
Electronic Journal of Qualitative Theory of Differential Equations
2019, No. 36, 1–21; https://doi.org/10.14232/ejqtde.2019.1.36 www.math.u-szeged.hu/ejqtde/

Solvability of some classes of
nonlinear first-order difference equations
by invariants and generalized invariants

Stevo StevićB
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Abstract. We introduce notion of a generalized invariant for difference equations, which
naturally generalizes notion of an invariant for the equations. Some motivations, ba-
sic examples and methods for application of invariants in the theory of solvability of
difference equations are given. By using an invariant, as well as, a generalized invari-
ant it is shown solvability of two classes of nonlinear first-order difference equations
of interest, for nonnegative initial values and parameters appearing therein, consider-
ably extending and explaining some problems in the literature. It is also explained
how these classes of difference equations can be naturally obtained from some linear
second-order difference equations with constant coefficients.
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1 Introduction

Throughout the paper, N, N0, Z, R, C, stand for natural, nonnegative, integer, real and
complex numbers, respectively. If k, l ∈ Z, then j = k, l stands for the set of all j ∈ Z such that
k ≤ j ≤ l.

Solvability of difference equations and systems of difference equations, and finding ana-
lytic relations for their solutions, is a very popular topic for a wide audience (see, for example,
[1–43] and the related references cited therein). Due to the recent use of computers, the topic
considerably reattracted some interest, although there are some issues with the new concept
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of investigation of the equations and systems (some comments of ours on such issues can be
found, for example, in [28, 37, 41, 43]; the basic issue is a lack of use of theory of difference
equations in many recent papers in the topic).

1.1 Some history

One of the basic difference equations is the following linear first-order one:

xn+1 = anxn + bn, n ∈N0, (1.1)

where coefficients (an)n∈N0 , (bn)n∈N0 and initial value x0 are real or complex numbers. Of
course, equation (1.1) can be considered in more abstract settings. For example, all the objects
in the equation can be matrices, operators etc., but here we are interested in scalar difference
equations. Equation (1.1) generalizes recurrent relations satisfied by arithmetic and geometric
progressions (many problems on the progressions can be found, for example, in problem
books [2, 12]).

Equation (1.1) can be solved in several ways. How the equation can be solved was known
to Lagrange yet. Namely, in [13], he copied a method for solving the linear first-order dif-
ferential equation, and solved the equation by searching its general solution in the following
form xn = unvn, n ∈ N0, where un is a solution to the corresponding homogeneous equa-
tion un+1 = anun, n ∈ N0. This implies that vn satisfies the relation vn+1 = vn +

bn
unan

, when
unan 6= 0, n ∈N0. From these two relations he first found un and then vn in a bit complicated
and not quite correct way from the point of view of present mathematics. Laplace later in
[15] found a method for solving equation (1.1) corresponding to the one for solving the linear
first-order differential equation by multiplying it by integrating factor. For some later presen-
tations of these and some other methods for solving the equation see, for example, [9, 17, 19]
(book [19] explains all three methods corresponding to those for solving the linear first-order
differential equation).

Equation (1.1) is one of the most useful difference equations and appears in many areas
of mathematics and science, and many solvable difference equations are essentially reduced
to its special cases (see, for example, [1, 4, 9, 17, 19, 25, 28, 29, 32–35, 40] for various applications
of the equation). Moreover, the solvability of even more complex difference equations and
systems such as those in [30, 31, 36, 38, 39, 42] is essentially consequence of the solvability
of equation (1.1). This means that equation (1.1) is one of the most important difference
equations, especially in the solvability theory. For some other solvable difference equations
and systems of difference equations and related topics see also [2,3,9–18,20] and the references
therein.

If sequences (an)n∈N0 and (bn)n∈N0 are constant, that is, an = a, bn = b, n ∈ N0, for some
a, b ∈ R (or C), then, naturally, there are more ways for solving the equation, which in this
case becomes

xn+1 = axn + b, n ∈N0. (1.2)

Equation (1.2) was also solved by Lagrange in [13], where he used the formula for general
solution to equation (1.1) obtained therein, summed up a geometric progression, and obtained
that

xn = anx0 + b
an − 1
a− 1

, n ∈N0, (1.3)
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when a 6= 1 (case a = 1 was not mentioned in [13] probably because of its simplicity).
The first nontrivial difference equation which was solved in closed form seems the linear

second-order difference equation with constant coefficients, that is, the following one:

xn+2 = pxn+1 + qxn, n ∈N0, (1.4)

where p and q are fixed numbers such that q 6= 0 (if q = 0 then it is obviously obtained a
special case of equation (1.2) defining geometric progressions).

