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1 Introduction

In this paper, we are concerned with the asymptotic stability of neutral stochastic pantograph
equations with Markovian switching (NSPEwMSs)

d[x(t)− D(x(qt), t, r(t))] = f (x(t), x(qt), t, r(t))dt + g(x(t), x(qt), t, r(t))dw(t), t ≥ t0, (1.1)

where 0 < q < 1, the coefficients f : Rn × Rn × [t0, ∞)× S → Rn and g : Rn × Rn × [t0, ∞)×
S→ Rn×m are Borel-measurable, D : Rn × [t0, ∞)× S→ Rn is the neutral term and w(t) is an
m-dimensional Brownian motion. Actually, Eq. (1.1) can be regarded as a perturbed system of
the deterministic pantograph equations

d[x(t)− D(x(qt), t, r(t))]
dt

= f (x(t), x(qt), t, r(t)). (1.2)
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Since Eq. (1.2) possess a wide range of applications in applied mathematics and engineering,
the asymptotic properties and numerical analysis of the solution have been widely studied,
for example, Hale [11], Iserles et al. [5, 15–17].

As a class of special stochastic delay systems, stochastic pantograph equations (SPEs) with
unbounded delay have been investigated by many scholars, we can refer to Baker and Buck-
war [3], Appleby and Buckwar [2], Fan et al. [8, 9], Milosevic [20], Xiao et al. [35], Guo and Li
[10]. In the study of stochastic delay systems, the stability is one of the important issues and
has many important applications in practice. There are many results on the exponential sta-
bility theorem for stochastic differential delay equations (SDDEs) and SDDEs with Markovian
switching. We mention here [4, 14, 21–25, 37] among others. On the other hand, some of the
exponential stability criteria related to the moment exponential stability of solutions to neutral
SDDEs and neutral SDDEs with Markovian switching were considered in [13,18,19,26,27,34]
and the references therein. Motivated by above mentioned works, some scholars began to
study the exponential stability of SPEs with Markovian switching (SPEwMSs). For example,
Zhou and Xue [38] investigated the exponential stability of a class of SPEwMSs, where the
coefficients were dominated by polynomials with high orders. You et al. [36] discussed the
robust exponential stability of highly nonlinear SPEwMSs, in virtue of M-matrix theory, they
established exponential stability criterion for SPEwMSs. Similarly, Shen et al. [31] considered a
class of nonlinear NSPEwMSs and established the exponential stability criteria for NSPEwMSs
without the linear growth condition.

In fact, not all stochastic differential systems are exponentially stable, there are also a lot
of stochastic systems which are stable but subject to a lower decay rate other than exponential
decay. Therefore, much literatures focuses on the polynomial stability of stochastic differential
systems. We mention here only [7,29]. These two kinds of stability show that the speed which
the solution decays to zero is different. Then these stability concepts are extended to general
decay stability (see [1,6,30,32,33]). To the best of our knowledge, there is no existing result on
almost sure stability with general decay rate for NSPEwMSs (1.1). By applying the Itô formula
and the non-negative semi-martingale convergence theorem, we study the almost sure decay
stability of Eq.(1.1) and give the upper bound of general decay rate. Meanwhile, we impose
some conditions on f ,g and establish the sufficient criteria on general decay stability in terms
of M-matrix.

The paper is organized as follows. In Section 2, we introduce some hypotheses concerning
Eq. (1.1) and we establish the existence and uniqueness of solutions to NSPEwMSs under the
local Lipschitz condition and nonlinear growth condition; In Section 3, by applying the Itô
formula and stochastic inequality, we study the almost sure stability with general decay rate
for NSPEwMSs (1.1); By means of M-matrix, we establish some sufficient criteria on general
decay stability; Finally, we give two examples to illustrate our theory.

2 Preliminaries and the global solution

Let (Ω,F , P) be a complete probability space with a filtration {Ft}t≥t0 satisfying the usual
conditions. Let w(t) be an m-dimensional Brownian motion defined on the probability space
(Ω,F , P). Let t ≥ t0 > 0 and C([qt, t]; Rn) denote the family of the continuous functions ϕ

from [qt, t] → Rn with the norm ‖ϕ‖ = supqt≤θ≤t |ϕ(θ)|, where | · | is the Euclidean norm
in Rn. If A is a vector or matrix, its transpose is denoted by A>. If A is a matrix, its
norm ‖A‖ is defined by ‖A‖ = sup{|Ax| : |x| = 1}. Lp

Ft
([qt, t]; Rn) denote the family of
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all (Ft)-measurable, C([qt; t], Rn)-valued random variables ϕ = {ϕ(θ) : qt ≤ θ ≤ t} such that
E‖ϕ‖2 < ∞.

