3.3)

where n ≥ n0, and n0 = J + J1 + 1. For α = (α1, · · · , αn) ∈ Rn, from (3.2) and (3.3), we see that

||u||2ρ = ||ũ||2ρ = |α|2 =

n
∑

i=1

α2
i .

We define

Fk(α) = L(u, δkϕk) − (λJ + γ
′

n−1)〈u, δkϕk〉ρ − (1 − n−1)〈f(x, u), δkϕk〉ρ + G(δkϕk). (3.4)

It follows from (3.2) and (3.3) that

n
∑

k=1

Fk(α)αk = L(u, ũ) − (λJ + γ
′

n−1)〈u, ũ〉ρ − (1 − n−1)〈f(x, u), ũ〉ρ + G(ũ)

= L(u, ũ) − (λJ + γ
′

)〈u, ũ〉ρ − (1 − n−1)〈f(x, u) − γ
′

u, ũ〉ρ + G(ũ). (3.5)

First of all,

L(u, ũ) − (λJ + γ
′

)〈u, ũ〉ρ =

J+J1−1
∑

k=1

(λJ + γ
′

− λk)α2
k +

n
∑

k=J+J1

(λk − λJ − γ
′

)α2
k,

since 2γ
′

< λJ+J1
− λJ and ||u||2ρ = ||ũ||2ρ = |α|2, hence we obtain

L(u, ũ) − (λJ + γ
′

)〈u, ũ〉ρ ≥ γ
′

|α|2. (3.6)

Secondly, from (2.6), Hölder inequality and Minkowski inequality, we get

〈f(x, u) − γ
′

u, ũ〉ρ =

∫

(f(x, u) − γ
′

u)ũρdx

≤

∫

(γ
′

|u| + f0(x))|ũ|ρdx

≤ ||γ
′

|u| + f0(x)||ρ||u||ρ

≤ (γ
′

|α| + ||f0||ρ)|α|. (3.7)

EJQTDE, 2012 No. 71, p. 5



In addition, according to (G-1), Lemma 2.2, L(u, u) =
∑n

k=1 λk|û(k)|2, and
∑n

k=1 |û(k)|2 =

||u||2ρ for fixed n, we have

|G(ũ)| ≤ K0||ũ||p,q,ρ ≤ K
′

0[L(ũ, ũ)]1/2

= K
′

0

[

n
∑

k=1

λk|û(k)|2

]1/2

≤ K
′

0

[

λn

n
∑

k=1

|û(k)|2

]1/2

= K3|α|, (3.8)

where K0, K
′

0, K3 are positive constants. We observe from (3.5), (3.6), (3.7) and (3.8) that there

exists t > 0, such that

n
∑

k=1

Fk(α)αk ≥ γ
′

|α|2 − (1 − n−1)[(γ
′

|α| + ||f0||ρ)|α|] − K3|α|

≥ n−1γ
′

|α|2 − [(1 − n−1)||f0||ρ + K3]|α|

≥ γ
′

|α|2/2n > 0, |α| ≥ t.

By the generalized Brouwer’s theorem[10], there exists α∗ = (α∗
1, . . . , α

∗
n) satisfying Fk(α∗) =

0, k = 1, 2, · · · , n. Thus, taking u∗
n =

∑n
k=1 α∗

kϕk, we obtain from(3.3) and (3.4) that

L(u∗
n, ϕk) = (λJ + γ

′

n−1)〈u∗
n, ϕk〉ρ + (1 − n−1)〈f(x, u∗

n), ϕk〉ρ − G(ϕk), k = 1, 2, · · · , n,

and the proof of Theorem 3.1 is complete by the definition of Sn .

Theorem 3.2 The sequence {u∗
n} obtained in Theorem 3.1 is uniformly bounded in H1

p,q,ρ

with respect to the norm ||u||p,q,ρ = 〈u, u〉
1
2
p,q,ρ.

Proof From Theorem 3.1, for u∗
n ∈ Sn, we have

L(u∗
n, v) = (λJ + γ

′

n−1)〈u∗
n, v〉ρ + (1 − n−1)〈f(x, u∗

n), v〉ρ − G(v), ∀v ∈ Sn, (3.9)

where 0 < γ
′

< γ, γ =
λJ+J1

−λJ

2 , n ≥ n0, n0 = J + J1 + 1 .

