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Abstract. This paper deals with a two-species chemotaxis system

up=V-(D1(u)Vu) =V - (ux1(w)Vw) + pqu(l —u —av), x€Q, t>0,

vy =V - (Dy(v)Vo) =V - (vx2(w)Vw) + ppv(1 — apu — ), xeQ, t>0,

wy = Aw — (au + Bo)w, xeQ, t>0,
where ) C R” (n > 1) is a bounded domain with smooth boundary oQ); x;(i = 1,2) are
chemotactic functions satisfying x; > 0; the parameters i1, yto > 0,a1,a2 > 0 and a, f >
0, the initial data (ug,vp) € (C°(Q))? and wy € WV (Q) are non-negative. Based on

the maximal Sobolev regularity, it is shown that this system possesses a unique global

bounded classical solution provided that the logistic growth coefficients y; and pp are
sufficiently large.
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1 Introduction
This paper considers the following quasilinear chemotaxis system

ur=V-(D1(u)Vu) =V - (ux1(w)Vw) + pu(l —u —aqv), x€Q, t>0,
vy =V - (D2(v)Vo) =V - (vx2(w)Vw) + pupv(1 — au — v), xeQ, t>0,
wy = Aw — (au + po)w, xeQ, t>0, (1.1)

U= do—w_, x €00, t>0,
[u(x,0) = up(x), ©v(x,0)=0v0(x), w(x,0)=wp(x), xeQ,

where () C R" (n > 1) is a bounded domain with smooth boundary d() and v denotes the
outer normal vector to d(), the constants iy, yo,a1,a2, & and B are positive. We consider the
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initial data as follows

Uug € CO(Q) with ug > 0 in ),
vy € C°(Q) with 99 > 0in Q, (1.2)
wy € W (Q) with wg > 0 in Q.

The chemotactic sensitivity function x;(w) (i = 1,2) satisfy
xi(w) >0 and xj(w) > 0. (1.3)
Furthermore, we assume that the diffusion function D;(s) € C2([0,0)) (i = 1,2) as well as
D;(s) > cp,(s +1)"! foralls >0, (1.4)

where cp, > 0 and m € R. In model (1.1), u = u(x,t) and v = v(x,t) represent densities of
two populations, respectively, and w = w(x, t) denotes the concentration of oxygen.

System (1.1) is used in mathematical biology as a model to study the mechanism of two-
species chemotaxis. The model describes the nonlinear diffusion of competing species which
move towards the gradient of a substance called chemoattractant. Chemotaxis system plays a
crucial role in cellular communication, for instance, in the governing of immune cells migra-
tion, in wound healing, in tumours growth or in the organization of embryonic cell positioning
(see e.g. [3,5,38,40]).

The classical Keller-Segel model was proposed by Keller and Segel [14], and the existence
of traveling wave solutions was proved under some conditions. Based on the Keller-Segel
model, various chemotaxis models have attracted many authors to explore their mathemat-
ical properties, such as the boundedness, the stabilization of solutions and the blow-up of
solutions [4,6,8,12,17,18,21,23,24,27,34-37,39,41].

A typical chemotaxis process is considered where the signal is degraded, but not produced
by the cells. More precisely, the following oxygen consumption model is studied

{ut:V-(D(u)Vu)—XV-(qu)—i-f(u), x €O, t>0, (1.5)

vy = Av — uv, xe O, t>0,

where u and v represent the density of the bacteria and the concentration of oxygen, respec-
tively. D(u) denotes the diffusion function and f(u) is the logistic source. The analysis of
this model has attracted many interests and many results are presented. For instance, in the
absence of the logistic source (i.e. f(u) = 0), when D(u) = 1, the global bounded solutions
have been shown by Tao [20] under the condition of |vg || ) < m. For arbitrarily large
initial data, in three-dimensional case, the global bounded weak solutions and smoothness in
Q) x (T,+o0) are proved with some T > 0 by Tao and Winkler [22]. Moreover, when D (u)
satisfies (1.4), Wang et al. prove that system (1.5) possesses a unique global bounded classical
solution if m > % inthecasen =1lorm > 2 — % in the case n > 2 [32], the domain can be
extended tom > 2 — nLH in the case n > 3, but the solutions maybe unbounded in [31]. Fur-
thermore, the global bounded solutions are proved [9,33] provided that m > 2 — t2 which
improves the results in [31,32]. Recently, the diffusivity D(u) exponential decay as u — oo is
studied in [16,26].

