
Electronic Journal of Qualitative Theory of Differential Equations
2019, No. 71, 1–22; https://doi.org/10.14232/ejqtde.2019.1.71 www.math.u-szeged.hu/ejqtde/

Hille–Nehari type criteria and conditionally
oscillatory half-linear differential equations

Simona Fišnarová B 1 and Zuzana Pátíková2
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1 Introduction

In the paper we study oscillatory properties of the half-linear equation

L[x] := (r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) = |x|p−1 sgn x, p > 1, (1.1)

where the coefficients r, c are continuous functions, r(t) > 0 on the interval under consid-
eration, which is a neighbourhood of infinity. In the special case when p = 2 this equation
becomes the linear Sturm–Liouville equation. If p 6= 2, equation (1.1) is called half-linear since
it has one half of the properties that characterize linearity: the solution space is homogeneous,
but is generally not additive. Despite the missing additivity, the classical linear Sturmian
theory has been extended to half-linear equations. We refer to the book [8] for the overview
of the methods and results concerning half-linear equations up to year 2005. Concerning the
recent results on half-linear differential equtions, see, e.g., [14–20] and the references therein.

Recall that equation (1.1) is said to be oscillatory if all its solutions are oscillatory, i.e., all the
solutions have infinitely many zeros tending to infinity. In the opposite case equation (1.1) is
said to be nonoscillatory. Note also that oscillatory and nonoscillatory solutions of (1.1) cannot
coexist and this means that this equation is nonoscillatory if all solutions have constant sign
eventually.
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Throughout this paper we suppose that equation (1.1) is nonoscillatory and we study the
influence of perturbations of the coefficient c on the oscillatory behaviour of equation (1.1),
i.e., we study equations of the form

(r(t)Φ(x′))′ + (c(t) + c̃(t))Φ(x) = 0. (1.2)

It is known from the Sturmian theory, that if the perturbation c̃ is “sufficiently positive”, the
equation becomes oscillatory, if it is “not too much positive”, the equation remains nonoscil-
latory. If we find a positive function d and a constant λ0 such that the equation

(r(t)Φ(x′))′ + (c(t) + λd(t))Φ(x) = 0 (1.3)

is nonoscillatory for λ < λ0 and oscillatory for λ > λ0, we say that equation (1.3) is condition-
ally oscillatory with the oscillation constant λ0. Examples of conditionally oscillatory equations
(written below with the oscillation constants) are the Euler type equation

(Φ(x′))′ +
γp

tp Φ(x) = 0, γp :=
(

p− 1
p

)p

(1.4)

and the perturbed Euler type equations, such as the Riemann–Weber type equation

(Φ(x′))′ +

(
γp

tp +
µp

tp log2 t

)
Φ(x) = 0, µp :=

1
2

(
p− 1

p

)p−1

(1.5)

or equations with arbitrary number of perturbation terms of the form

(Φ(x′))′ +

(
γp

tp +
n

∑
j=1

µp

tp Log 2
j t

)
Φ(x) = 0, (1.6)

where n ∈ N, log1 t = log t, logk t = logk−1(log t), k ≥ 2, Log jt = ∏
j
k=1 logk t. All these equa-

tions are nonoscillatory also in the critical case with the oscillation constants. The appropriate
results concerning the Euler type equation and its perturbations in the coefficient γp

tp including
the asymptotic formulas for nonoscillatory solutions of these equations can be found in the
paper of Elbert and Schneider [11]. Note that the result of Elbert and Schneider has been gen-
eralized to the case when also perturbations in the term with derivative are allowed and also
to the case of equations with non-constant coefficients, see, e.g., [4, 6, 7, 14] and the references
therein.

In this paper we study perturbations of general nonoscillatory equation (1.1). We suppose
that h is a solution of (1.1) such that h(t) > 0 and h′(t) 6= 0, for t ≥ t0, where t0 is a real
number from the interval of consideration of (1.1). Moreover, we suppose that∫ ∞

R−1(t)dt = ∞ and lim inf
t→∞

|G(t)| > 0, (1.7)

where
R(t) = r(t)h2(t)|h′(t)|p−2, G(t) = r(t)h(t)Φ(h′(t)). (1.8)

Note that we follow the notation used in [10] and wherever we consider the integral∫ ∞ R−1(t)dt, its lower limit is omitted, as it can be a constant greater or equal to t0 such
that all relevant conditions hold.
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The motivation for our research comes from paper [10]. In that paper, under assumptions
(1.7), it is shown that if d(t) =

(
hp(t)R(t)(

∫ t R−1(s)ds)2)−1 in (1.3), then (1.3) is conditionally
oscillatory equation and the oscillation constant is 1

2q , where q is a conjugate number to p, i.e.,
1
p +

1
q = 1. It is also shown that the equation in the critical case with the oscillation constant 1

2q

L̂[x] := (r(t)Φ(x′))′ +

[
c(t) +

1

2qhp(t)R(t)
(∫ t R−1(s)ds

)2

]
Φ(x) = 0 (1.9)

is nonoscillatory and the asymptotic formula for one of solutions of (1.9) is established. Con-
sequently, the perturbed equation

L̃[x] := (r(t)Φ(x′))′ +

[
c(t) +

1

2qhp(t)R(t)
(∫ t R−1(s) ds

)2 + g(t)

]
Φ(x) = 0 (1.10)

is studied. In particular, a nonoscillation criterion of the Hille–Nehari type for (1.10), where
limits inferior and superior of the expression

log
(∫ t

R−1(s)ds
) ∫ ∞

t
g(s)hp(s)

∫ s
R−1(τ)dτ ds

are compared with certain constants, is proved, see [10, Theorem 5]. The crucial role in the
proof of this criterion plays the fact that the asymptotic formula for a solution of (1.9) is
known.

The aim of our paper is to improve the above mentioned nonoscillation criterion for (1.10),
to formulate a relevant oscillation criterion for (1.10) and to find a perturbation g in (1.10) such
that (1.10) becomes conditionally oscillatory. We also formulate a version of a nonoscillatory
Hille–Nehari type criterion for (1.10) in the case when we handle the asymptotic formula for
the second solution of (1.9), which has been found recently in [3].

The paper is organized as follows. In the next section we formulate auxiliary results
and technical lemmas which are important in our proofs. The main results, oscillation and
nonoscillation criteria for (1.10), are presented in Section 3. The last section is devoted to
remarks.

2 Auxiliary results

The proofs of our main results are based on the following theorems which can be found in [5]
and [12]. For a positive and differentiable function x̃ denote

R̃(t) := r(t)x̃2(t)|x̃′(t)|p−2, G̃(t) := r(t)x̃(t)Φ(x̃′(t)). (2.1)

Theorem A ([12, Theorem 3.2]). Let x̃ be a function such that x̃(t) > 0 and x̃′(t) 6= 0, both for large
t. Suppose that ∫ ∞

x̃(t)L[x̃](t)dt is convergent and

lim
t→∞
|G̃(t)|

∫ t

T

ds
R̃(s)

= ∞, (2.2)
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where T ∈ R is sufficiently large. If

lim sup
t→∞

∫ t

T
R̃−1(s) ds

∫ ∞

t
x̃(s)L[x̃](s) ds <

1
q
(−α +

√
2α), (2.3)

lim inf
t→∞

∫ t

T
R̃−1(s) ds

∫ ∞

t
x̃(s)L[x̃](s) ds >

1
q
(−α−

√
2α) (2.4)

for some α > 0, then (1.1) is nonoscillatory.

Theorem B ([5, Theorem 1]). Let x̃ be a continuously differentiable function satisfying conditions

x̃(t)L[x̃](t) ≥ 0 for large t,
∫ ∞

x̃(t)L[x̃](t) dt < ∞, (2.5)

∫ ∞ dt
R̃(t)

= ∞ and lim
t→∞

G̃(t) = ∞. (2.6)

If

lim inf
t→∞

∫ t

T
R̃−1(s)ds

∫ ∞

t
x̃(s)L[x̃](s)ds >

1
2q

, (2.7)

where T ∈ R is sufficiently large, then (1.1) is oscillatory.

