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Abstract. This article analyzes nonlinear, second-order difference equations subject to
“left-focal” two-point boundary conditions. Our research questions are:

RQ1: What are new, sufficient conditions under which solutions to our “discrete” prob-
lem will exist?;

RQ2: What, if any, is the relationship between solutions to the discrete problem and so-
lutions of the “continuous”, left-focal analogue involving second-order ordinary
differential equations?

Our approach involves obtaining new a priori bounds on solutions to the discrete prob-
lem, with the bounds being independent of the step size. We then apply these bounds,
through the use of topological degree theory, to yield the existence of at least one solu-
tion to the discrete problem. Lastly, we show that solutions to the discrete problem will
converge to solutions of the continuous problem.
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equation, ordinary differential equation.
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1 Introduction

This paper considers the nonlinear, second-order difference equation

∆∇xi

h2 = f
(

ti, xi,
∆xi

h

)
, i = 1, . . . , n− 1; (1.1)
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subject to the “left-focal” boundary conditions

∆x0

h
= C, xn = D. (1.2)

Our research questions are:

RQ1: What are new, sufficient under which solutions to the “discrete” problem (1.1), (1.2)
will exist?;

RQ2: What, if any, is their relationship to solutions of the “continuous”, left-focal analogue
involving the following second-order ordinary differential equation

x′′ = f (t, x, x′), t ∈ [0, N]; (1.3)

x′(0) = C, x(N) = D? (1.4)

Part of our motivation for posing and exploring these research questions may be found
by drawing on the works of Franklin and Bell. For example, “Perhaps the most deep-rooted
contrast [in mathematics] is that between discrete and continuous. It is so ubiquitous in math-
ematics that the lack of a straightforward overview of the whole topic and explanation of its
significance is astonishing” [4, p. 356]. In addition, “A major task of mathematicians today is
to harmonize the continuous and the discrete, to include them in one comprehensive math-
ematics, and to eliminate obscurity from both” [1, pp. 13–14]. Thus, by investigating our re-
search questions and the connection between difference equations and differential equations,
our work aims to illuminate these particular areas.

Above, f : [0, N]×R2 → R is a continuous, nonlinear function; C and D are constants;
N > 0 is a constant; the step size is h = N/n with h ≤ N/2; and the grid points are ti = ih
for i = 0, . . . , n. The differences are given by:

∆xi :=

{
xi+1 − xi, for i = 0, . . . , n− 1,

0, for i = n;

∇xi :=

{
xi − xi−1, for i = 1, . . . , n,

0, for i = 0;

∆∇xi :=

{
xi+1 − 2xi + xi−1, for i = 1, . . . , n− 1,

0, for i = 0 or i = n.

Equations (1.1), (1.2) are collectively termed as a “discrete”, two-point boundary value
problem (BVP) with left-focal boundary conditions; while (1.3), (1.4) are altogether known as
a “continuous”, two-point boundary value problem (BVP) with left-focal boundary conditions.
Both these equations can for useful tools in mathematical modelling [3, 21, 22].

Knowing an equation has one or more solutions is important from both a modelling and
theoretical point of view [19, p. 794]. Gaines [5], Lasota [8] and Myjak [10] were pioneers in
advancing our knowledge of the existence, uniqueness and approximation of solutions to dis-
crete equations. They each creatively applied fixed-point methods to discrete boundary value
problems, including approaches involving: contractive maps; a priori bounds on solutions; and
lower and upper solutions. In more recent times, authors such: as Henderson and Thomp-
son [6, 7]; Thompson [14], Thompson and Tisdell [15–17]; Rachůnková and Tisdell [11, 12];
and Tisdell [18] have approached the challenges of existence, uniqueness and approximation
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of solutions to discrete boundary value problems through topological degree and monotone
iterative methods. Bohner [2] has explored discretizations of the Sturm–Liouville eigenvalue
problem for linear equations and the asymptotic behaviour of solutions.

The present work differs from the above papers by formulating novel inequalities on the
right-hand side of our difference equation. This is based on using a nonstandard Lyapunov
function that involves the square of a difference of a solution, rather than the standard ap-
proach that employs the square of a solution. It is through this approach that we establish
novel a priori bounds on solutions. “A priori bounds on potential solutions to differential equa-
tions give us an estimate on the size of the solutions without having to explicitly compute the
solutions” [20, p. 1088]. These ideas are then applied to address our first research question
RQ1.