If the logistic source f(u) = au — pyu” with v > 1 and D(u) = J in system (1.5), the global
bounded solution is studied if
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in [2]. Similarly, Lankeit and Wang [15] prove this system has global bounded solutions if
u > Cl(”)HXUOHiw(Q) + cz(n)H)(voHZZ‘Q(Q), where ¢1(n) and cy(n) are constants about n. The
chemotaxis-consumption model (1.5) with nonlinear diffusion function and nontrivial source
terms has also already been considered in [28,30].

To better discuss model (1.1), we need to mention the following two species chemotaxis(-
Navier)-Stokes system with Lotka—Volterra competitive kinetics [25]

u+V-Vu=Au—V-(ux1(w)Vw) + pyu(l —u—av), x€Q, t>0,
v+ V- -Vo=Av—V - (vx2(w)Vw) + uv(1 — au — v), xeQ, t>0,

w+V-Vw = Aw — (au + po)w, xeQ, t>0, (1.6)
Vi+x(V-VV)=AV —VP+ (yu+6v)Ve, xeQ, t>0,
V.V =0, xeQ, t>0,

which describes the evolution of two competing species that reacts on a chemoattractant in
the environment of fulling the fluid. Here u,v and w are represented as model (1.1), and V
denotes the velocity field of the fluid belonging to an incompressible Navier-Stokes equation
with pressure P. Moreover, ¢ is a potential function, and x is a constant concerning the
strength of nonlinear fluid convection. Boundedness and asymptotic behavior of model (1.6)
are researched in the case two-dimension and three-dimension [7,11,13]. When the fluid is
stationary or the effect of fluid is absent, i.e. V = 0, model (1.6) is ascribed to the fundamental
chemotaxis model (1.1).

Motivated by the arguments in [19,29,30,37,41], in this paper, we extend their method and
then obtain global boundedness of solution of model (1.1). Our main results are as follows.

Theorem 1.1. Assume Q) C R" (n > 1) is a bounded domain with smooth boundary, x;(w) (i =
1,2) satisfy (1.3), and Dy (u) and D(v) satisfy (1.4). Moreover, assume that there exists po > 0 such
that min {1, po} > po. Then for the initial data (1o, vy, wo) satisfies (1.2), system (1.1) possesses a
unique classical solution (u,v,w) which is uniformly bounded in the sense that

(- )Ly + 00 D)l o) + [[w (- D) [wiey < € forall t >0 (1.7)
with some constants C > 0.

Remark 1.2. For i = 1,2, when D;(s) = d; > 0 is constant, if

1 2d;
0< wo || 1 < min { ! ’ 1} ’
lwolli~@ 3(n 4+ DI Xill [0, 1 0p]| oo )] di+1
model (1.1) has global bounded solutions in [29], but which is independent of y; and puo.
Theorem 1.1 gives a qualitative result, namely, if y; (i = 1,2) are sufficiently large, model (1.1)
has global bounded solutions, which improves above results in some sense.

The rest of this paper is organized as follows. In the next section, we show the local exis-
tence of a solution to model (1.1) and give some preliminary inequalities those are important
for our proofs. In Section 3, we will give the complete proof of Theorem 1.1.

2 Preliminaries

In order to prove our result, we first give one result concerning local-in-time existence of a
classical solution to system (1.1).
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Lemma 2.1. Let QO C R"(n > 1) be a bounded domain with smooth boundary, ui, u, >0, a, f > 0
and ay,ay > 0. Moreover, assume that the initial data (19, vo, wo) satisfies (1.2), xi(w) (i = 1,2)
satisfy (1.3), and D1(u) and D,(v) satisfy (1.4). Then there exists t € (0, Tmax) Such that system
(1.1) has a unique local-in-time non-negative triple solution

u,0,w € C(Q X (0, Tmax)) N C>1(Q2 x (0, Tmax))- (2.1)
In addition, if Tmax < o, then