Theorem C ([12, Theorem 3.1]). Let x̃ be a function such that x̃(t) > 0 and x̃′(t) 6= 0, both for large
t. Suppose that the following conditions hold:∫ ∞

R̃−1(t) dt < ∞, lim
t→∞
|G̃(t)|

∫ ∞

t
R̃−1(s) ds = ∞. (2.8)

If

lim sup
t→∞

∫ ∞

t
R̃−1(s) ds

∫ t

T
x̃(s)L[x̃](s) ds <

1
q
(−α +

√
2α), (2.9)

lim inf
t→∞

∫ ∞

t
R̃−1(s) ds

∫ t

T
x̃(s)L[x̃](s) ds >

1
q
(−α−

√
2α) (2.10)

for some α > 0, T ∈ R sufficiently large, then (1.1) is nonoscillatory.

Theorem D ([5, Theorem 2]). Let x̃ be a positive continuously differentiable function satisfying the
following conditions:

x̃(t)L[x̃](t) ≥ 0 for large t,
∫ ∞

x̃(t)L[x̃](t) dt = ∞, (2.11)

∫ ∞
R̃−1(t) dt = ∞ and lim

t→∞
G̃(t) = ∞. (2.12)

Then (1.1) is oscillatory.

In the next lemma we collect some technical facts which are frequently used in the proofs
of our main results.

Lemma 2.1. Suppose that conditions (1.7) hold.

(i) Let j ∈ Z be arbitrary and k, l ∈ Z be such that k > 0, l ≥ 0. Then

lim
t→∞

logj(
∫ t R−1(s)ds)

Gl(t)(
∫ t R−1(s)ds)k

= 0. (2.13)
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(ii) The integrals

∫ ∞

T

G′(t) logj(
∫ t R−1(s)ds)

G2(t)
∫ t R−1(s)ds

,
∫ ∞

T

logj(
∫ t R−1(s)ds)

G(t)R(t)(
∫ t R−1(s)ds)2

(2.14)

are convergent for arbitrary j ∈ Z, T ∈ R sufficiently large.

Proof. (i) Assumptions (1.7) imply that there exists a constant K such that 1
|G(t)| ≤ K for suffi-

ciently large t and

lim
t→∞

logj(
∫ t R−1(s)ds)

(
∫ t R−1(s)ds)k

= 0 (2.15)

which can be shown by L’Hospital’s Rule as follows. If j ≤ 0, then (2.15) is evident. If j > 0,
then we apply L’Hospital’s Rule j times to obtain

lim
t→∞

logj(
∫ t R−1(s)ds)

(
∫ t R−1(s)ds)k

=
j!
kj lim

t→∞

1

(
∫ t R−1(s)ds)k

= 0.

Therefore also (2.13) holds.
(ii) The integrals are convergent by the comparison test for improper integrals. The first

integral in (2.14) is convergent, because the integral∫ ∞

T

G′(t)
G2(t)

dt =
1

G(T)
− lim

t→∞

1
G(t)

is convergent and

lim
t→∞

logj(
∫ t R−1(s)ds)∫ t R−1(s)ds

= 0.

Concerning the second integral in (2.14) we show that the integral

∫ ∞

T

logj(
∫ t R−1(s)ds)

R(t)(
∫ t R−1(s)ds)2

dt (2.16)

is convergent. If j = 0, the convergence follows immediately from (1.7), since in this case∫ ∞

T

1

R(t)(
∫ t R−1(s)ds)2

dt =
1∫ T R−1(s)ds

− lim
t→∞

1∫ t R−1(s)ds
.

By induction, suppose that integral in (2.16) is convergent for a positive integer j and consider
the case j + 1. Using integration by parts we obtain

∫ ∞

T

logj+1(
∫ t R−1(s)ds)

R(t)(
∫ t R−1(s)ds)2

dt =
logj+1(

∫ T R−1(s)ds)∫ T R−1(s)ds
− lim

t→∞

logj+1(
∫ t R−1(s)ds)∫ t R−1(s)ds

+ (j + 1)
∫ ∞

T

logj(
∫ t R−1(s)ds)

R(t)(
∫ t R−1(s)ds)2

dt.

This implies the convergence of the integral in (2.16) for any positive integer j. If j is negative,
the convergence is evident. The convergence of the second integral in (2.14) follows then from
the fact that 1

|G(t)| is bounded for large t.
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In the last part of this section we evaluate x̃L̂[x̃] from (1.9) for some particular functions x̃.
The first of the following statements comes from [10]. The identity (2.17) follows from [10,
Theorem 3], where we use the fact that h′/h = G/R and fix the constant in the leading term.
The convergence of the corresponding integral is shown in the proof of [10, Theorem 4]. It
follows also from Lemma 2.1.

Lemma 2.2. Let h be a positive solution of (1.1) such that h′(t) 6= 0 for large t and (1.7) holds. Set

x̃(t) := h(t)
( ∫ t R−1(s)ds

) 1
p . Then

x̃(t)L̂[x̃](t) =
(p− 2)(1− p)G′(t)

2p2G2(t)
∫ t R−1(s)ds

(1 + o(1))

+
2(1− p)(p− 2)

3p2G(t)R(t)
(∫ t R−1(s)ds

)2 (1 + o(1))
(2.17)

as t→ ∞ and the integral ∫ ∞
x̃(t)L̂[x̃](t)dt

converges.

In the proofs of the following two statements we use the notation

ϕ(t) :=
∫ t

R−1(s)ds. (2.18)

Lemma 2.3. Let h be a positive solution of (1.1) such that h′(t) 6= 0 for large t and (1.7) holds. Set

x̃(t) := h(t)
(∫ t R−1(s)ds

) 1
p

log
1
p
(∫ t R−1(s)ds

)
. Then

x̃(t)L̂[x̃](t) +
1

2qR(t)
(∫ t R−1(s)ds

)
log
(∫ t R−1(s)ds

)
=

(p− 2)(1− p)G′(t) log(
∫ t R−1(s)ds)

2p2G2(t)
∫ t R−1(s)ds

(1 + o(1))

+
2(1− p)(p− 2) log(

∫ t R−1(s)ds)

3p2G(t)R(t)
(∫ t R−1(s)ds

)2 (1 + o(1))

(2.19)

as t→ ∞.

Proof. We use notation (2.18). By a direct computation and using the fact that hG = h′R we
obtain

x̃′(t) = h′(t)ϕ
1
p (t) log

1
p ϕ(t) +

1
p

h(t)R−1(t)ϕ
1
p−1(t) log

1
p ϕ(t)

+
1
p

h(t)R−1(t)ϕ
1
p−1(t) log

1
p−1

ϕ(t)

= h′(t)ϕ
1
p (t) log

1
p ϕ(t)

[
1 +

h(t)
ph′(t)R(t)ϕ(t)

+
h(t)

ph′(t)R(t)ϕ(t) log ϕ(t)

]
= h′(t)ϕ

1
p (t) log

1
p ϕ(t)

[
1 +

1
pG(t)ϕ(t)

+
1

pG(t)ϕ(t) log ϕ(t)

]
.

(2.20)
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Let us denote

A(t) := 1 +
1

pG(t)ϕ(t)
+

1
pG(t)ϕ(t) log ϕ(t)

.

Then

r(t)Φ(x̃′(t)) = r(t)Φ(h′(t))ϕ
p−1

p (t)
(
log ϕ(t)

) p−1
p Ap−1(t)

and hence,

(
r(t)Φ(x̃′(t))

)′
=
(
r(t)Φ(h′(t))

)′
ϕ

p−1
p (t)

(
log ϕ(t)

) p−1
p Ap−1(t)

+
p− 1

p
r(t)Φ(h′(t))R−1(t)ϕ

−1
p (t)(log ϕ(t))

p−1
p Ap−1(t)

+
p− 1

p
r(t)Φ(h′(t))R−1(t)ϕ

−1
p (t)

(
log ϕ(t)

)− 1
p Ap−1(t)

+ (p− 1)r(t)Φ(h′(t))ϕ
p−1

p (t)
(
log ϕ(t)

) p−1
p Ap−2(t)A′(t).