Let r(t), t ≥ t0 be a right-continuous Markov chain on the probability space (Ω,F , P)
taking values in a finite state space S = {1, 2, . . . , N} with generator Γ = (γij)N×N given by:

P(r(t + ∆) = j | r(t) = i) =

{
γij∆ + ◦(∆), if i 6= j,

1 + γij∆ + ◦(∆), if i = j.

where ∆ > 0. Here γij ≥ 0 is the transition rate from i to j, i 6= j, While γii = −∑j 6=i γij.
We assume that the Markov chain r(·) is independent of the Brownian motion w(·). Let us
consider the nonlinear NSPEwMSs

d[x(t)− D(x(qt), t, r(t))] = f (x(t), x(qt), t, r(t))dt + g(x(t), x(qt), t, r(t))dw(t), t ≥ t0 (2.1)

with initial data {x(t) : qt0 ≤ t ≤ t0} = ξ ∈ L2
Ft0

([qt0, t0]; Rn).
In this paper, the following hypotheses are imposed on the coefficients f , g and D.

Assumption 2.1. For each integer d ≥ 1, there exist a positive constant kd such that

| f (x, y, t, i)− f (x̄, ȳ, t, i)|2 ∨ |g(x, y, t, i)− g(x̄, ȳ, t, i)|2 ≤ kd(|x− x̄|2 + |y− ȳ|2), (2.2)

for those x, y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ d and (t, i) ∈ [t0, ∞)× S.

Assumption 2.2. For all u, v ∈ Rn and (t, i) ∈ [t0, ∞)× S, there exists a constant ki ∈ (0, 1)
such that

|D(u, t, i)− D(v, t, i)|2 ≤ ki|u− v|2. (2.3)

Let k0 = maxi∈S ki and D(0, t, i) = 0.

It is known that Assumptions 2.1 and 2.2 only guarantee that Eq. (2.1) has a unique maxi-
mal solution, which may explode to infinity at a finite time. To avoid such a possible explosion,
we need to impose an additional condition in terms of Lyapunov functions.

Let C(Rn × [t0, ∞)× S; R+) denote the family of continuous functions from Rn × [t0, ∞)×
KS to R+. Also denote by C2(Rn × [t0, ∞)× S; R+) the family of all continuous non-negative
functions V(x, t, i) defined on Rn × [t0, ∞)× S such that for each i ∈ S, they are continuously
twice differentiable in x. Given V ∈ C2(Rn × [t0, ∞) × S; R+), we define the function LV :
Rn × Rn × [t0, ∞)× S→ R by

LV(x, y, t, i) = Vt(x− D(y, t, i), t, i) + Vx(x− D(y, t, i), t, i) f (x, y, t, i)

+
1
2

trace[g>(x, y, t, i)Vxx(x− D(y, t, i), t, i)g(x, y, t, i)]

+
N

∑
j=1

γijV(x− D(y, t, i), t, j), (2.4)

where

Vt(x, t, i) =
∂V(x, t, i)

∂t
, Vx(x, t, i) =

(
∂V(x, t, i)

∂x1
, . . . ,

∂V(x, t, i)
∂xn

)
,

Vxx(x, t, i) =
(

∂2V(x, t, i)
∂xi∂xj

)
n×n

.
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Assumption 2.3. There exist a function V ∈ C2,1(Rn × [t0, ∞) × S; R+) and some positive
constants c1, c2, αi, (i = 0, 1, 2, 3, 4), γ > 2, such that for all (x, y, t, i) ∈ Rn × Rn × [t0, ∞)× S

c1|x|2 ≤ V(x, t, i) ≤ c2|x|2, ∀(x, t, i) ∈ Rn × [t0, ∞)× S (2.5)

and
LV(x, y, t, i) ≤ α0 − α1|x|2 + α2|y|2 − α3|x|γ + α4|y|γ. (2.6)

Lemma 2.4 (see [28]). Let p ≥ 1 and a, b ∈ Rn. Then, for any δ ∈ (0, 1),

|a + b|p ≤ |a|p
(1− δ)p−1 +

|b|p
δp−1 .

Lemma 2.5 (see [28]). Let A(t), U(t) be two Ft-adapted increasing processes on t ≥ 0 with A(0) =
U(0) = 0 a.s. Let M(t) be a real-valued local martingale with M(0) = 0 a.s. Let ζ be a nonnegative
F0-measurable random variable. Assume that x(t) is nonnegative and

x(t) = ζ + A(t)−U(t) + M(t) for t ≥ 0.

If limt→∞ A(t) < ∞ a.s. then for almost all ω ∈ Ω, limt→∞ x(t) < ∞ and limt→∞ U(t) < ∞, that
is, both x(t) and U(t) converge to finite random variables.

Theorem 2.6. Let Assumptions 2.1–2.3 hold. Then for any given initial data ξ, there is a unique global
solution x(t) to Eq. (2.1) on t ∈ [t0, ∞). Moreover, the solution has the properties that

E|x(t)|2 ≤ C (2.7)

for any t ≥ t0.