(-, )l =) + 00, ) l[o() + [ D) lwreoq) — 00 as t 7 Tmax. (2.2)
Proof. Let U = (u,v,w) € R"(n > 1). And (1.1) can be transformed to
U, = V- (A(U)VU) + F(U),

d — o, x€dQ, t>0, (2.3)
U(x,0) = (up(x),vo(x), wo(x)), x € Q,

where
D1 (u) 0 —x1(w) pu(l —u —aq1v)
AlU) = ( 0 Dy(v) —xa2(w) ) and F(U) = ( 120(1 — apu — v) ) .
0 0 1 —(au + po)w

Since the eigenvalues of A are positive, system (2.3) is normally parabolic. Applying
Theorems 14.4, 14.6 and 15.5 of [1], (2.1) and (2.2) can be proved. And the initial data satisfies
(1.2), the maximum principle ensures that 1, v and w are non-negative in Q x (0, Tax)- O

The following characteristic of the solution of the third equation in model (1.1) plays an
essential role in the later proof.

Lemma 2.2. Let (1, v, w) be the solution of model (1.1), then we have

[w(-, ) lz= () < llwollr=(a) (2.4)
forall t € (0, Tmax)-

Proof. According to the third equation of model (1.1), and the non-negative u, v, w and «, 8 > 0,
we claim result (2.4) upon an application of the maximum principle. O

Finally, we provide the result referred to as a variation of Maximal Sobolev regularity,
which was proposed in Theorem 3.1 in [10] (see also Lemma 3.1 in [6], Lemma 2.2 in [37] and
Lemma 2.2 in [30]).

Lemma 2.3. Assume that T € (0,00), we mention the following homogeneous heat equations
vy = Ay — fy, xeQ, te(0,7T),
»=0 x€dn, te(0T), @5)
y(x,0) =yo(x),  x€Q,

where yo € W2?(Q) (6 > 1) is non-negative with %ivo = 0 on Q) and any functions f €
L%((0,T); LY(Q)) are non-negative, there exists a unique solution

y € WH((0,T); L°(Q2)) N L°((0, T); W*(€0)),
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and

T T T
O dxdt // 0 dxdt //Agddt
| vt [0 ] wlaxae+ [ [ aylax
T
<C // 0 dxdt /"d /A 9d>,
_9<0 Q(f]/)x +Qyox+ Q’]/0|x

with some constant Cg > 0. Moreover, for s € (0,T), y(-,s) € W20(Q)(0 > 1) with % =0on

(2.6)

0Q), then
T T T
/ /yf’dxdt+/ /|yt|9dxdt+/ /|Ay|9dxdt
s (@) . s 09 ; QO 9 (27)
gc// ddt/-,d/A-, d>,
([ [t [ Csan [ Iyt
and
T T
/ /eet|Ay|9dxdt§C9/ /egtye\l—ﬂedxdt
s JO (28)

+C9/y dx+C9/ Ay (-,s)[0dx.

Proof. (2.6) and (2.7) are proved in [6]. Now we prove (2.8). Similar to Lemma 2.2 in [37], let
z(x,T) = e'y(x, T), then we have

zr=AMz+e"y(l—f), Qx(0,T),
%2 =0, 0Q x (0,T),
z(x,0) = zo(x), x € Q.

Using Theorem 3.1 in [10], we get

T T
/0 /Q]Az|9dxd1r§Co (/0 /397 91 - f\edxd’c—k/ y8dx+/ |Ayo!9dx>

which implies

T T
07| Ay|Pdxd <c<//9T91— 0 dxd /%1 /A 9d>.
| Lemiaylaxar < co( [ [ eyt flfaxar+ [ yhax+ | |agol'ax