Because our new bounds are independent of the step size, the ideas yield a computational
procedure for approximating solutions to the continuous problem (1.3), (1.4), enabling us to
present a connection involving the convergence of solutions between the discrete problem and
the continuous problem, addressing our second research question RQ2. In this way, we aim
to illuminate the connection between the discrete and continuous, responding to the earlier
quotes of Bell and Franklin, and also the work of Bohner and Peterson [3] on time scales.

2 Preliminaries

In this section some notation and results are provided that will be used throughout this work.
A solution to (1.1) is a vector x̃ = {xi}n

i=0 ∈ Rn+1 that satisfies (1.1) for each i = 1, . . . , n− 1.
A solution to (1.1) is a continuously twice-differentiable function x : [0, N] → R (denoted

x ∈ C2([0, N])) that satisfies (1.1) for each t ∈ [0, N].
The following well known result transforms the analysis of BVPs to the analysis of equiv-

alent integral/summation equations.

Lemma 2.1. Let f : [0, N]×R2 → R be continuous. The discrete BVP (1.1), (1.2) has the equivalent
summation equation representation

xi = h
n−1

∑
j=1

G(ti, tj) f
(

tj, xj,
∆xj

h

)
+ D− C(N − ti), i = 0, . . . , n (2.1)

where

G(ti, tj) :=

{
−(N − ti), for 1 ≤ j ≤ i− 1 ≤ n− 1;

−(N − tj), for 1 ≤ i ≤ j ≤ n− 1.
(2.2)

Similarly, the continuous BVP (1.3), (1.4) has the equivalent integral equation representation

x(t) =
∫ N

0
G(t, s) f (s, x(s), x′(s)) + D− C(N − t) ds, t ∈ [0, N]. (2.3)

Proof. Both (2.1) and (2.3) are well known and can be verified directly.

3 Main results

This section contains the main results on a priori bounds and existence of solutions to (1.1),
(1.2). Our approach involves formulating new bounds via discrete (or difference) inequalities
and then applying these bounds to our boundary value problem.
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Theorem 3.1. If there is a constant K ≥ 0 such that x̃ ∈ Rn+1 satisfies(
∆xi

h

)(
∆∇xi

h2

)
≤ K, for i = 1, 2, . . . , n− 1 (3.1)

and x̃ satisfies (1.2), then

|xi| ≤ |C|+ N
√

C2 + 2KN, for i = 0, . . . , n (3.2)∣∣∣∣∆xi

h

∣∣∣∣ ≤ √C2 + 2KN, for i = 0, . . . , n− 1. (3.3)

Proof. We prove the bound (3.3) first. Then we use (3.3) to obtain (3.2). Let x̃ satisfy (3.1) and
(1.2). Define the discrete Lyapunov function r̃ by

ri := (∆xi)
2, for i = 0, 1, . . . , n− 1.

By the discrete product rule we have

∇ri = (∆∇xi)(∆xi) + (∆∇xi)(∆xi−1)

= 2(∆∇xi)(∆xi)− (∆∇xi)
2

≤ 2(∆∇xi)(∆xi).

Thus we have
∇ri

h2 ≤ 2
(

∆∇xi

h2

)(
∆xi

h

)
h

≤ 2Kh

where we have used (3.1). Summing the previous inequality we obtain

1
h2

i

∑
k=1
∇rk ≤

i

∑
k=1

2Kh

= 2Khi

≤ 2KN.

Thus
ri − r0

h2 ≤ 2KN

which we can rearrange to form
ri

h2 ≤
r0

h2 + 2KN

= C2 + 2KN.

where we have used (1.2). The estimate (3.3) now follows.
To prove the a priori bound (3.2) consider

|xi| − |xn| ≤ |xn − xi|

=

∣∣∣∣∣h n−1

∑
k=i

∆xk

h

∣∣∣∣∣
≤ h

n−1

∑
k=i

√
C2 + 2KN

= h(n− i)
√

C2 + 2KN

≤ N
√

C2 + 2KN
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where we have applied the bound (3.3). Thus, (3.2) holds.