General solution to equation (1.4) in the case p2 + 4q 6= 0 was found first by de Moivre,
who coined the notion recurrent sequence in [6]. Necessary ingredients for solving the equation
can be found in [5] and [6], but the solution was presented later in [7]. By using generating
functions, he showed that if λ1,2 are the zeros of the polynomial P2(λ) = λ2 − pλ− q, then
general solution to equation (1.4) can be written in terms of λ1,2 and initial values x0 and x1

as follows

xn =
(x0λ2 − x1)λ

n
1 + (x1 − x0λ1)λ

n
2

λ2 − λ1
, n ∈N0. (1.5)

The corresponding formula for general solution in the case p2 + 4q = 0, can be found in
Euler’s book [8] where was given more comprehensive theory on the difference equations
known up to 1748, than in books by de Moivre. For some other historical details see [37].

Equations (1.2) and (1.4) are closely related, which had been already noticed by Lagrange
in [13]. Namely, if we know formula (1.3), then the de Moivre formula can be obtained by
using essentially an idea from [13]. This can be found in many papers and books ([12, 19]).

1.2 Some motivations for using invariants in solvability

General solution to equation (1.2) can be obtained by using equation (1.4), which is a motiva-
tion for a method that we use in this paper.

If we look at the proof of formula (1.3) given in [12], which suggests using equation (1.2)
along with the following trivial consequence of the same equation

xn = axn−1 + b, n ∈N, (1.6)

we see that the idea is to eliminate, for the moment, constant b.
From (1.2) and (1.6), we have

xn+1 − axn = xn − axn−1, n ∈N. (1.7)

From (1.7) we can continue in two directions. Namely, we can write the equation in the
following form

xn+1 − (a + 1)xn + axn−1 = 0, n ∈N,

and solve it by using the de Moivre formula when a 6= 1, or by the corresponding formula
from [8] when a = 1, or, we can write the equation in the following form

xn+1 − xn = a(xn − xn−1), n ∈N,

get easily the formula xn − xn−1 = (x1 − x0)an−1, n ∈ N, then apply telescoping summation
and a formula for the finite sum of a geometric progression.
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This method for solving equation (1.2) suggests that the fact that the expression

I1(xn, xn+1) := xn+1 − axn, n ∈N0,

is constant for every solution (xn)n∈N0 to the equation, plays an important role in solvability
of the equation.

A natural extension of equation (1.4) is the second-order linear difference equation with
constant coefficients whose nonhomogeneous part is constant, that is, the following difference
equation:

xn+2 = pxn+1 + qxn + r, n ∈N0, (1.8)

where p, q, r are numbers such that q 6= 0 (if we allow that q can be zero it is also an obvious
extension of equation (1.2)).

Motivated by the above consideration, we can define the following expression:

I2(xn, xn+1, xn+2) := xn+2 − pxn+1 − qxn, n ∈N0.

From (1.8) we see that

I2(xn, xn+1, xn+2) = r, n ∈N0. (1.9)

Hence, we have

I2(xn, xn+1, xn+2) = I2(xn−1, xn, xn+1), n ∈N, (1.10)

which can be written as follows

xn+2 − (p + 1)xn+1 − (q− p)xn + qxn−1 = 0, n ∈N, (1.11)

which is a linear difference equation with constant coefficients. General solutions to such
equations were known to de Moivre and Euler yet ([7, 8]).

Now note that the initial value problem consisting of equation (1.8) with initial values x0

and x1 is transformed to the one consisting of equation (1.11) with initial values x0, x1 and

x2 = px1 + qx0 + r. (1.12)

Since
I2(xn, xn+1, xn+2) = I2(x0, x1, x2) = x2 − px1 − qx0, n ∈N0,

from this and (1.12) it follows that (1.8) holds, so that these two initial value problems are
equivalent.