Hence, we replace y(7) by y(7 +s). Then, the inequality (2.8) is obtained. O

3 Global boundedness

In this section, global boundedness of solutions is proved to model (1.1). Firstly, to prove
Theorem 1.1, we make an estimate for (u,v, w, Aw) when sy € (0, Tmax) and so < 1. Ac-
cording to Lemma 2.1, it shows that u(-,s0),v(,s0), w(:,50) € C*>(Q) with aw( o) — 0 on 3
Subsequently, we pick My > 0 such that

sup [u(-,t)[[1=) < Mo, sup [[o(-,t)[1=(q) < Mo,

0<t<sg 0<t<sg (31)
sup [|w(- t)|[1=) < Mo,  [[Aw(:,t)|[12) < Mo.
OStSSO

Next, we prove boundedness in t € (o, Tmax)-
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Lemma 3.1. Let QO C R" (n > 1) be a bounded domain with smooth boundary and x;(w) (i =1,2)
satisfy (1.3). For any p > 1 and 1 > 0, there exists pp,, > 0 such that if min{p1, 2} > pp,y, then

(s ) llere) + lloC )Ly < € forall ¢ € (so, Trmax) (3.2)
where C = C(p, |QY, u1, 42,1, 1o, vo, wo) > 0.
Proof. By direct calculations, we obtain from the first and third equations in model (1.1) that

14 ubf = /Q uP UV - (D1 (u)Vu) — V - (ux1 (w) V) + pu(l — u — a1o)]

pdt Jo
= —/ (p—l)u”’le(u)|Vu\2+/ (p — 1D u’tx1(w)Vu - Vw
0 0
P_ p+1 _ / P
+pt1/0u }41/07«1 H1a1 qu
-1
Spp‘/()Vup.v®l(w)+yl/()up_Vl-/(2up+1
:_p_l/p A_P_l/r)/ Vw2 /P_/p+1
. qudw)u) = [ @) Vel [ = [ 0,
where ®;(w) = [’ xi(s)ds (i = 1,2), so we have V®;(w) = x;(w)Vw and Ad;(w) =

Xi(w )]Vw\z —i—)(l( )Aw. Thanks to xi(w) >0 (i =1,2), we arrive at

1d 1 -1
pdt/ul’g—r);/ou”—pp/Qupxl(w)Aw%—(yl—Fp:; >/Qu”—y1/0up+l (3.3)

for all t € (o, Tmax)- For any € > 0, based on Young’s inequality, we conclude

<H1+p+1>/up§8/ w41 |Qf (3.4)
p o} Q

-1
—L/ upxl(w)Awg/ uPf x1(w)|Aw| §M1/ uPf | Aw|
p Ja o) o)
g;y/ up+1+cz17_pr+1/ |Aw|Pt,
0

where x;(w) < M; := xi(|[wol|r~(q)) due to xj(w) > 0 (i = 1,2) and (2.4), and constants
1= ﬁ(l%— =) Pe P (g + pzl)’”l > 0and c; = sup,.; %(1 + ) P < oo. Inserting (3.4)
and (3.5) into (3 3), we have

GG L)< -0 (G L) —n—emn [ ur

and

(3.5)

(3.6)
+C217”’M’1”+1/Q\Aw\”“+c1|Q\.
Applying the variation-of-constants formula to the inequality (3.6), it shows that
1 1 t
2 up(h) < e 2 / WP (- s0) — (g — € — / o~ (p+1)(t=s) / uPH
S RUCOE o s = —e=n) | i
_’_CzﬂprPH/ —(p+1)(t—s / ‘Aw‘p+1+cl‘0‘/ —(p+1)(t—s)
(3.7)

_ (]/ll —e— —(p+1)t / / p+1 sy pt1
50

— +1 _
+con pr e (p+1)t /S/er—i-lsmw|p+l+c3
0
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for all t € (s, Tmax), Where c3 = c1|0|ﬁ + % Jo uP(-,50) > 0. According to Lemma 2.3, there
exists C, > 0 such that

t
/ / e(p+1)5|Aw|p+1
S0 Q
t
< Cp/ / P51 — (au + Bo) [P+ + Cp/ wP(-,50) + Cp/ |Aw(-,s0)|PT
s0 /O Q Q
t
< cp/ / e<P+1>swP+l\(au+5v)+1;P+1+c,,/ wr’+l<-,s0)+c,,/ Aw(-,50) [P+,
s0 /O Q Q
Thanks to the inequality (a + b)? < 24(a + bd) with a,b > 0 and d > 1, we have
Cm_prﬂe_(pH)t /t/ e(p-i—l)s‘Aw’p—i-l
S0 O
< Czﬂ_pr+1Cp€_(p+l)t /t/ e(p+1)swp+12p+l[1 + ((xu + ﬁv)p—i-l]
s0 JQ
+ oy PMY T Cpem (P! </ wp+1(',50)+/ |Aw('/80)|p+l>
O Q
t
< Czﬂ*prHCP/ / e~ (PHD(E=s) gur+L P+l | 92042 ()P +L | 9242 Bry)P ]