In the next result we apply the findings from the previous theorem to produce a priori
bounds on all possible solutions to (1.1), (1.2) with the bounds being independent of the step
size h > 0.

Theorem 3.2. Let f : [0, N]×R2 → R. If there is a K ≥ 0 such that

q f (t, p, q) ≤ K, for all (t, p, q) ∈ [0, N]×R2 (3.4)

then all solutions x̃ to (1.1), (1.2) satisfy the a priori bounds (3.2) and (3.3).

Proof. Let x̃ solve (1.1), (1.2). If (3.4) holds then for i = 1, 2, . . . , n− 1 we have

K ≥
(

∆xi

h

)
f
(

ti, xi,
∆xi

h

)
=

(
∆xi

h

)(
∆∇xi

h2

)
.

Thus the conditions of Theorem 3.1 hold. Hence the a priori bounds (3.2) and (3.3) hold with
both bounds independent of the step size h > 0.

We are now in a position to apply the preceding results to obtain the existence of at least
one solution to (1.1), (1.2).

Theorem 3.3. Let f : [0, N]×R2 → R be continuous and consider (1.1), (1.2). If there is a constant
K ≥ 0 such that (3.4) holds then the discrete BVP (1.1), (1.2) has at least one solution x̃ ∈ Rn+1.

Proof. In view of Lemma 2.1, consider the operator T̃ : Rn+1 → Rn+1 defined by

(T̃x̃)i = h
n−1

∑
j=1

G(ti, tj) f
(

tj, xj,
∆xj

h

)
+ D− C(N − ti), i = 0, . . . , n (3.5)

so that the equation
T̃x̃ = x̃ (3.6)

is equivalent to the problem (1.1), (1.2). Consider the family of problems associated with (3.6),
namely

λT̃x̃ = x̃, λ ∈ [0, 1]. (3.7)

Consider the set Ω defined by

Ω :=
{

ỹ ∈ Rn+1 : |yi| ≤ |C|+ N
√

C2 + 2KN + 1,
∣∣∣∣∆yi

h

∣∣∣∣ ≤ √C2 + 2KN + 1
}

.

We show that for each fixed λ ∈ [0, 1], all potential solutions to (3.7) must lie in the interior
of Ω.

Now, (3.7) is equivalent to the family of discrete BVPs

∆∇xi

h2 = λ f
(

ti, xi,
∆xi

h

)
, i = 1, . . . , n− 1; (3.8)

∆x0

h
= λC, xn = λD. (3.9)
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We show that the right-hand side of (3.8) satisfies (3.4). By assumption, f satisfies (3.4) so that
for all λ ∈ [0, 1] and all (t, p, q) ∈ [0, N]×R2 we have

qλ f (t, p, q) ≤ λK

≤ K.

Thus, by Theorem 3.2, for each fixed λ ∈ [0, 1], all potential solutions to (3.8), (3.9) satisfy

|xi| ≤ |λC|+ N
√
(λC)2 + 2KN ≤ |C|+ N

√
C2 + 2KN (3.10)∣∣∣∣∆xi

h

∣∣∣∣ ≤ √(λC)2 + 2KN ≤
√

C2 + 2KN. (3.11)

Hence all potential solutions to (3.7) lie within the interior of Ω.
Thus, if I is the identity operator, then the Brouwer degree d(I − λT̃, Ω, 0̃) is well defined

and independent of λ [9, Chap. 3]. Thus,

d(I − λT̃, Ω, 0̃) = d(I − T̃, Ω, 0̃)

= d(I, Ω, 0̃)

6= 0.

We have d(I, Ω, 0̃) 6= 0 because 0̃ ∈ Ω.
Thus, we have shown d(I− T̃, Ω, 0̃) 6= 0 and so by the nonzero property of Brouwer degree

we conclude that there exists at least one solution to (3.7) that lies in Ω.

Let us discuss a simple example to illustrate one way of applying our new results.

Example 3.4. Consider the discrete problem with N = 1:

∆∇xi

h2 = −
(

∆xi

h

)3

x2
i , i = 1, . . . , n− 1 (3.12)

∆x0

h
= 1, xn = 1. (3.13)

Consider

q f (t, p, q) = q[−q3 p2] = −q4 p2

≤ 0.