Proof. Since the coefficients of Eq. (2.1) are locally Lipschitz continuous, for any given initial
data ξ, there is a maximal local solution x(t) on t ∈ [t0, σ∞), where σ∞ is the explosion time.
Let k̄0 > 0 be sufficiently large for ‖ξ‖ < k̄0. For each integer k ≥ k̄0, define the stopping time

τk = inf{t ∈ [t0, σe) : |x(t)| ≥ k}.

Clearly, τk is increasing as k → ∞. Set τ∞ = limk→∞ τk, whence τ∞ ≤ σ∞ a.s. Note if we can
show that τ∞ = ∞ a.s., then σ∞ = ∞ a.s. So we just need to show that τ∞ = ∞ a.s.

We shall first show that τ∞ > t0
q a.s. By the generalised Itô formula (see e.g. [25]) and

condition (2.6), we can show that, for any k ≥ k̄0 and t1 ≥ t0,

EV(z(τk ∧ t1), τk ∧ t1, r(τk ∧ t1))

≤ EV(z(t0), t0, r(t0)) + E
∫ τk∧t1

t0

(
α0 − α1|x(t)|2 + α2|x(qt)|2 − α3|x(t)|γ + α4|x(qt)|γ

)
dt,

where z(t) = x(t)− D(x(qt), t, r(t)). Let us now restrict t1 ∈ [t0, t0
q ]. By condition (2.5), we

then get

c1E|z(τk ∧ t1)|2 ≤ H1 − α1E
∫ τk∧t1

t0

|x(t)|2dt− α3E
∫ τk∧t1

t0

|x(t)|γ)dt, (2.8)

where

H1 = c2E|z(t0)|2 +
∫ t0

q

t0

(
α0 + α2|x(qt)|2 + α4|x(qt)|γ

)
dt

≤ 2c2(1 + k0)E‖ξ‖2 +
1
q

E
∫ t0

qt0

(
α0 + α2|x(t)|2 + α4|x(t)|γ

)
dt < ∞.
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It then follows that
E|z(τk ∧ t1)|2 ≤

H1

c1
, t0 ≤ t1 ≤

t0

q
(2.9)

for any k ≥ k̄0. By Lemma 2.4, we get

E|x(τk ∧ t1)|2 ≤
E|z(τk ∧ t1)|2

1− δ
+

E|D(x(q(τk ∧ t1)), τk ∧ t1, r(τk ∧ t1))|2
δ

≤ E|z(τk ∧ t1)|2
1− δ

+
k0E|x(q(τk ∧ t1))|2

δ
.

This implies

sup
t0≤t1≤

t0
q

E|x(τk ∧ t1)|2 ≤
supt0≤t1≤

t0
q

E|z(τk ∧ t1)|2

1− δ
+

k0 supt0≤t1≤
t0
q

E|x(q(τk ∧ t1))|2

δ
. (2.10)

Letting δ =
√

k0, it follows from (2.9) that

sup
t0≤t1≤

t0
q

E|x(τk ∧ t1)|2 ≤
H1

c1(1−
√

k0)
+
√

k0E‖ξ‖2 +
√

k0 sup
t0≤t1≤

t0
q

E|x(τk ∧ t1)|2. (2.11)

Hence, we have

E|x(τk ∧ t1)|2 ≤
H1

c1(1−
√

k0)
+

√
k0

1−
√

k0
E‖ξ‖2, t0 ≤ t1 ≤

t0

q
. (2.12)

In particular, E|x(τk ∧ t0
q )|2 ≤

H1
c1(1−

√
k0)

+
√

k0
1−
√

k0
E‖ξ‖2, ∀k ≥ k̄0. This implies k2P(τk ≤ t0

q ) ≤
H1

c1(1−
√

k0)
+

√
k0

1−
√

k0
E‖ξ‖2. Letting k→ ∞, we hence obtain that P

(
τ∞ ≤ t0

q

)
= 0, namely

P
(

τ∞ >
t0

q

)
= 1. (2.13)

Letting k→ ∞ in (2.13) yields

E|x(t1)|2 ≤
H1

c1(1−
√

k0)
+

√
k0

1−
√

k0
E‖ξ‖2, t0 ≤ t1 ≤

t0

q
. (2.14)

Let us now proceed to prove τ∞ > t0
q2 a.s. given that we have shown (2.12)–(2.14). For any

k ≥ k̄0 and t1 ∈ [t0, t0
q2 ], it follows from (2.6) that

c1E|z(τk ∧ t1)|2 ≤ H2 − α1E
∫ τk∧t1

t0

|x(t)|2dt− α3E
∫ τk∧t1

t0

|x(t)|γ)dt, (2.15)

where

H2 = c2E|z(t0)|2 + E
∫ t0

q2

t0

(
α0 + α2|x(qt)|2 + α4|x(qt)|γ

)
dt

= H1 + E
∫ t0

q2

t0
q

(
α0 + α2|x(qt)|2 + α4|x(qt)|γ

)
dt

= H1 +
1
q

E
∫ t0

q

t0

(
α0 + α2|x(t)|2) + α4|x(t)|γ

)
dt < ∞.
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Consequently

E|z(τk ∧ t1)|2 ≤
H2

c1
, t0 ≤ t1 ≤

t0

q2 .