Consequently,
x̃(t)

(
r(t)Φ(x̃′(t))

)′
= h(t)Ap−2(t)B(t),

where

B(t) :=
(
r(t)Φ(h′(t))

)′
ϕ(t) log ϕ(t)A(t) +

p− 1
p

r(t)Φ(h′(t))R−1(t) log ϕ(t)A(t)

+
p− 1

p
r(t)Φ(h′(t))R−1(t)A(t) + (p− 1)r(t)Φ(h′(t))ϕ(t) log ϕ(t)A′(t).

Next, for the derivative of A(t) we have

A′(t) = − G′(t)ϕ(t) + G(t)R−1(t)
pG2(t)ϕ2(t)

− G′(t)ϕ(t) log ϕ(t) + G(t)R−1(t) log ϕ(t) + G(t)R−1(t)
pG2(t)ϕ2(t) log2 ϕ(t)

= − G′(t)
pG2(t)ϕ(t)

− 1
pG(t)R(t)ϕ2(t)

− G′(t)
pG2(t)ϕ(t) log ϕ(t)

− 1
pG(t)R(t)ϕ2(t) log ϕ(t)

− 1
pG(t)R(t)ϕ2(t) log2 ϕ(t)

,

hence, substituting formulas for A(t) and A′(t) in B(t), we obtain

B(t) = (rΦ(h′(t)))′ϕ(t) log ϕ(t) +
(r(t)Φ(h′(t)))′ log ϕ(t)

pG(t)
+

(r(t)Φ(h′(t)))′

pG(t)

+
(p− 1)r(t)Φ(h′(t)) log ϕ(t)

pR(t)
− (p− 1)2r(t)Φ(h′(t)) log ϕ(t)

p2G(t)R(t)ϕ(t)

− (p− 1)(p− 2)r(t)Φ(h′(t))
p2G(t)R(t)ϕ(t)

+
(p− 1)rΦ(h′)

pR(t)
− (p− 1)2r(t)Φ(h′(t))

p2G(t)R(t)ϕ(t) log ϕ(t)

− (p− 1)r(t)Φ(h′(t))G′(t) log ϕ(t)
pG2(t)

− (p− 1)r(t)Φ(h′(t))G′(t)
pG2(t)

.
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Using the fact that G′ = h(rΦ(h′))′+ h′rΦ(h′) and hG = h′R, we simplify the previous formula
as follows

B(t) = (r(t)
(
Φ(h′(t))

)′
ϕ(t) log ϕ(t) +

(2− p)(r(t)
(
Φ(h′(t))

)′ log ϕ(t)
pG(t)

+
(2− p)(r(t)

(
Φ(h′(t))

)′
pG(t)

− (p− 1)2r(t)Φ(h′(t)) log ϕ(t)
p2G(t)R(t)ϕ(t)

− (p− 1)(p− 2)r(t)Φ(h′(t))
p2G(t)R(t)ϕ(t)

− (p− 1)2r(t)Φ(h′(t))
p2G(t)R(t)ϕ(t) log ϕ(t)

.

To express Ap−2(t) we use the power expansion

(1 + x)s =
∞

∑
j=0

(
s
j

)
xj, |x| < 1, s ∈ R (2.21)

with

x =
1

pG(t)ϕ(t)
+

1
pG(t)ϕ(t) log ϕ(t)

.

Note that the applicability of this power expansion is guaranteed by conditions (1.7). Hence

Ap−2(t) =
∞

∑
j=0

(
p− 2

j

) [
1

pG(t)ϕ(t)
+

1
pG(t)ϕ(t) log ϕ(t)

]j

= 1 +
p− 2

pG(t)ϕ(t)
+

p− 2
pG(t)ϕ(t) log ϕ(t)

+
(p− 2)(p− 3)
2p2G2(t)ϕ2(t)

+
(p− 2)(p− 3)

p2G2(t)ϕ2(t) log ϕ(t)
+

(p− 2)(p− 3)
2p2G2(t)ϕ2(t) log2 ϕ(t)

+
(p− 2)(p− 3)(p− 4)

6p3G3(t)ϕ3(t)
+ o
(

ϕ−3(t)
)

as t→ ∞.

By a direct computation we obtain

Ap−2(t)B(t) = (r(t)
(
Φ(h′(t))

)′
ϕ(t) log ϕ(t)

+
(p− 2)(1− p) log ϕ(t)

2p2G2(t)ϕ(t)
(r(t)

(
Φ(h′(t))

)′ − (p− 1)2 log ϕ(t)
p2G(t)R(t)ϕ(t)

r(t)Φ(h′(t))

+
(p− 2)(1− p)

p2G2(t)ϕ(t)
(r(t)

(
Φ(h′(t))

)′ − (p− 1)(p− 2)
p2G(t)R(t)ϕ(t)

r(t)Φ(h′(t))

+
(p− 2)(1− p)

2p2G2(t)ϕ(t) log ϕ(t)
(r(t)

(
Φ(h′(t))

)′ − (p− 1)2

p2G(t)R(t)ϕ(t) log ϕ(t)
r(t)Φ(h′(t))

+
(p− 2)(1− p)(p− 3) log ϕ(t)

3p3G3(t)ϕ2(t)
(r(t)

(
Φ(h′(t))

)′
(1 + o(1))

− (p− 1)2(p− 2) log ϕ(t)
p3G(t)R(t)ϕ2(t)

r(t)Φ(h′(t))(1 + o(1)) as t→ ∞.

Now, using the identities

(rΦ(h′))′

G
=

G′

hG
− h′

h2 and
rΦ(h′)

R
=

h′

h2 ,
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which follow from the definitions of R, G in (1.8), we get

x̃(t)
(
r(t)Φ(x̃′(t))

)′
= h(t)Ap−2(t)B(t)

= h(t)(r(t)
(
Φ(h′(t))

)′
ϕ(t) log ϕ(t)

+
log ϕ(t)
G(t)ϕ(t)

[
(p− 2)(1− p)

2p2
G′(t)
G(t)

− p− 1
2p

h′(t)
h(t)

]
+

1
G(t)ϕ(t)

[
(p− 2)(1− p)

p2
G′(t)
G(t)

]
+

1
G(t)ϕ(t) log ϕ(t)

[
(p− 2)(1− p)

2p2
G′(t)
G(t)

− p− 1
2p

h′(t)
h(t)

]
+

log ϕ(t)
G2(t)ϕ2(t)

[
(p− 2)(1− p)(p− 3)

3p3
G′(t)
G(t)

− 2(p− 1)(p− 2)
3p2

h′(t)
h(t)

]
+

G′(t)
G2(t)

o
(

log ϕ(t)
ϕ2(t)

)
+

h′(t)
h(t)G2(t)

o
(

log ϕ(t)
ϕ2(t)

)
as t→ ∞.

Finally, we have

x̃(t)L̂[x̃](t) = x̃(t)
(
r(t)Φ(x̃′(t))

)′
+ c(t)hp(t)ϕ(t) log ϕ(t) +

log ϕ(t)
2qR(t)ϕ(t)

.

Using the facts that h is a solution of (1.1), h′/h = G/R and q = p/(p − 1), the last two
formulas lead to (2.19).