(3.8)

+1
+ con P MY Cpe™ (0|, SO)HszH(Q)

:CmprfHef(pﬂ)t [C4/ / (PHDs P+l | o /t/ e(p+1)svp+1:|
so /O so JQ
+ Czﬂ_pr—HC(t),

1 1
where ¢4 = C,2% 2 Jwo|]+ ) €5 = Cp22 267 [[wo | ), and
t
c(t) = Cpe~ (p+1)t |lw(-, So)Hsz+1( ot szpﬂ/ / o~ (P+1)(t=s) ,p+1

1 1
Scl’”w('/SO)Hg\Z,pH( )+C 2p+1HwOHp+ ‘Q’/ P+1 t S S

1 9] 1
_ cp||w(.,so)||§;,p+1( ﬁmc 2 w12 = .

Inserting (3.8) into (3.7), we obtain

1/ up( t) < — (I/ll_g_;?)e_(p+l)t /t/ e(p+l)5up+1
pla 7~ s /0
+C2C4T]—pr+1e—(p+1)t/t/ p(p+1)s pH1 (3.9)
s9 JQ

t
—|—C2c5yl*pr+187(p+1)f/ /()e(p+1)svp+l + ¢y
0

with some c7 > 0. Similarly,

1 t
il PO < — (p— e — *(P+1)f/ / (p+1)syp+1
RSO Sl ) R
+C2CSW—pM§+1e—(p+1)t /t/ e(}?+1)svp+l (310)
S0 (@)

t
+C2C41]_ng+1e_(p+l)t/ /Qe(“l)su’ﬂrl + cg
S
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with some cg > 0. Adding (3.9) and (3.10), we have

;[/Oup(-,t)nL/va(-,t)}

t
— (1 —e—1—cocay PMIT - 0204’77PM§H)6’7(HW/ / el lsypt (3.11)
S0 Q

t
(2 —e— 5 — cocsyPMEY! - CZCSU,prH)[(pH)t/ / e(PHDspptl 4 o
S0 Q

with some c9 > 0.
Let jp, = max {n + czc417_PM’f+l + C2c417_pM§+1,17 + C2C517_pM§+1 + C2C517_pr+1}, we
can choose € € (0, min{p1, pi2} — pip,y) such that
Hi—€e—1— c2C417’pr+1 - czcyprgH >0
and
Up—E€— 1 — C2C51’]_pM§+l - CZC517_pr+1 > 0.

Hence, using (3.11), we conclude

H/Qup(.,t)+/gvp<-,t)] <

for all t € (o, Tmax ), With some constant cg = co(u1, H2,€, 1, p, w(so)). O
Now our main result can be easily obtained.

Proof of Theorem 1.1. Applying Moser-type iteration techniques, which can be found in Lemma
A.11in [21] (see also [10]). Firstly, we claim that there is a constant pg > n, such that if

[ D)o@ + 10 D) <o

for all p > pp and t € (o, Tmax), then there exists ¢19 > 0 such that
(-, )| =) + [ Do) + (- B) [y < c10 (3.12)

for all t € (s, Tmax). Assume that p satisfies

éggym p = mf (max{iy + cocynPo (M’go+1 + MPO+ ) 1+ cacsny PO (Mgo+1 + Mfﬁl) }) = o,

where ¢; = C, 22P0+2apo+1Honp0JE q) and ¢k = Cp22P0t2protl|jwg Hp°+ () According to

mm{yl,yz} > o, we have min{yuy, y2} > pp,, for some 7 > 0. Hence, using Lemma 3.1
implies (3.12) is true for t € (So, Tmax). Due to (3.1) and Lemma 2.2 we obtain that u,v, w
are bounded in (0, Tmax). Finally, in view of Lemma 2.1 we can complete the proof of Theo-
rem 1.1. ]
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