Similar to (2.12), we can obtain that

E|x(τk ∧ t1)|2 ≤
H2

c1(1−
√

k0)
+

√
k0

1−
√

k0
E‖ξ‖2, t0 ≤ t1 ≤

t0

q2 . (2.16)

In particular, E|x(τk ∧ t0
q2 )|2 ≤ H2

c1(1−
√

k0)
+

√
k0

1−
√

k0
E‖ξ‖2, ∀k ≥ k̄0. This implies k2P(τk ≤ t0

q2 ) ≤
H2

c1(1−
√

k0)
+

√
k0

1−
√

k0
E‖ξ‖2. Letting k → ∞, we then obtain that P(τ∞ ≤ t0

q2 ) = 0, namely P(τ∞ >
t0
q2 ) = 1. Letting k→ ∞ in (2.16) yields

E|x(t1)|2 ≤
H2

c1(1−
√

k0)
+

√
k0

1−
√

k0
E‖ξ‖2, t0 ≤ t1 ≤

t0

q2 .

Repeating this procedure, we can show that, for any integer i ≥ 1, τ∞ > t0
qi a.s. and

E|x(t)|2 ≤ Hi

c1(1−
√

k0)
+

√
k0

1−
√

k0
E‖ξ‖2, t0 ≤ t1 ≤

t0

qi ,

where Hi = 2c2(1 + k0)E‖ξ‖2 + E
∫ t0

qi

t0

(
α0 + α2|x(qt)|2 + α4|x(qt)|γ

)
dt < ∞. We must there-

fore have τ∞ = ∞ a.s. and the required assertion (2.7) holds as well. The proof is therefore
complete.

Remark 2.7. In [12, 20, 31, 36, 38], the authors proved that stochastic pantograph differential
systems has a unique solution x(t) under the local Lipschitz condition and the generalized
Khasminskii-type condition. In fact, the key of their proof is that the coefficients αi, i = 1, 2, 3, 4
of (2.6) are required to satisfy α1 ≥ α2 and α3 ≥ a4. However, in our theorem, we remove this
condition and prove that Eq. (2.1) has a unique global solution x(t). Hence, we improve and
generalize the corresponding existence results of [12, 20, 31, 36, 38].

3 Stability of neutral stochastic pantograph systems

In this section, we shall study the almost sure stability with general decay rate of NSPEwMSs
(2.1). Let us first introduce the following ψ-type function, which will be used as the decay
function.

Definition 3.1. The function ψ : R+ → (0, ∞) is said to be ψ-type function if this function
satisfies the following conditions:

(i) It is continuous and nondecreasing in R and continuously differentiable in R+.

(ii) ψ(0) = 1, ψ(∞) = ∞ and φ = supt>0 |
ψ′(t)
ψ(t) | < ∞.

(iii) For any s, t ≥ 0, ψ(t) ≤ ψ(s)ψ(t− s).

Definition 3.2. The solution of Eq. 2.1 is said to be almost surely ψ-type stable if there exists
a constant γ̄ such that

lim sup
t→∞

log |x(t)|
log ψ(t)

< −γ̄ a.s.
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Obviously, when ψ(t) = et and ψ(t) = 1 + t, this ψ-type stability implies the exponential
stability and polynomial stability, respectively.

In order to obtain the almost sure ψ-type stability of Eq. (2.1), we shall impose the following
conditions on the neutral term D.

Assumption 3.3. For all u, v ∈ Rn and (t, i) ∈ [t0, ∞)× S, there exists a constant k0 ∈ (0, 1)
and ε ≥ 0 such that

|D(u, t, i)− D(v, t, i)|2 ≤ k0ψ−ε((1− q)t)|u− v|2 (3.1)

and D(0, t, i) = 0.

Theorem 3.4. Let Assumptions 2.1, 3.3 and 2.3 hold except (2.6) which is replaced by

LV(x, y, t, i) ≤ −α1|x|2 + α2qψ−ε((1− q)t)|y|2 − α3|x|γ + α4qψ−ε((1− q)t)|y|γ (3.2)

for all (x, y, t, i) ∈ Rn × Rn × [t0, ∞)× S, where α1 > α2 ≥ 0 and α3 > α4 ≥ 0. Then for any given
initial data ξ, the solution x(t) of Eq. (2.1) has the property that

lim sup
t→∞

log |x(t)|
log ψ(t)

< −η

2
, a.s. (3.3)

where η ∈ (0, ε ∧ η̄) while η̄ is the unique root to the following equation

α1 = α2 + 2
(

1 +
k0

q

)
c2Cψη̄.