For ease of notation, we represent the sequence {u∗
n}n≥n0

by {un}n≥n0
. In order to prove

Theorem 3.2, we need to prove that there exists constant K4 for above un ∈ Sn, such that

||un||p,q,ρ ≤ K4, ∀n ≥ n0. (3.10)

Suppose to the contrary that (3.10) does not hold, then there exists subsequence (for ease of

notation, we still denoted by {un}), such that

lim
n→∞

||un||p,q,ρ = ∞. (3.11)

Taking v = un in (3.9), from Lemma 2.2, G ∈ (H1
p,q,ρ(Ω, Γ))∗ and the methods of (3.7), there exists

K5 > 0, such that

K5||un||
2
p,q,ρ ≤ (λJ + γ

′

n−1)〈un, un〉ρ + (1 − n−1)|〈f(x, un), un〉ρ| + |G(un)|

≤ (λJ + γ
′

)||un||
2
ρ + (1 − n−1)(γ

′

||un||
2
ρ + ||f0||ρ||un||ρ) + K0||un||p,q,ρ.
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Hence dividing both sides of above inequality by ||un||
2
p,q,ρ and taking the limit as n → ∞, then

there exists positive integer n1(n1 ≥ n0), when n ≥ n1 that

K5

2(λJ + 2γ′)
≤

||un||
2
ρ

||un||2p,q,ρ

≤ 1.

From (3.11), we have

lim
n→∞

||un||ρ = ∞, (3.12)

and when n ≥ n1 that

K6||un||p,q,ρ ≤ ||un||ρ. (3.13)

Set

un = un1 + un2 + un3, ūn = −un1 − un2 + un3,

un1 =

J−1
∑

k=1

ûn(k)ϕk, un2 =

J+J1−1
∑

k=J

ûn(k)ϕk, un3 =

n
∑

k=J+J1

ûn(k)ϕk. (3.14)

In the following, for ∀n ≥ n1, we propose to show the fact

lim
n→∞

[||un1||p,q,ρ + ||un3||p,q,ρ]

||un||ρ
= 0. (3.15)

In matter of fact, we obtain from (3.9) and (3.14) that

L(un, ūn) − (λJ + γ
′

)〈un, ūn〉ρ = (1 − n−1)〈f(x, un) − γ
′

un, ūn〉ρ − G(ūn),

and
J+J1−1

∑

k=1

(λJ + γ
′

− λk)|ûn(k)|2 +

n
∑

k=J+J1

(λk − λJ − γ
′

)|ûn(k)|2

= (1 − n−1)〈f(x, un) − γ
′

un, ūn〉ρ − G(ūn). (3.16)

From (2.6) and (3.14), we conclude that

|〈f(x, un) − γ
′

un, ūn〉ρ| ≤ γ
′

||un||
2
ρ + ||f0||ρ||un||ρ. (3.17)

Taking δ = γ − γ
′

, from γ = (λJ+J1
− λJ )/2, we also obtain from (3.16), (3.17),

∑n
k=1 |ûn(k)|2 =

||un||
2
ρ and G ∈ (H1

p,q,ρ(Ω, Γ))∗ that

γ
′

||un||
2
ρ +

J−1
∑

k=1

(λJ − λk)|ûn(k)|2 +

n
∑

k=J+J1

(λk − λJ+J1
+ δ)|ûn(k)|2

≤ K0||un||p,q,ρ + (1 − n−1)(γ
′

||un||
2
ρ + ||f0||ρ||un||ρ)

≤ K0||un||p,q,ρ + γ
′

||un||
2
ρ + ||f0||ρ||un||ρ. (3.18)

It is clear that for fixed n, ∃γ
′′

> 0, such that

γ
′′

(1 + λk) ≤ λJ − λk, k = 1, 2, · · · , J − 1; γ
′′

(1 + λk) ≤ (λk − λJ+1) + δ, k ≥ J + J1. (3.19)
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Since f0(x) ∈ L2
ρ, it is follows from Lemma 2.1, Lemma 2.2, (3.18) and (3.19) that

γ∗
[

||un1||
2
p,q,ρ + ||un3||

2
p,q,ρ

]

≤ K7||un||ρ + K0||un||p,q,ρ, (3.20)

where ∀n ≥ n1, K0, K7 and γ∗ are positive constants. Dividing both sides of (3.20) by ||un||
2
ρ and

taking the limit as n → ∞, from (3.12) and (3.13), we obtain (3.15).

Next, setting

wn = un2, vn = un1 + un3, (3.21)

then un = wn + vn. Observe that 〈vn, ϕj〉ρ = 0 for j = J, J + 1, · · · , J + J1 − 1 and that wn is a

λJ -eigenfunction of L, also from (3.15) that

lim
n→∞

||vn||p,q,ρ/||un||ρ = 0. (3.22)

Taking v = wn in (3.9), from (VL−2), we obtain L(un, wn) = λn〈un, wn〉ρ. Hence, for ∀n ≥ n1,

we have

−γ
′

n−1||wn||
2
ρ = (1 − n−1)〈f(x, un), wn〉ρ − G(wn). (3.23)

Therefore, we infer from (3.23) that

(1 − n−1)〈f(x, un), wn〉ρ − G(wn) ≤ 0. (3.24)

Consequently,

lim sup
n→∞

[(1 − n−1)〈f(x, un), wn〉ρ − G(wn)] ≤ 0. (3.25)

We obtain that (3.25) is contrary to (2.9). Hence (3.10) is true.