Lemma 2.4. Let h be a positive solution of (1.1) such that h′(t) 6= 0 for large t and that (1.7) holds.
Further let x̃(t) := h(t)(

∫ t R−1(s)ds)
1
p log

2
p (
∫ t R−1(s)ds). Then

x̃L̂[x̃] =
(p− 2)(1− p)G′(t) log2(

∫ t R−1(s)ds)

2p2G2(t)(
∫ t R−1(s)ds)

(1 + o(1))

+
2(p− 2)(1− p) log2(

∫ t R−1(s)ds)

3p2G(t)R(t)(
∫ t R−1(s)ds)2

(1 + o(1))

(2.22)

as t→ ∞.

Proof. We use notation (2.18) and, suppressing the argument t, we proceed similarly as in the
proof of Lemma 2.3. By a direct differentiation of x̃ and since hG = h′R, we obtain

x̃′ = h′ϕ
1
p log

2
p ϕ +

1
p

hR−1ϕ
1
p−1 log

2
p ϕ +

2
p

hR−1ϕ
1
p−1 log

2
p−1

ϕ

= h′ϕ
1
p log

2
p ϕ

[
1 +

1
pGϕ

+
2

pGϕ log ϕ

]
.

(2.23)

Let us denote

Ā := 1 +
1

pGϕ
+

2
pGϕ log ϕ

.

Then
rΦ(x̃′) = rΦ(h′)ϕ

p−1
p log

2p−2
p ϕĀp−1
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and its differentiation gives

(rΦ(x̃′))′ = (rΦ(h′))′ϕ
p−1

p log
2p−2

p ϕĀp−1 +
p− 1

p
rΦ(h′)R−1ϕ

−1
p log

2p−2
p ϕĀp−1

+
2p− 2

p
rΦ(h′)R−1ϕ

−1
p log1− 2

p ϕĀp−1 + (p− 1)rΦ(h′)ϕ
p−1

p log
2p−2

p ϕĀp−2Ā′

= ϕ
− 1

p log1− 2
p ϕĀp−2

{
(rΦ(h′))′ϕ log ϕĀ +

p− 1
p

rΦ(h′)R−1 log ϕĀ

+
2(p− 1)

p
rΦ(h′)R−1Ā + (p− 1)rΦ(h′)ϕ log ϕĀ′

}
,

where

Ā′ = − G′

pG2ϕ
− 1

pGRϕ2 −
2G′

pG2ϕ log ϕ
− 2

pGRϕ2 log ϕ
− 2

pGRϕ2 log2 ϕ
.

Denote the inside of the last curly brackets as B̄. With the use of formulas for Ā and Ā′

followed by the fact that G′ = h(rΦ(h′))′ + h′rΦ(h′) and hG = h′R we get

B̄ = (rΦ(h′))′ϕ log ϕ +
(rΦ(h′))′ log ϕ

pG
+

2(rΦ(h′))′

pG
+

(p− 1)rΦ(h′) log ϕ

pR

− (p− 1)2rΦ(h′) log ϕ

p2GRϕ
+

2(p− 1)(2− p)rΦ(h′)
p2GRϕ

+
2(p− 1)rΦ(h′)

pR

+
2(p− 1)(2− p)rΦ(h′)

p2GRϕ log ϕ
− (p− 1)rΦ(h′)G′ log ϕ

pG2 − 2(p− 1)rΦ(h′)G′

pG2

= (r(Φ(h′))′ϕ log ϕ +
(2− p)(r(Φ(h′))′ log ϕ

pG
+

2(2− p)(r(Φ(h′))′

pG

− (p− 1)2rΦ(h′) log ϕ

p2GRϕ
+

2(p− 1)(2− p)rΦ(h′)
p2GRϕ

+
2(p− 1)(2− p)rΦ(h′)

p2GRϕ log ϕ
.

Next, since conditions (1.7) hold, we can use the power expansion (2.21) with

x =
1

pGϕ
+

2
pGϕ log ϕ

and we obtain

Āp−2 = 1 +
p− 2
pGϕ

+
2(p− 2)

pGϕ log ϕ
+

(p− 2)(p− 3)
2p2G2ϕ2 +

2(p− 2)(p− 3)
p2G2ϕ2 log ϕ

+
2(p− 2)(p− 3)
p2G2ϕ2 log2 ϕ

+
(p− 2)(p− 3)(p− 4)

6p3G3ϕ3 + o(ϕ−3) as t→ ∞.

Expanding Āp−2B̄ and joining the terms together with respect to ϕ yields

Āp−2B̄ = (rΦ(h′))′ϕ log ϕ

+
log ϕ

Gϕ

(
− (p− 1)2

p2
rΦ(h′)

R
+

(p− 2)(1− p)
2p2

(rΦ(h′))′

G

)
+

1
Gϕ

(
2(p− 1)(2− p)

p2
rΦ(h′)

R
+

2(p− 2)(1− p)
p2

(rΦ(h′))′

G

)
+

1
Gϕ log ϕ

(
2(p− 1)(2− p)

p2
rΦ(h′)

R
+

2(p− 2)(1− p)
p2

(rΦ(h′))′

G

)
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+
log ϕ

G2ϕ2

(
(p− 1)2(2− p)

p3
rΦ(h′)

R
+

(p− 2)(1− p)(p− 3)
3p2

(rΦ(h′))′

G

)
+

rΦ(h′)
R

o
(

log ϕ

G2ϕ2

)
+

(rΦ(h′))′

G
o
(

log ϕ

G2ϕ2

)
as t→ ∞.

Using the identities
rΦ(h′)

R
=

h′

h2 ,
(rΦ(h′))′

G
=

G′

hG
− h′

h2 ,

the above product Āp−2B̄ simplifies to

Āp−2B̄ = (rΦ(h′))′ϕ log+
log ϕ

Gϕ

(
− (p− 1)

2p
h′

h2 +
(p− 2)(1− p)

2p2
G′

hG

)
+

1
Gϕ

(
2(p− 2)(1− p)

p2
G′

hG

)
+

1
Gϕ log ϕ

(
2(p− 2)(1− p)

p2
G′

hG

)
+

log ϕ

G2ϕ2

(
2(p− 1)(2− p)

3p2
h′

h2 +
(p− 2)(1− p)(p− 3)

3p2
G′

hG

)
+

h′

h2 o
(

log ϕ

G2ϕ2

)
+

G′

hG
o
(

log ϕ

G2ϕ2

)
as t→ ∞.

Altogether we have

x̃L̂[x̃] = x̃(rΦ(x̃′))′ + cx̃p +
x̃p

2qhpRϕ2

= h log ϕĀp−2B̄ + chp ϕ log2 ϕ +
log2 ϕ

2qRϕ
.

Since h solves the equation (rΦ(h′))′ + cΦ(h) = 0, 1
q = p−1

p and 1
R = h′

Gh , we finally obtain

x̃L̂[x̃] =
(p− 2)(1− p)

2p2
G′ log2 ϕ

G2ϕ
+

2(p− 2)(1− p)
p2

G′ log ϕ

G2ϕ

+
2(p− 2)(1− p)

p2
G′

G2ϕ
(1 + o(1)) +

2(p− 1)(2− p)
3p2

log2 ϕ

GRϕ2 (1 + o(1)).

as t→ ∞. This means that x̃L̂[x̃] can be written in the form (2.22).

3 Oscillation and nonoscillation criteria for (1.10)

The following theorem is an improved version of [10, Theorem 5]. In contrast to that result,
we do not need the condition

lim
t→∞

log2(∫ t R−1(s)ds
)

R(t)G′(t) = 0

considered in [10] and we have generalized the statement to α 6= 1
2 .