Proof. We first observe that (3.2) is stronger than (2.6). So, by Theorem 2.6, for any given initial
data ξ, Eq.(2.1) has a unique global solution x(t) on t ≥ t0. Let η ∈ (0, ε). For any t ≥ t0, by
the generalized Itô formula to ψη(t)V(z(t), t, r(t)), we obtain that

ψη(t)V(z(t), t, r(t)) = ψη(t0)V(z(t0), t0, r(t0)) +
∫ t

t0

η
ψ′(s)
ψ(s)

ψη(s)V(z(s), s, r(s))ds

+
∫ t

t0

ψη(s)LV(x(s), x(qs), s, r(s))ds + Mt,

where Mt =
∫ t

t0
ψη(s)Vx(z(s), s, r(s))g(x(s), x(qs), s, r(s))dw(s). By conditions (2.5) and (3.2),

we then compute

c1ψη(t)|z(t)|2 ≤ c2ψη(t0)|z(t0)|2 + c2ηCψ

∫ t

t0

ψη(s)|z(s)|2ds− α1

∫ t

t0

ψη(s)|x(s)|2ds

+ α2q
∫ t

t0

ψη(s)ψ−ε((1− q)s)|x(qs)|2ds− α3

∫ t

t0

ψη(s)|x(s)|γds

+ α4q
∫ t

t0

ψη(s)ψ−ε((1− q)s)|x(qs)|γds + Mt, (3.4)

where Cψ = supt0≤t<∞ |
ψ′(t)
ψ(t) | < φ < ∞. By the basic inequality |a + b|2 ≤ 2(|a|2 + |b|2) and
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the definition of ψ function, we have∫ t

t0

ψη(s)|z(s)|2ds ≤ 2
∫ t

t0

ψη(s)
(
|x(s)|2 + k0ψ−ε((1− q)s)|x(qs)|2

)
ds

≤ 2
∫ t

t0

ψη(s)|x(s)|2ds + 2k0

∫ t

t0

ψη(s)ψ−ε((1− q)s)|x(qs)|2ds

≤ 2
∫ t

t0

ψη(s)|x(s)|2ds + 2k0

∫ t

t0

ψη(s)ψ−η((1− q)s)|x(qs)|2ds

≤ 2
∫ t

t0

ψη(s)|x(s)|2ds + 2k0

∫ t

t0

ψη(qs)|x(qs)|2ds

≤ 2
k0

q

∫ t0

qt0

ψη(s)|x(s)|2ds + 2
(

1 +
k0

q

) ∫ t

t0

ψη(s)|x(s)|2ds. (3.5)

Similarly, we get

α2q
∫ t

t0

ψη(s)ψ−ε((1− q)s)|x(qs)|2ds ≤ α2

∫ t0

qt0

ψη(s)|x(s)|2ds+α2

∫ t

t0

ψη(s)|x(s)|2ds (3.6)

and

α4q
∫ t

t0

ψη(s)ψ−ε((1− q)s)|x(qs)|γds ≤ α4

∫ t0

qt0

ψη(s)|x(s)|γds+α4

∫ t

t0

ψη(s)|x(s)|γds. (3.7)

Hence,

c1ψη(t)|z(t)|2 ≤ C−
(

α1 − α2 − 2
(

1 +
k0

q

)
c2Cψη

) ∫ t

t0

ψη(s)|x(s)|2ds

− (α3 − α4)
∫ t

t0

ψη(s)|x(s)|γds + Mt, (3.8)

where

C = c2ψη(t0)|z(t0)|2 +
(

2c2ηCψ
k0

q
+ α2

) ∫ t0

qt0

ψη(s)|x(s)|2ds + α4

∫ t0

qt0

ψη(s)|x(s)|γds

≤ c2ψη(t0)(|x(t0)|2 + k0|x(qt0)|2)

+

(
2c2ηCψ

k0

q
+ α2

) ∫ t0

qt0

ψη(s)|x(s)|2ds + α4

∫ t0

qt0

ψη(s)|x(s)|γds < ∞.

Since η ∈ (0, ε ∧ η̄) and α3 > α4, then

c1ψη(t)|z(t)|2 ≤ C + Mt. (3.9)

By Lemma 2.5, we have that lim supt→∞ ψη(t)|z(t)|2 ≤ ∞ a.s. Hence, there is a finite positive
random variable ζ such that

sup
t0<t<∞

ψη(t)|z(t)|2 ≤ ζ a.s. (3.10)

Similar to (2.12), it follows that for any t1 > t0

sup
t0≤t≤t1

ψη(t)|x(t)|2 ≤
supt0≤t≤t1

ψη(t)|z(t)|2

(1−
√

k0)2
+

√
k0

1−
√

k0
ψη(t0)‖ξ‖2.