Thus we see the conditions of Theorem 3.3 hold with K = 0. The existence of at least one
solution to our example (3.12), (3.13) follows.

Remark 3.5. We can see from (3.4) that our class of f (t, p, q) is sensitive to dependency in its
third variable q. While this may show one limitation of Theorem 3.2, our inclusion of Example
3.4 illustrates that the ideas do enjoy tangible applications to examples never-the-less.

4 A discrete approach to differential equations

In this final section we build a relationship between solutions to the discrete BVP (1.1), (1.2)
and solutions to the continuous BVP (1.3), (1.4). We construct a sequence of continuous
functions that are based on the solutions to (1.1), (1.2) and furnish some conditions under
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which they will converge to a function as h → 0, with this limit function being a solution to
(1.3), (1.4). This approach leverages the discrete problem to produce existence results for the
continuous problem.

Our next result involves a bound on the solutions and their differences to (1.1), (1.2), with
the bounds being independent of h.

We will need the following notation from [5] which we reproduce for completeness and
convenience. Denote the sequence nm → ∞ as m → ∞; let 0 < hm = N/nm; and let tm

i = ihm

for i = 0, . . . , n. If (1.1), (1.2) has a solution for h = hm and m ≥ m0 that we denote by

x̃m := (xm
0 , . . . , xm

n ) (4.1)

then we construct the following sequence of continuous functions from (4.1) via linear inter-
polation to form

xm(t) := xm
i +

(xm
i+1 − xm

i )

hm
(t− tm

i ), tm
i ≤ t ≤ tm

i+1; (4.2)

for m ≥ m0 and t ∈ [0, N]. Note that xm(tm
i ) = xm

i for i = 0, . . . , n.
Furthermore, define vm

i := (xm
i − xm

i−1)/h and similarly construct the sequence of continu-
ous functions vm on [0, N] by

vm(t) :=

vm
i +

vm
i+1 − vm

i

hm
(t− tm

i ), for tm
i ≤ t ≤ tm

i+1;

vm
1 , for 0 ≤ t ≤ tm

1 .
(4.3)

Lemma 4.1. Let f : [0, N]×R → R be continuous and let R ≥ 0 and T ≥ 0 be constants. If (1.1),
(1.2) has a solution for h ≤ hm and m ≥ m0 that we denote by x̃m with

max
i=0,...,n

|xm
i | ≤ R, m ≥ m0; (4.4)

max
i=0,...,n−1

∣∣∣∣∆xm
i

h

∣∣∣∣ ≤ T, m ≥ m0; (4.5)

then (1.3), (1.4) has a solution x = x(t) that is the limit of a subsequence of (4.2).

Proof. The proof is quite similar to that of [5, Lemma 2.4] and so is only sketched.
For m ≥ m0 consider the sequence of functions xm(t) for t ∈ [0, 1] in (4.2). We show that the

sequence of functions xm is uniformly bounded and equicontinuous on [0, 1]. For t ∈ [tm
i , tm

i+1]

and m ≥ m0 we have

|xm(t)| ≤ |xm
i |+

∣∣∣∣ (xm
i+1 − xm

i )

hm

∣∣∣∣ |t− tm
i |

≤ R + TN.

Similar calculations show that vm is uniformly bounded on [0, N].
For β, γ ∈ [0, N] and given ε > 0, consider

|xm(β)− xm(γ)| ≤
∣∣∣∣ (xm

i+1 − xm
i )

hm

∣∣∣∣ |β− γ|

≤ T|β− γ|
< ε
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whenever |β− γ| < δ(ε) := ε/T. Thus, xm is equicontinuous on [0, N].
A similar argument shows vm is equicontinuous on [0, N].
The convergence theorem of Arzelà–Ascoli [13, p. 527] guarantees that the sequence of

continuous functions xm = xm(t) has a subsequence xk(m)(t) which converges uniformly to a
continuous function x = x(t) for t ∈ [0, N]. That is,

max
t∈[0,N]

|xk(m)(t)− x(t)| → 0, as m→ ∞

Similarly, vm = vm(t) has a subsequence vk(m)(t) that converges uniformly to a continuous
function y = y(t) for t ∈ [0, N]. That is,

max
t∈[0,N]

|vk(m)(t)− y(t)| → 0, as m→ ∞.