Theorem 3.1. Suppose that h is a positive solution of (1.1) such that h′(t) 6= 0 for large t, (1.7) holds
and the integral

∫ ∞ g(t)hp(t)
∫ t R−1(s)ds dt converges. If

lim sup
t→∞

log
(∫ t

R−1(s)ds
) ∫ ∞

t
g(s)hp(s)

∫ s
R−1(τ)dτ ds <

1
q
(−α +

√
2α), (3.1)

lim inf
t→∞

log
(∫ t

R−1(s)ds
) ∫ ∞

t
g(s)hp(s)

∫ s
R−1(τ)dτ ds >

1
q
(−α−

√
2α) (3.2)

for some α > 0, then (1.10) is nonoscillatory.
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Proof. The idea of the proof is to apply Theorem A to equation (1.10), i.e., L := L̃. We take

x̃(t) = h(t)
(
∫ t R−1(s)ds

) 1
p . By a direct differentiation and using the fact that h′R = hG, we

get

x̃′(t) = h′(t)
(∫ t R−1(s)ds

) 1
p
[
1 + 1

pG(t) ∫ t R−1(s)ds

]
.

Now we express the functions R̃ and G̃ defined in (2.1) for this concrete x̃ and use (1.8) and
(1.7) to obtain

R̃(t) = r(t)x̃2(t)|x̃′(t)|p−2

= r(t)h2(t)|h′(t)|p−2(∫ t R−1(s)ds
) [

1 + 1
pG(t)

∫ t R−1(s)ds

]p−2

= R(t)
(∫ t R−1(s)ds

)(
1 + o(1)

)
as t→ ∞

(3.3)

and

G̃(t) = r(t)x̃(t)Φ(x̃′(t))

= r(t)h(t)Φ(h′(t))
(∫ t R−1(s)ds

) [
1 + 1

pG(t)
∫ t R−1(s)ds

]p−1

= G(t)
(∫ t R−1(s)ds

)(
1 + o(1)

)
as t→ ∞.

(3.4)

It follows from (3.3) that∫ t

T
R̃−1(s)ds = (1 + o(1)) log

(∫ t
R−1

)
− K, K ∈ R,

hence conditions (1.7) and (3.4) imply that (2.2) is fulfilled.
Since

x̃(t)L̃[x̃](t) = x̃(t)L̂[x̃](t) + g(t)|x̃(t)|p = x̃(t)L̂[x̃](t) + g(t)hp(t)
∫ t

R−1(s)ds,

Lemma 2.2 and the condition for the convergence of
∫ ∞ g(t)hp(t)

∫ t R−1(s)ds dt guarantee
that the integral

∫ ∞ x̃(t)L̃[x̃](t)dt is convergent and we have∫ t

T
R̃−1(s) ds

∫ ∞

t
x̃(s)L̃[x̃](s) ds

∼ log
(∫ t

R−1(s)ds
) ∫ ∞

t

(
x̃(s)L̂[x̃](s) + g(s)hp(s)

∫ s
R−1(τ)dτ

)
ds

(3.5)

as t→ ∞. Now we show that

lim
t→∞

log
(∫ t

R−1(s)ds
) ∫ ∞

t
x̃L̂[x̃](s)ds = 0. (3.6)

By (2.17), it is sufficient to show that

lim
t→∞

log
(∫ t

R−1(s)ds
) ∫ ∞

t

1
G(s)R(s)(

∫ s R−1(τ)dτ)2
ds = 0 (3.7)

and

lim
t→∞

log
(∫ t

R−1(s)ds
) ∫ ∞

t

G′(s)
G2(s)

∫ s R−1(τ)dτ
ds = 0. (3.8)
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Since limt→∞
∫ ∞

t
1

GR(
∫ t R−1)2

ds = 0, using L’Hospital’s rule and (2.13) we have

lim
t→∞

log
(∫ t

R−1(s)ds
) ∫ ∞

t

1
G(s)R(s)(

∫ s R−1(τ)dτ)2
ds

= lim
t→∞

−G−1(t)R−1(t)(
∫ t R−1(s)ds)−2

− log−2(
∫ t R−1(s)ds)(

∫ t R−1(s)ds)−1R−1(t)

= lim
t→∞

log2(
∫ t R−1(s)ds)

G(t)
∫ t R−1(s)ds

= 0,

hence (3.7) holds. To show (3.8), we use integration by parts∫ ∞

t

G′(s)
G2(s)

∫ s R−1(τ)dτ
ds =

1

G(t)
∫ t R−1(t)dt

−
∫ ∞

t

1
G(s)R(s)(

∫ s R−1(τ)dτ)2
ds,

which, together with (2.13) and (3.7), yields to (3.8). Hence (3.6) is proved. Consequently, by
(3.5), we obtain ∫ t

T
R̃−1(s) ds

∫ ∞

t
x̃(s)L̃[x̃](s) ds

∼ log
(∫ t

R−1(s)ds
) ∫ ∞

t
g(s)hp(s)

∫ s
R−1(τ)dτ ds

(3.9)

as t → ∞. This means that conditions (2.3), (2.4) follow from (3.1), (3.2). All the assumptions
of Theorem A are fulfilled, hence (1.10) is nonoscillatory.

The next statement is an oscillatory counterpart of Theorem 3.1.

Theorem 3.2. Suppose that h is a positive solution of (1.1) such that h′(t) 6= 0 for large t, (1.7) holds,
the integral

∫ ∞ g(t)hp(t)
∫ t R−1(s)ds dt converges and let there exist constants γ1 and γ2 such that

g(t)hp(t)
∫ t

R−1(s)ds ≥ γ1|G′(t)|
G2(t)

∫ t R−1(s)ds
+

γ2

|G(t)|R(t)(
∫ t R−1(s)ds)2

(3.10)

for large t, where

γ1 >
(p− 1)(p− 2)

2p2 sgn G′, γ2 >
2(p− 1)(p− 2)

3p2 sgn G. (3.11)

If

lim inf
t→∞

log
(∫ t

R−1(s)ds
) ∫ ∞

t
g(s)hp(s)

∫ s
R−1(τ)dτ ds >

1
2q

(3.12)

then (1.10) is oscillatory.

Proof. We apply Theorem B with L := L̃. Taking x̃(t) := h(t)(
∫ t R−1(s)ds)

1
p we obtain (3.3)

and (3.4). Consequently, conditions (1.7) imply that both conditions in (2.6) are satisfied.
Similarly to the proof of Theorem 3.1, we conclude that the second condition in (2.5) holds
due to Lemma 2.2, since

x̃(t)L̃[x̃](t) = x̃(t)L̂[x̃](t) + g(t)hp(t)
∫ t

R−1(s)ds
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and condition (2.7) follows from (3.9) and (3.12). Concerning the first condition in (2.5), we
have from Lemma 2.2 that

x̃(t)L̃[x̃](t) =
(p− 2)(1− p)G′(t)

2p2G2(t)
∫ t R−1(s)ds

(1 + o(1))

+
2(1− p)(p− 2)

3p2G(t)R(t)
(∫ t R−1(s)ds

)2 (1 + o(1))

+ g(t)hp(t)
∫ t

R−1(s)ds

as t→ ∞. Hence, the first condition in (2.5) is ensured by (3.10). Equation (1.10) is oscillatory
by Theorem B.

In the next theorem we handle equation (1.10) in the case, when the perturbation g(t) is of
the form

g(t) :=
λ

hp(t)R(t)(
∫ t R−1(s)ds)2 log2(

∫ t R−1(s)ds)
, λ ∈ R. (3.13)

In this special case equation (1.10) becomes conditionally oscillatory.

Theorem 3.3. Suppose that h is a positive solution of (1.1) such that h′(t) 6= 0 for large t and (1.7)
holds and consider the equation

(r(t)Φ(x′))′ +

[
c(t) +

1

hp(t)R(t)(
∫ t R−1(s)ds)2

(
1
2q

+
λ

log2(
∫ t R−1(s)ds)

)]
Φ(x) = 0.

(3.14)
If λ ≤ 1

2q , then (3.14) is nonoscillatory. If λ > 1
2q and there exists a constant γ such that

1
R(t) log2(

∫ s R−1(τ)dτ)
≥ γ|G′(t)|

G2(t)
, γ >

p− 2
p

sgn G′(t) (3.15)

holds for large t, then (3.14) is oscillatory.