If p2 + 4q 6= 0, then the zeros λ1 and λ2 of polynomial P2(λ) are different, from which it
follows that the zeros of the characteristic polynomial

P3(λ) = λ3 − (p + 1)λ2 − (q− p)λ + q

associated with equation (1.11) are λ1, λ2 and λ3 = 1, since P3(λ) = λP2(λ)− P2(λ).
Hence, in the case λ1,2 6= 1, general solution to equation (1.11) has the form

xn = c1λn
1 + c2λn

2 + c3, n ∈N0. (1.13)
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Constants cj, j = 1, 3, are found by solving the following linear system

c1 + c2 + c3 = x0,

λ1c1 + λ2c2 + c3 = x1, (1.14)

λ2
1c1 + λ2

2c2 + c3 = px1 + qx0 + r.

The determinant of system (1.14) is the Vandermonde one

∆ = V(λ1, λ2, 1) = (λ2 − λ1)(λ1 − 1)(λ2 − 1).

Hence

c1 =
1
∆

∣∣∣∣∣∣
x0 1 1
x1 λ2 1

px1 + qx0 + r λ2
2 1

∣∣∣∣∣∣ = (1− λ2)((λ2 + q)x0 + (p− 1− λ2)x1 + r)
(λ2 − λ1)(λ1 − 1)(λ2 − 1)

,

c2 =
1
∆

∣∣∣∣∣∣
1 x0 1

λ1 x1 1
λ2

1 px1 + qx0 + r 1

∣∣∣∣∣∣ = (1− λ1)((1 + λ1 − p)x1 − (λ1 + q)x0 − r)
(λ2 − λ1)(λ1 − 1)(λ2 − 1)

,

and

c3 =
1
∆

∣∣∣∣∣∣
1 1 x0

λ1 λ2 x1

λ2
1 λ2

2 px1 + qx0 + r

∣∣∣∣∣∣ = r(λ2 − λ1)

(λ2 − λ1)(λ1 − 1)(λ2 − 1)
,

from which along with (1.13) it follows that general solution to equation (1.8) in this case is

xn =
(1 + λ2 − p)x1 − (λ2 + q)x0 − r

(λ2 − λ1)(λ1 − 1)
λn

1 +
(λ1 + q)x0 + r− (1 + λ1 − p)x1

(λ2 − λ1)(λ2 − 1)
λn

2

+
r

(λ1 − 1)(λ2 − 1)
, n ∈N0.

When λ1 6= 1 = λ2 (case λ1 = 1 6= λ2 is dual), general solution to equation (1.11) has the
form

xn = c̃1λn
1 + c̃2n + c̃3, n ∈N0,

whereas if λ1 = λ2 = 1, then general solution to the equation has the form

xn = ĉ1n2 + ĉ2n + ĉ3, n ∈N0,

and similarly as above c̃j and ĉj, j = 1, 3, can be found in terms of parameters p, q, r, and
initial values x0 and x1, which is a routine thing.

This method for solving equation (1.8) suggests that condition (1.9), which is similar to
the condition I1(xn, xn+1) = b corresponding to equation (1.2), plays an important role in
solvability of the equation.

The idea for solving equation (1.8) by showing that the sequence yn := xn+1 − xn is a so-
lution to equation (1.4), which frequently appears in the literature (see, e.g., [2]), is essentially
nothing by another use of relation (1.10).
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1.3 Invariants

Two simple examples presented above, suggest that some difference equations can be solved
if it is possible to find functions of several variables which are constant on their solutions.
Such functions are called invariants, and formal definition for it follows.

Consider the following difference equation

xn+s = f (xn+s−1, xn+s−2, . . . , xn), n ≥ −k, (1.15)

where s ∈ N and k ∈ Z. If there is a function I : Rl (or Cl) → R (or C), such that for every
solution (xn)n≥−k to the equation the following condition holds

I(xn, xn+1, . . . , xn+l−1) = c, for n ≥ −k,

for some c ∈ R (or C), then the function I is called an invariant for equation (1.15).
Invariants can be useful in establishing some properties of solutions to difference equations

and systems. Many invariants and their applications can be found, for example, in [21–24, 26,
27] (see also the related references therein).