Additionally, it can be shown that x′ = y on [0, N].
The continuity of f ensures that the above limit function will be a solution to (1.3), (1.4).

The next theorem is motivated by [5, Theorem 2.5] and needs the following notation. If
(1.1), (1.2) has a solution x̃ for 0 < h ≤ h0 then we define the continuous function x(t, x̃) by

x(t, x̃) := xi +
(xi+1 − xi)

h
(t− ti), ti ≤ t ≤ ti+1

and define the continuous function v(t, x̃) by

v(t, x̃) :=


xi − xi−1

h
+

xi+1 − 2xi + xi−1

h2 (t− ti), for ti ≤ t ≤ ti+1;

x1 − x0

h
, for 0 ≤ t ≤ t1.

(4.6)

Theorem 4.2. Let f : [0, N]×R2 → R be continuous and let R ≥ 0 and T ≥ 0 be constants. Assume
(1.1), (1.2) has a solution for h ≤ h0 that we denote by x̃ with

max
i=0,...,n

|xi| ≤ R. (4.7)

max
i=0,...,n−1

∣∣∣∣∆xi

h

∣∣∣∣ ≤ T (4.8)

Given any ε > 0 there exists a δ = δ(ε) such that if h ≤ δ then (1.3), (1.4) has a solution x = x(t)
with

max
t∈[0,N]

|x(t, x̃)− x(t)| ≤ ε (4.9)

max
t∈[0,N]

|v(t, x̃)− x′(t)| ≤ ε (4.10)

Proof. Suppose, for some ε > 0, there is a sequence hm such that hm → 0 as m → ∞ and
for h = hm = N/nm (1.1), (1.2) has a solution x̃m with every solution x = x(t) to (1.3), (1.4)
satisfying at least one of

max
t∈[0,N]

|x(t, x̃)− x(t)| > ε (4.11)

max
t∈[0,N]

|v(t, x̃)− x′(t)| > ε. (4.12)
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By assumption, for m sufficiently large, there is a R ≥ 0 and T ≥ 0 such that the solution x̃m

to (1.1), (1.2) satisfies

max
i=0,...,n

|xm
i | ≤ R

max
i=0,...,n−1

|vm
i | ≤ T.

Thus, the conditions of Lemma 4.1 are satisfied and so we obtain a subsequence xk(m)(t) of
xm(t) and a subsequence vk(m)(t) of vm(t) that converge uniformly on [0, N] to a solution x of
(1.3), (1.4). Thus, the inequalities (4.11) or (4.12) cannot hold.

We now relate the above abstract results to the ideas from earlier sections.

Theorem 4.3. Let the conditions of Theorem 3.3 hold. Given any ε > 0 there is a δ = δ(ε) such that
if h ≤ δ then (1.3), (1.4) has a solution x that satisfies (4.9) and (4.10).

Proof. We claim that the conditions of Theorem 4.2 are satisfied. The solution x̃ to (1.1),
(1.2) ensured to exist by Theorem 3.3 satisfies |xi| ≤ R for i = 0, . . . , n and |∆xi/h| ≤ T for
i = 0, . . . , n− 1 with R the bound in (3.2) and T the bound in (3.3). Thus (4.7) and (4.8) hold.
All of the conditions of Theorem 4.2 hold and the result follows.

Let us conclude with an example to illustrate the ideas of this section.

Example 4.4. Consider the following continuous problem with N = 1:

x′′ = −
(
x′
)3 x2, (4.13)

x′(0) = 1, x(1) = 1. (4.14)

This is the continuous cousin of the problem discussed in Example 3.4 where we verified that
the conditions of Theorem 3.3 were satisfied. Thus, we see that we may apply Theorem 4.3 to
(4.13), (4.14). That is, given any ε > 0 there is a δ = δ(ε) such that if h ≤ δ then the continuous
problem (4.13), (4.14) will admit at least one solution x = x(t) that satisfies (4.9) and (4.10).
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