Proof. If λ 6= 1
2q , then the statement follows from Theorem 3.1 and Theorem 3.2. Indeed, if

g(t) is given by (3.13), then∫ ∞

T
g(t)hp(t)

∫ t
R−1(s)ds dt =

∫ ∞

T

λ

R(t)
∫ t R−1(s)ds log2(

∫ t R−1(s)ds)
dt

=
λ

log(
∫ T R−1(s)ds)

− lim
t→∞

λ

log(
∫ t R−1(s)ds)

,

so the integral
∫ ∞ g(t)hp(t)

∫ t R−1(s)ds dt is convergent. Consequently, concerning condi-
tions (3.1), (3.2) and (3.12), we have

lim
t→∞

log
(∫ t

R−1(s)ds
) ∫ ∞

t
g(s)hp(s)

(∫ s
R−1(τ)dτ

)
ds = λ.

Hence, if − 3
2q < λ < 1

2q , then (3.14) is nonoscillatory by Theorem 3.1, where we take α = 1
2

in (3.1) and (3.2). If λ ≤ − 3
2q , the nonoscillation of (3.14) follows form the well-known Sturm

comparison theorem. If λ > 1
2q , we use Theorem 3.2. It remains to show that condition (3.15)
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is sufficient for (3.10). Since λ > 1
2q , there exists ε > 0 such that λ = 1

2q + ε and condition
(3.10) with g(t) defined in (3.13) can be written as

1
2q + ε

R(t) log2(
∫ t R−1(s)ds)

≥ γ1|G′(t)|
G2(t)

+
γ2

|G(t)|R(t)
∫ t R−1(s)ds

,

where γ1, γ2 satisfy (3.11). If we set γ1 := γ
2q , then

γ1 >
(p− 2) sgn G′(t)

2pq
=

(p− 1)(p− 2)
2p2 sgn G′

and condition (3.15) implies that

1

2qR(t) log2(
∫ t R−1(s)ds)

≥ γ1|G′(t)|
G2(t)

for large t.

Hence, it remains to show that

ε

log2(
∫ t R−1(s)ds)

≥ γ2

|G(t)|
∫ t R−1(s)ds

,

i.e.,

ε ≥
γ2 log2(

∫ t R−1(s)ds)

|G(t)|
∫ t R−1(s)ds

for large t. This inequality is satisfied for any γ2 ∈ R since the limit of the function on
the right-hand side of this inequality is zero as t → ∞. Oscillation of (3.14) follows from
Theorem 3.2.

In the remaining part of the proof we deal with the critical case λ = 1
2q . We use Theorem A

with x̃(t) := h(t)
( ∫ t R−1(s)ds

) 1
p log

1
p
( ∫ t R−1(s)ds

)
and

L(t) := L̂(t) +
1

2qhp(t)R(t)
(∫ t R−1(s)ds

)2 log2(∫ t R−1(s)ds
)Φ(x(t)). (3.16)

In this case we have from (2.20)

x̃′(t) = h′(t)
(∫ t R−1(s)ds

) 1
p log

1
p
(∫ t R−1(s)ds

)
×
[

1 +
1

pG(t)
∫ t R−1(s)ds

+
1

pG(t)
∫ t R−1(s)ds log

(∫ t R−1(s)ds
)] ,

hence, according to (2.1) (suppressing the arguments) we have

R̃ = rh2|h′|p−2(∫ t R−1) log
(∫ t R−1) [1 + 1

pG(
∫ t R−1)

+ 2
pG(

∫ t R−1) log
(∫ t R−1

)]p−2

= R
(∫ t R−1) log

(∫ t R−1)(1 + o(1)
)

as t→ ∞

and

G̃ = rhΦ(h′)
(∫ t R−1) log

(∫ t R−1) [1 + 1
pG(

∫ t R−1)
+ 2

pG(
∫ t R−1) log

(∫ t R−1)
]p−1

= rhΦ(h′)
(∫ t R−1) log

(∫ t R−1)(1 + o(1)
)

as t→ ∞. (3.17)
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These computations and conditions (1.7) imply that∫ t

T
R̃−1(s)ds ∼ log

(
log

∫ t
R−1(s)ds

)
as t→ ∞ (3.18)

and thus condition (2.2) is satisfied.
Next, since p

p−1 = q, from (3.16) and Lemma 2.3 we obtain

x̃(t)L[x̃](t) = x̃(t)L̂[x̃](t) +
1

2qR(t)
(∫ t R−1(s)ds

)
log(

∫ t R−1(s)ds)

=
G′(t) log(

∫ t R−1(s)ds)

G2(t)
∫ t
(R−1(s)ds)

[
(p− 2)(1− p)

2p2 + o(1)
]

(3.19)

+
log(

∫ t R−1(s)ds)

G(t)R(t)
(∫ t R−1(s)ds

)2

[
2(p− 2)(1− p)

3p2 + o(1)
]

as t→ ∞. By Lemma 2.1 we have that
∫ ∞ x̃(t)L[x̃](t)dt is convergent. Using L’Hospital’s rule

we obtain

lim
t→∞

log
(

log
(∫ t

R−1(s)ds
)) ∫ ∞

t

log(
∫ s

(R−1(τ)dτ))

G(s)R(s)(
∫ s R−1(τ)dτ)2

ds

= lim
t→∞

− log(
∫ t R−1(s)ds)G−1(t)R−1(t)(

∫ t R−1(s)ds)−2

− log−2(log(
∫ t R−1(s)ds)) log−1(

∫ t R−1(s)ds)(
∫ t R−1(s)ds)−1R−1(t)

= lim
t→∞

log2(log(
∫ t R−1(s)ds)) log2(

∫ t R−1(s)ds)

G(t)
∫ t R−1(s)ds

= 0.

(3.20)

Integration by parts gives∫ ∞

t

G′(s) log(
∫ s R−1(τ)dτ)

G2(s)
∫ s

(R−1(τ)dτ)
ds =

log(
∫ t R−1(s)ds)

G(t)
∫ t R−1(s)ds

+
∫ ∞

t

1− log(
∫ s R−1(τ)dτ)

G(s)R(s)(
∫ s R−1(τ)dτ)2

ds,

hence, by Lemma 2.1 and (3.20), we obtain

lim
t→∞

log
(

log
(∫ t

R−1(s)ds
)) ∫ ∞

t

G′(s) log(
∫ s R−1(τ)dτ)

G2(s)
∫ s

(R−1(τ)dτ)
ds = 0. (3.21)

Consequently, (3.20) and (3.21) imply

lim
t→∞

∫ t

T
R̃−1(s) ds

∫ ∞

t
x̃(s)L[x̃](s) ds = lim

t→∞
log
(

log
∫ t

R−1(s)ds
) ∫ ∞

t
x̃(s)L[x̃](s) ds = 0.

Hence, conditions (2.3) and (2.4) are satisfied with α = 1
2 and this means that (3.14) with

λ = 1
2q is nonoscillatory by Theorem A.

The next result is a nonoscillatory criterion for (1.10) based on Theorem C.

Theorem 3.4. Let h be a positive solution of (1.1) such that h′(t) 6= 0 for large t and (1.7) holds. If

lim sup
t→∞

∫ t
T g(s)hp(s)(

∫ s R−1(τ)dτ) log2 (∫ s R−1(τ)dτ
)

ds

log(
∫ t R−1(s)ds)

<
1
q
(−α +

√
2α), (3.22)

lim inf
t→∞

∫ t
T g(s)hp(s)(

∫ s R−1(τ)dτ) log2 (∫ s R−1(τ)dτ
)

ds

log(
∫ t R−1(s)ds)

>
1
q
(−α−

√
2α) (3.23)

for some α > 0, T ∈ R sufficiently large, then equation (1.10) is nonoscillatory.
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Proof. Take x̃(t) = h(t)(
∫ t R−1(s)ds)

1
p log

2
p (
∫ t R−1(s)ds) and L := L̃ in Theorem C.