≤ ζ

(1−
√

k0)2
+

√
k0

1−
√

k0
ψη(t0)‖ξ‖2.
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This implies

lim sup
t→∞

log |x(t)|
log ψ(t)

< −η

2
a.s.

as required. The proof is therefore complete.

Remark 3.5. In Theorem 3.4, if ψ(t) = et and ψ(t) = 1 + t, then (3.3) implies that Eq. (2.1)
is almost surely exponentially stable and polynomially stable. Hence, we obtain the general
stability result as it contains both exponential and polynomial stability as special cases. In
other words, we extend these two classes of stability into the general decay stability in this
paper. And this will be fully illustrated by Examples 3.11 and 3.12.

Remark 3.6. From Theorem 3.4, the almost sure stability with general decay rate of Eq. (2.1)
has been examined and the upper bound of the convergence rate has been estimated.

Obviously, it is not convenient to check condition (3.2) of Theorem 3.4, since it is not
related to coefficients f and g explicitly. Now, we shall impose some conditions on f and g
to guarantee Theorem 3.4 and establish a sufficient criteria on almost sure ψ-type stability in
terms of M-matrix.

Let us now state our hypothesis in terms of an M-matrix, which will replace condition
(3.2).

Assumption 3.7. Let γ > 2 and assume that for each i ∈ S, there are nonnegative numbers
α2i, α3i, α4i, β1i, β2i, β3i, β4i and a real number α1i as well as bounded functions hi(·) such that

(x− D(y, t, i))> f (x, y, t, i)

≤ α1i|x|2 + α2iqψ−ε((1− q)t)|y|2 − α3i|x|γ + α4iqψ−ε((1− q)t)|y|γ (3.11)

and

|g(x, y, t, i)|2 ≤ β1i|x|2 + β2iqψ−ε((1− q)t)|y|2 + β3i|x|γ + β4iqψ−ε((1− q)t)|y|γ (3.12)

for any (x, y, t) ∈ Rn × Rn × [t0, ∞).

Assumption 3.8. Assume that

A := −diag(2α11 + β11, . . . , 2α1N + β1N)− (1 +
√

k0)Γ (3.13)

is a nonsingular M-matrix.

Lemma 3.9 (see [25]). If A ∈ ZN×N = {A = (aij)N×N : aij ≤ 0, i 6= j}, then the following
statements are equivalent:

(1) A is a nonsingular M-matrix.

(2) A is semi-positive; that is, there exists x � 0 in RN such that Ax� 0.

(3) A−1 exists and its elements are all nonnegative.

(4) All the leading principal minors of A are positive; that is∣∣∣∣∣∣∣
a11 · · · a1k
...

...
ak1 · · · akk

∣∣∣∣∣∣∣ > 0 for every k = 1, 2, . . . , N.
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In fact, by Assumption 3.8 and Lemma 3.9, it follows that

θ = (θ1, . . . , θN)
> := A−1−→1 > 0 (3.14)

for all i ∈ S, where
−→
1 = (1, . . . , 1)>.

Theorem 3.10. Let Assumptions 2.1, 3.7 and 3.8 hold. Assume that

max
i∈S

(
(2α2i + β2i)θi +

√
k0(1 +

√
k0)

N

∑
j=1

γijθj

)
< 1 (3.15)

and
min
i∈S

(2α3i − β3i)θi > max
i∈S

(2α4i + β4i)θi. (3.16)

Then for any given initial data ξ, there is a unique global solution x(t) of Eq. (2.1) and the solution is
almost surely ψ-type stable.

Proof. Let us define the function V(x − D(y, t, i), t, i) = θi|x − D(y, t, i)|2. Clearly, V obeys
conditions (2.5) with c1 = mini∈S θi and c2 = maxi∈S θi. To verify condition (3.2), we compute
the operator LV as follows

LV(x, y, t, i) = 2θi(x− D(y, t, i))> f (x, y, t, i) + θi|g(x, y, t, i)|2 +
N

∑
j=1

γijθj|x− D(y, t, i)|2. (3.17)

By the basic inequality

|a + b|2 ≤ (1 + ε)|a|2 +
(

1 +
1
ε

)
|b|2, for any a, b ≥ 0 and r ∈ [0, 1]

and Assumption 3.3, we have

|x− D(y, t, i)|2 ≤ (1 +
√

k0)|x|2 +
(

1 +
1√
k0

)
|D(y, t, i)|2

≤ (1 +
√

k0)|x|2 +
√

k0(1 +
√

k0)ψ
−ε((1− q)t)|y|2. (3.18)

By Assumption 3.7, it follows from (3.17) that

LV(x, y, t, i) ≤
(
(2α1i + β1i)θi + (1 +

√
k0)

N

∑
j=1

γijθj

)
|x|2

+

(
(2α2i + β2i)θi +

√
k0(1 +

√
k0)

N

∑
j=1

γijθj

)
qψ−ε((1− q)t)|y|2

− (2α3i − β3i)θi|x|γ + (2α4i + β4i)θiqψ−ε((1− q)t)|y|γ. (3.19)

By the definition of θi, we have

(2α1i + β1i)θi + (1 +
√

k0)
N

∑
j=1

γijθj = −1.