Theorem 3.3 Let Ω denote a bounded domain in RN (N ≥ 1), pi(x), ρ(x) ∈ C0(Ω) be positive

functions, q(x) ∈ C0(Ω) be a nonnegative function and satisfy (2.1), Γ ⊂ ∂Ω be a closed set(it may

be the empty set), operator L be given by (1.2) and assume (a-1)-(a-3), that L satisfies VL(Ω, Γ)

conditions. Let f(x, u) satisfy (f-1)-(f-3) and functional G satisfy G∗− conditions. Then problem

(1.1) at least has a weak solution, i.e. there exits u∗ ∈ H1
p,q,ρ(Ω, Γ) with the property that

L(u∗, v) = λJ 〈u
∗, v〉ρ + 〈f(x, u∗), v〉ρ − G(v), ∀v ∈ H1

p,q,ρ(Ω, Γ). (3.26)

Proof Since H1
p,q,ρ(Ω, Γ) is a separable Hilbert space, we obtain from (3.10) and Lemma 2.3

that {u∗
n} what we described above in H1

p,q,ρ(Ω, Γ) is uniformly bounded, and that there exists a

weak convergence subsequence (still denote by {u∗
n} ) and a function u∗ ∈ H1

p,q,ρ(Ω, Γ), such that

lim
n→∞

||u∗
n − u∗||ρ = 0, (3.27)

∃k(x) ∈ L2
ρ, |u∗

n(x)| ≤ k(x), a.e.x ∈ Ω, (3.28)
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lim
n→∞

u∗
n(x) = u∗(x), a.e.x ∈ Ω, (3.29)

lim
n→∞

〈Diu
∗
n, v〉pi

= 〈Diu
∗, v〉pi

, ∀v ∈ L2
pi

, i = 1, 2, · · · , N, (3.30)

lim
n→∞

〈a0u
∗
n, v〉q = 〈a0u

∗, v〉q, ∀v ∈ L2
q. (3.31)

From (2.7), (3.9), (3.27), (3.30) and (3.31), for vj ∈ Sj(j ≥ n0), we obtain that

lim
n→∞

L(u∗
n, vj) = L(u∗, vj). (3.32)

We see from (f-1) and (3.29) that

lim
n→∞

f(x, u∗
n) = f(x, u∗), a.e.x ∈ Ω. (3.33)

From (f-2) and (3.28), we get

|f(x, u∗
n)| ≤ 2γ

′

k(x) + f0(x), a.e.x ∈ Ω. (3.34)

Consequently, we conclude from (3.33), (3.34) and the Lebesgue dominated convergence theorem[10]

that

lim
n→∞

〈f(x, un), vj〉ρ = 〈f(x, u∗), vj〉ρ, (3.35)

where 0 < γ
′

< γ . Taking v = vj in (3.9) and letting n → ∞, we have

L(u∗, vj) = λJ 〈u
∗, vj〉ρ + 〈f(x, u∗), vj〉ρ − G(vj). (3.36)

Since Pjv =
∑j

k=1 v̂(k)ϕk ∈ Sj , replacing vj by Pjv in (3.36), we observe

L(u∗, Pjv) = λJ 〈u
∗, Pjv〉ρ + 〈f(x, u∗), Pjv〉ρ − G(Pjv). (3.37)

From Lemma 2.1 and Lemma 2.2, we have

lim
j→∞

||Pjv − v||p,q,ρ = 0, ∀v ∈ H1
p,q,ρ(Ω, Γ).

Consequently, it follows that

lim
j→∞

L(u∗, Pjv) = L(u∗, v),

lim
j→∞

〈u∗, Pjv〉ρ = 〈u∗, v〉ρ,

lim
j→∞

〈f(x, u∗), Pjv〉ρ = 〈f(x, u∗), v〉ρ,

lim
j→∞

G(Pjv) = G(v).

Passing to the limit as j → ∞ on both side of (3.37) and using the above established facts, for

∀v ∈ H1
p,q,ρ(Ω, Γ), we obtain

L(u∗, v) = λJ 〈u
∗, v〉ρ + 〈f(x, u∗), v〉ρ − G(v).

Hence the proof of Theorem 3.3 is complete.
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