Using (2.1) and (2.23) we express (suppressing the arguments)

R̃ = rh2|h′|p−2(∫ t R−1) log2(∫ t R−1) [1 + 1
pG
(∫ t R−1

) + 2
pG
(∫ t R−1

)
log
(∫ t R−1

)]p−2

= R
(∫ t R−1) log2(∫ t R−1)(1 + o(1)

)
as t→ ∞

and

G̃ = rhΦ(h′)
(∫ t R−1) log2(∫ t R−1) [1 + 1

pG
(∫ t R−1

) + 2
pG
(∫ t R−1

)
log
(∫ t R−1

)]p−1

= G
(∫ t R−1) log2(∫ t R−1)(1 + o(1)

)
as t→ ∞.

From these formulas we have that the integral
∫ ∞ R̃−1(t)dt is convergent since∫ ∞

T

1
R̃(s)

ds =
∫ ∞

T

R−1(s)∫ s R−1(τ)dτ log2(
∫ s R−1(τ)dτ)

(1 + o(1))ds

=
1

log
∫ T R−1(t)dt

(1 + o(1)) < ∞.

Next, let us observe that

|G̃(t)|
∫ ∞

t

1
R̃(s)

ds = |G(t)|
(∫ t

R−1(s)ds
)

log
(∫ t

R−1(s)ds
) (

1 + o(1)
)
→ ∞

as t→ ∞, hence conditions in (2.8) hold.
Further we are interested in the expression∫ ∞

t
R̃−1(s) ds

∫ t

T
x̃(s)L[x̃](s) ds

∼

∫ t
T

(
x̃(s)L̂[x̃](s) + g(s)hp(s)(

∫ s R−1(τ)dτ) log2 (∫ s R−1(τ)dτ
))

ds

log
(∫ t R−1(s)ds

)
as t → ∞. Since, by Lemma 2.1 and (2.22), the integral

∫ ∞
T x̃L̂[x̃]ds is convergent, property

(3.22) is sufficient for (2.9) and (3.23) is sufficient for (2.10).

To formulate the oscillatory version of Theorem 3.3 we first prove the following oscillation
criterion.

Theorem 3.5. Suppose that there exist constants γ1, γ2 satisfying (3.11) such that

g̃(t)hp(t)
∫ t

R−1(s)ds ≥ γ1|G′(t)|
G2(t)

∫ t R−1(s)ds
+

γ2

|G(t)|R(t)(
∫ t R−1(s)ds)2

(3.24)

for large t. If ∫ ∞
g̃(t)hp(t)(

∫ t R−1(s)ds) log(
∫ t R−1(s)ds)dt = ∞, (3.25)

then equation

L̄[x] := (r(t)Φ(x′))′ +

(
c(t) +

1

2qhp(t)R(t)(
∫ t R−1(s)ds)2

(3.26)

+
1

2qhp(t)R(t)(
∫ t R−1(s)ds)2 log2(

∫ t R−1(s)ds)
+ g̃(t)

)
Φ(x) = 0.

is oscillatory.
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Proof. Let us take x̃(t) := h(t)
(
∫ t R−1(s)ds

) 1
p log

1
p
(
∫ t R−1(s)ds

)
and verify conditions (2.11)

and (2.12) in Theorem D. Let us remark that x̃ is chosen to be the same as in the second part of
the proof of Theorem 3.3. Condition (2.12) is a direct consequence of (3.17) and (3.18) together
with (1.7).

Next, let us consider the operator L[x] given by (3.16). According to the proof of Theo-
rem 3.3,

∫ ∞ x̃(t)L[x̃](t)dt converges. Since L̄[x] = L[x] + g̃(t)Φ(x), we have∫ ∞
x̃(t)L̄[x̃](t)dt =

∫ ∞
x̃(t)L[x̃](t)dt +

∫ ∞
g̃(t)|x̃(t)|p dt

=
∫ ∞

x̃(t)L[x̃](t)dt +
∫ ∞

g̃(t)hp(t)(
∫ t R−1(s)ds) log(

∫ t R−1(s)ds)dt = ∞

thanks to (3.25).
Finally, using (3.19), we see that

x̃(t)L̄[x̃](t) =
G′(t) log(

∫ t R−1(s)ds)

G2(t)
∫ t
(R−1(s)ds)

[
(p− 2)(1− p)

2p2 + o(1)
]

+
log(

∫ t R−1(s)ds)

G(t)R(t)
(∫ t R−1(s)ds

)2

[
2(p− 2)(1− p)

3p2 + o(1)
]

+ g̃(t)hp(t)(
∫ t R−1(s)ds) log(

∫ t R−1(s)ds)

which is, provided (3.11) and (3.24), nonnegative for large t. Hence both the parts of (2.11)
hold and the statement follows from Theorem D.

The oscillatory counterpart of Theorem 3.3 reads as follows. Here, equation (1.10) is seen
as a perturbation of (3.14) with λ = 1

2q , i.e., (1.10) is considered as an equation of the form
(3.26).

Theorem 3.6. Suppose that there exist constants γ1, γ2 satisfying (3.11) such that(
g(t)− 1

2qhp(t)R(t)(
∫ t R−1(s)ds)2 log2(

∫ t R−1(s)ds)

)
hp(t)

∫ t
R−1(s)ds (3.27)

≥ γ1|G′(t)|
G2(t)

∫ t R−1(s)ds
+

γ2

|G(t)|R(t)(
∫ t R−1(s)ds)2

for large t. If

lim inf
t→∞

∫ t
T g(s)hp(s)(

∫ s R−1(τ)dτ) log2 (∫ s R−1(τ)dτ
)

ds

log(
∫ t R−1(s)ds)

>
1
2q

, (3.28)

then equation (1.10) is oscillatory.

Proof. Equation (1.10) can be rewritten in the form of (3.26) with

g̃(t) = g(t)− 1

2qhp(t)R(t)(
∫ t R−1(s)ds)2 log2(

∫ t R−1(s)ds)
,

on which we apply Theorem 3.5. Condition (3.24) follows from (3.27). Next we show that
(3.25) holds. From (3.28) we have that there exists ε > 0 and T̃ > T such that∫ t

T g(s)hp(s)(
∫ s R−1(τ)dτ) log2 (∫ s R−1(τ)dτ

)
ds

log(
∫ t R−1(s)ds)

>
1
2q

+ ε, t > T̃. (3.29)
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Let b > T̃, then (suppressing some unnecessary arguments)

I :=
∫ b

T

(
g(t)− 1

2qhp(t)R(
∫ t R−1)2 log2(

∫ t R−1)

)
hp(t)(

∫ t R−1) log(
∫ t R−1)dt

=
∫ b

T
g(t)hp(t)(

∫ t R−1) log(
∫ t R−1)dt−

∫ b
T

1
2qR(

∫ t R−1) log(
∫ t R−1)

dt

=
∫ b

T

1

log(
∫ t R−1)

g(t)hp(t)(
∫ t R−1) log2(

∫ t R−1)dt−
∫ b

T
1

2qR(
∫ t R−1) log(

∫ t R−1)
dt.

With the use of integration by parts and the notation

K1 :=
∫ T̃

T

∫ t
T g(s)hp(s)(

∫ s R−1) log2(
∫ s R−1)ds

R(
∫ t R−1) log2(

∫ t R−1)
dt

we have

I =

[
1

log(
∫ t R−1)

∫ t

T
g(s)hp(s)(

∫ s R−1) log2(
∫ s R−1)ds

]b

T

+ K1

+
∫ b

T̃

∫ t
T g(s)hp(s)(

∫ s R−1) log2(
∫ s R−1)ds

R(
∫ t R−1) log2(

∫ t R−1)
dt− 1

2q

[
log(log(

∫ t R−1))
]b

T
.