Hence,

LV(x, y, t, i) ≤ −α1|x|2 + α2qψ−ε((1− q)t)|y|2 − α3|x|γ + α4qψ−ε((1− q)t)|y|γ, (3.20)
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where

α1 = 1, α2 = max
i∈S

(
(2α2i + β2i)θi +

√
k0(1 +

√
k0)

N

∑
j=1

γijθj

)
,

α3 = min
i∈S

(2α3i − β3i)θi, α4 = max
i∈S

(2α4i + β4i)θi. (3.21)

Recalling (3.15) and (3.16), condition (3.2) is fulfilled. By Theorem 3.4, we can conclude that
for any given initial data ξ, there is a unique global solution x(t) and the solution of Eq. (2.1)
is almost surely ψ-type stable. The proof is therefore complete.

Finally, we shall give two examples to illustrate the applications of our results.

Example 3.11. Let w(t) be a scalar Brownian motion. Let r(t) be a right-continuous Markov
chain taking values in S = {1, 2} with the generator

Γ =

(
−1 1

4 −4

)
.

Of course, w(t) and r(t) are assumed to be independent. Consider the following scalar
NSPEwMSs

d[x(t)− D(x(0.75t), t, r(t))] = f (x(t), t, r(t))dt + g(x(0.75t), t, r(t))dw(t), t ≥ 1, (3.22)

with initial data ξ(t) = x0 (0.75 ≤ t ≤ 1) and r(1) = 1. Moreover, for (x, y, t, i) ∈ R× R×
[0.75, ∞)× S,

D(y, t, i) =

{
0.1(1 + 0.25t)−0.5y, if i = 1,

0.2(1 + 0.25t)−0.5y, if i = 2,

f (x, t, i) =

{
−x− 2x3, if i = 1,

x− x3, if i = 2,

and

g(y, t, i) =

{
0.1(1 + 0.25t)−0.5y2, if i = 1,

0.5(1 + 0.25t)−0.5y2, if i = 2.

We note that Eq. (3.22) can be regarded as the result of the two equations

d[x(t)− 0.1(1 + 0.25t)−0.5x(0.25t)]

= (−x(t)− 2x3(t))dt + 0.1(1 + 0.25t)−0.5x2(0.25t)dw(t) (3.23)

and

d[x(t)− 0.2(1 + 0.25t)−0.5x(0.25t)]

= (x(t)− x3(t))dt + 0.05(1 + 0.25t)−0.5x2(0.25t)dw(t) (3.24)

switching among each other according to the movement of the Markov chain r(t). It is easy to
see that Eq. (3.23) is polynomially stable but Eq. (3.24) is unstable. However, we shall see that
due to the Markovian switching, the overall system (3.22) will be polynomially stable. Note
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that the coefficients f and g satisfy the local Lipschitz condition but they do not satisfy the
linear growth condition. Through a straight computation, we have

(x− D(y, t, 1))> f (x, t, 1) ≤ − 0.8|x|2 + 0.05(1 + 0.25t)−1|y|2

− 1.85|x|4 + 0.05(1 + 0.25t)−1|y|4, (3.25)

(x− D(y, t, 2))> f (x, t, 2) ≤ 0.6|x|2 + 0.1(1 + 0.25t)−1|y|2

− 0.85|x|4 + 0.05(1 + 0.25t)−1|y|4, (3.26)

|g(y, t, 1)|2 ≤ 0.01(1 + 0.25t)−1|y|4, (3.27)

|g(y, t, 2)|2 ≤ 0.25(1 + 0.25t)−1|y|4 (3.28)

where ψ−ε(0.25t) = (1 + 0.25t)−1, (ε = 1) and α11 = −0.8, α21 = 0.2, α31 = 1.85, α41 =

0.2, α12 = 0.6, α22 = 0.4, α32 = 0.85, α42 = 0.2, β11 = 0, β21 = 0, β31 = 0, β41 = 0.04, β12 =

0, β22 = 0, β32 = 0, β42 = 1, γ = 4. So the inequalities (3.25)–(3.28) show that the Assumption
3.7 holds. By (3.13), we get the matrix A

A = −diag(2α11 + β11, 2α12 + β12)− (1 +
√

k0)Γ

=

(
2.8 −1.2
−4.8 3.6

)
.

It is easy to compute

A−1 =

(
0.833 0.278
1.111 0.648

)
.

By Lemma 3.9, we see that A is a non-singular M-matrix. Compute

(θ1, θ2)
T = A−1~1 = (1.111, 1.759)T,

and by (3.21), we have

α2 = max
i=1,2

(
(2α2i + β2i)θi +

√
k0(1 +

√
k0)

2

∑
j=1

γijθj

)
= 0.7851,

α3 = min
i=1,2

(2α3iθi − β3iθi) = 2.9903, α4 = max
i=1,2

(2α4iθi + β4iθi) = 2.4626.

Hence, we conclude that the conditions (3.15), (3.16) hold. By Theorem 3.4, we can obtain that

lim sup
t→∞

log |x(t)|
log t

≤ −η

2
a.s.

where η ∈ (0, 0.1159). That is to say, the solution of Eq. (3.22) decays at the polynomial rate
of at least 0.05795.

Example 3.12. Let w(t) is a scalar Brownian motion. Let r(t) be a right-continuous Markov
chain taking values in S = {1, 2} with the generator

Γ =

(
−1 1

2 −2

)
.
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Of course, w(t) and r(t) are assumed to be independent. Consider the following scalar
NSPEwMSs

d[x(t)− D(x(0.5t), t, r(t))]

= f (x(t), x(0.5t), t, r(t))dt + g(x(t), x(0.5t), t, r(t))dw(t), t ≥ 1,

(3.29)

with initial data ξ(t) = x0 (0.5 ≤ t ≤ 1) and r(1) = 1. Moreover, for (x, y, t, i) ∈ R × R ×
[0.5, ∞)× S, D(y, t, i) = 0.25e−0.5ty, i = 1, 2.

f (x, y, t, i) =

{
−3x− 2.5x3 + e−0.5ty, if i = 1

2x− 1.5x3 + 0.8e−0.5ty, if i = 2,

and

g(x, y, t, i) =

{
ρ1e−0.5ty2, if i = 1

ρ2e−0.5ty2, if i = 2,

but ρ1 and ρ2 are unknown parameters. Eq. (3.29) can be regarded as a stochastically perturbed
system of the follwing neutral pantograph equations with Markovian switching

d[x(t)− D(x(0.5t), t, r(t))]
dt

= f (x(t), x(0.5t), t, r(t)).

Our aim here is to get the bounds on the unknown parameters ρ1 and ρ2 so that Eq. (3.29)
remain stable. To apply Theorem 3.10, we let γ = 4. Noting

(x− D(y, t, 1))> f (x, y, t, 1) ≤ −1.469|x|2 + 0.25e−t|y|2 − 2.125|x|4 + 0.125e−t|y|4, (3.30)

(x− D(y, t, 2))> f (x, y, t, 2) ≤ 2.045|x|2 + 0.3e−t|y|2 − 1.219|x|4 + 0.094e−t|y|4, (3.31)

|g(x, y, t, 1)|2 ≤ ρ2
1e−t|y|4, |g(x, y, t, 2)|2 ≤ ρ2

2e−t|y|4 (3.32)

where ψ−ε(0.5t) = e−t, (ε = 2) and α11 = −1.469, α21 = 0.5, α31 = 2.125, α41 = 0.25, α12 =

2.045, α22 = 0.6, α32 = 1.219, α42 = 0.188, β11 = 0, β21 = 0, β31 = 0, β41 = 2ρ2
1, β12 =

0, β22 = 0, β32 = 0, β42 = 2ρ2
2. Then, the inequalities (3.30)–(3.32) show that the Assumption

3.7 holds. By (3.13), we see that the matrix A is

A = −diag(2α11 + β11, 2α12 + β12)− (1 +
√

k0)Γ

=

(
4.188 −1.25
−2.5 6.59

)
.

It is easy to compute

A−1 =

(
0.269 0.051
0.102 0.171

)
.

By Lemma 3.9, we see that A is a non-singular M-matrix. By (3.14), we then have θ1 = 0.32

and θ2 = 0.273. Clearly, α2 = maxi=1,2

(
(2α2i + β2i)θi +

√
k0(1 +

√
k0)∑2

j=1 γijθj

)
= 0.3569,

while condition (3.16) becomes

min{1.36, 0.665} > max{0.16 + 0.64ρ2
1, 0.103 + 0.546ρ2

2}.

i.e.,
ρ2

1 < 0.789, ρ2
2 < 1.0293. (3.33)
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By Theorem 3.10, we can conclude that if the parameters ρi, i = 1, 2 satisfy (3.33), then for any
initial data x0, there is a unique global solution x(t) to Eq. (2.1) on t ∈ [1, ∞). Moreover, the
solution has the property that

lim sup
t→∞

log |x(t)|
t

≤ −η

2
a.s.

where η ∈ (0, 0.8932). That is to say, the solution of Eq. (3.29) decays at the exponential rate
of at least 0.4466.
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