With respect to (3.29), we can estimate:

I ≥ 1

log(
∫ b R−1)

∫ b

T
g(t)hp(t)(

∫ t R−1) log2(
∫ t R−1)dt + K1

+
∫ b

T̃

1
2q + ε

R(
∫ t R−1) log2(

∫ t R−1)
dt− 1

2q

[
log(log(

∫ t R−1))
]b

T
≥ 1

2q
+ ε + K1

+

(
1
2q

+ ε

) [
log(log(

∫ t R−1))
]b

T̃
− 1

2q
log(log(

∫ b R−1)) + 1
2q log(log(

∫ T R−1))

=
1
2q

+ ε + K1 + ε log(log(
∫ b R−1)) + K2,

where K2 = −
( 1

2q + ε
)

log(log(
∫ T̃ R−1)) + 1

2q log(log(
∫ T R−1)) is constant and therefore inte-

gral I tends to infinity as b→ ∞.

4 Remarks

Remark 4.1. Let us consider the nonoscillatory Euler type equation with the oscillation con-

stant (1.4). It is known that the function t
p−1

p is a solution of this equation. To show how our
results apply to perturbations of (1.4), consider the interval [1, ∞) and take the solution

h(t) :=
(

p
p− 1

) p−2
p

t
p−1

p .

Then R(t) = t, G = p−1
p and

∫ t
1 R−1(s)ds = log t, hence conditions (1.7) hold. Consequently,

1

2qhp(t)R(t)
(∫ t

1 R−1(s)ds
)2 =

µp

tp log2 t
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and this means that equation (1.9) becomes the Riemann–Weber type equation (1.5) and results
of the previous section reduce to those for the perturbed Riemann–Weber type equation

(Φ(x′))′ +

(
γp

tp +
µp

tp log2 t
+ g(t)

)
Φ(x) = 0. (4.1)

In particular, Theorem 3.1 with α = 1
2 reduces to [1, Corollary 2], see also [2, Theorem 3.3] in

the case n = 1. Theorem 3.2 is a generalized version of [9, Corollary 1] and also of [2, Theorem
3.3] with n = 1. Note that, since G′ = 0, condition (3.10) simplifies to

g(t)tp log3 t ≥ γ >
2γp p(p− 2)

3(p− 1)2 , γ := γ2

(
p− 1

p

)p−3

,

which is condition (3.15) from [2]. Concerning Theorem 3.3, observe that condition (3.15) is
satisfied and equation (3.14) with λ = 1

2q is equation (1.6) with n = 2. Hence, Theorem 3.3
generalizes results of [11] for n = 2. Finally, Theorem 3.4 applied to (4.1) is [13, Theorem 3.1]
in the case n = 1.

Remark 4.2. Based on the results of this paper and their comparison with those for the per-
turbed Euler type equation discussed in Remark 4.1, we suppose that we can study perturba-
tions of equation (3.14) with λ = 1

2q and find a perturbation such that the obtained perturbed
equation is conditionally oscillatory. More generally, we conjecture that the equation with
arbitrary number of iterated logarithmic terms

(Φ(x′))′ +

c(t) +
n

∑
j=0

1

2qhp(t)R(t)(
∫ t R−1(s)ds)2 Log 2

j (
∫ t R−1(s)ds)

Φ(x) = 0 (4.2)

is conditionally oscillatory (here Log 0t := 1). This would generalize the result of [11] concern-
ing equation (1.6) and give us the possibility to generalize the oscillation and nonoscillation
criteria of this paper to the case when we study perturbations of (4.2), similarly as in [2, 13],
where perturbations of (1.6) are studied.

Remark 4.3. Let us comment the particular choice of the functions x̃ in the proofs of our
results. Consider the operators L̂ and L̃ defined in (1.9) and (1.10), respectively. If x̃ is a
solution of (1.9), then x̃(t)L̃[x̃](t) = g(t)x̃p(t) and hence, when applying one of the Theorems
A, B, C to equation (1.10), the expression x̃(s)L̃[x̃](s) appearing in conditions (2.3), (2.4), (2.7),
(2.9), (2.10) is replaced by g(s)x̃p(s). It has been shown in [3, 10] that equation (1.9) has a pair
of linearly independent solutions that are asymptotically close (as t→ ∞) to the functions

x1(t) = h(t)
(∫ t

R−1(s)ds
) 1

p

,

x2(t) = h(t)
(∫ t

R−1(s)ds
) 1

p

log
2
p

(∫ t
R−1(s)ds

)
.

We have taken x̃ := x1 in the proofs of Theorem 3.1 and Theorem 3.2 and x̃ := x2 in the
proof of Theorem 3.4. Computations in proofs of these theorems together with Lemma 2.2
and Lemma 2.4 show that in both the cases x̃ := x1 and x̃ := x2, the expression x̃L̂[x̃] is small
enough such that it does not have an influence on the limits superior and inferior in conditions
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(2.3), (2.4), (2.7), (2.9), (2.10), hence the expression g(s)xp
1 (s) appears in (3.1), (3.2) and (3.12),

and g(s)xp
2 (s) appears in (3.22) and (3.23).

In the proofs of Theorem 3.3 and Theorem 3.5 we have taken x̃ := h(
∫ t R−1)

1
p log

1
p (
∫ t R−1),

since we conjecture that this function is asymptotically close to one of the solutions of (3.14)
with λ = 1

2q . This conjecture is supported by Lemma 2.3 (observe that the left-hand side
of identity (2.19) is equal to x̃(t)L̃[x̃](t)) and by the asymptotic formulas for equation (1.6)
derived in [11].
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[19] P. Řehák, Asymptotic formulae for solutions of half-linear differential equations,
Appl. Math. Comput. 292(2017), 165–177. https://doi.org/10.1016/j.amc.2016.07.020;
MR3542549; Zbl 1410.34104

[20] J. Sugie, K. Ishibashi, Integral condition for oscillation of half-linear differential equa-
tions with damping, Appl. Math. Lett. 79(2018), 146–154. https://doi.org/10.1016/j.
aml.2017.12.012; MR3748624

https://doi.org/10.1007/BF03322512
https://www.ams.org/mathscinet-getitem?mr=1742294
https://zbmath.org/?q=an:0958.34029
https://doi.org/10.1155/2011/638271
https://doi.org/10.1155/2011/638271
https://www.ams.org/mathscinet-getitem?mr=2846243
https://zbmath.org/?q=an:1232.34052
https://doi.org/10.14232/ejqtde.2017.1.69
https://doi.org/10.14232/ejqtde.2017.1.69
https://www.ams.org/mathscinet-getitem?mr=3718638
https://zbmath.org/?q=an:1413.34138
https://doi.org/10.1002/mma.4813
https://doi.org/10.1002/mma.4813
https://www.ams.org/mathscinet-getitem?mr=3805117
https://zbmath.org/?q=an:1412.34120
https://doi.org/10.14232/ejqtde.2018.1.92
https://www.ams.org/mathscinet-getitem?mr=3884523
https://zbmath.org/?q=an:1413.34139
https://doi.org/10.14232/ejqtde.2016.1.62
https://www.ams.org/mathscinet-getitem?mr=3547438
https://zbmath.org/?q=an:1389.34164
https://doi.org/10.11650/tjm.19.2015.5764
https://www.ams.org/mathscinet-getitem?mr=3434272
https://zbmath.org/?q=an:1357.26029
https://doi.org/10.1002/mma.4224
https://doi.org/10.1002/mma.4224
https://www.ams.org/mathscinet-getitem?mr=3651969
https://zbmath.org/?q=an:1388.34025
https://doi.org/10.1016/j.amc.2016.07.020
https://www.ams.org/mathscinet-getitem?mr=3542549
https://zbmath.org/?q=an:1410.34104
https://doi.org/10.1016/j.aml.2017.12.012
https://doi.org/10.1016/j.aml.2017.12.012
https://www.ams.org/mathscinet-getitem?mr=3748624

	Introduction
	Auxiliary results
	Oscillation and nonoscillation criteria for (1.10)
	Remarks