Although solvability of majority difference equations and systems has been shown so far
by using some suitable substitutions (see, e.g., [4, 25, 28, 29, 32, 40]), as we have shown above,
invariants can also help in establishing solvability of some classes of difference equations and
systems.

1.4 Some concrete motivations

Our motivation for this paper stems from two problems from student competitions.
The following problem was posed on the ninth All-Russian Olympiad in 1983 (see, e.g,

[44]).

Problem 1.1. Let sequence (xn)n∈N0 be the solution to the difference equation

xn+1 = 5xn +
√

24x2
n + 1, n ∈N0, (1.16)

satisfying the initial condition x0 = 0. Show that xn ∈ Z, for every n ∈N0.

The following problem was a proposal for International Mathematical Olympiad in 1983.

Problem 1.2. Let a ∈N and sequence (xn)n∈N0 be the solution to the difference equation

xn+1 = (2a + 1)xn + a + 2
√

a(a + 1)xn(xn + 1), n ∈N0, (1.17)

satisfying the initial condition x0 = 0. Show that xn ∈N, for every n ∈N.

Bearing in mind that equations (1.16) and (1.17), as well as the posed conditions are con-
crete, both problems can be solved in several different ways. It should be also noted that the
equations are of similar form. Hence, it is a natural problem to find some general results
which include the claims in the problems. Another natural problem is to try to find a method
which can deal with both equations.

What is interesting is that both initial value problems are solvable in closed form, which
we have noticed yet in 1983, when we tried to solve these problems for the first time.
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Namely, let λ1 := 5 + 2
√

6, λ2 := 5− 2
√

6, and

x̃n :=
λn

1 − λn
2

4
√

6
, n ∈N0. (1.18)

Then, since λ1λ2 = 1, min{λ1, λ2} > 0, we have

5x̃n +
√

24x̃2
n + 1 = 5

λn
1 − λn

2

4
√

6
+

(
24
(

λn
1 − λn

2

4
√

6

)2

+ 1

)1/2

= 5
λn

1 − λn
2

4
√

6
+

λn
1 + λn

2
2

=
(5 + 2

√
6)λn

1 − (5− 2
√

6)λn
2

4
√

6

=
λn+1

1 − λn+1
2

4
√

6
= x̃n+1, n ∈N0. (1.19)

On the other hand, we have x̃0 = 0, from which along with relation (1.19) it follows that
(x̃n)n∈N0 is a solution to the initial value problem in Problem 1.1. Since each solution to
equation (1.16) is uniquely defined by initial value x0, the sequence (x̃n)n∈N0 is the solution to
the initial value problem. From formula (1.18) and the binomial formula the claim in Problem
1.1 easily follows.

Further, let λ1 :=
√

a + 1 +
√

a, λ2 :=
√

a + 1−
√

a, and

x̃n :=
λ2n

1 + λ2n
2

4
− 1

2
, n ∈N0. (1.20)

Then, since λ1λ2 = 1, λ1 > λ2 > 0, after some calculation, we have

x̃n+1 − (2a + 1)x̃n − a− 2

√√√√a(a + 1)

((
x̃n +

1
2

)2

− 1
4

)

=
(λ2

1 − (2a + 1))λ2n
1 + (λ2

2 − (2a + 1))λ2n
2

4
− 2

(
a(a + 1)

((
λ2n

1 + λ2n
2

4

)2

− 1
4

))1/2

=
√

a(a + 1)
λ2n

1 − λ2n
2

2
−
√

a(a + 1)

((
λ2n

1 − λ2n
2

2

)2)1/2

= 0, n ∈N0. (1.21)

From (1.21) and since we have x̃0 = 0, we see that the sequence defined in (1.20) is the solution
to the initial value problem in Problem 1.2. From formula (1.20) and the binomial formula the
claim in Problem 1.2 easily follows.

Hence, another question is to explain theoretically solvability of equations (1.16) and (1.17),
and to generalize these solvability results by finding some classes of difference equations
including equations (1.16) and (1.17), which are solvable on a “large” domain, for example,
for positive initial values and parameters.

Our aim here is to present some answers to above posed questions, and to suggest using
the method of invariants in dealing with solvability of difference equations.

1.5 Generalized invariants

Before we formulate and prove our main results, we introduce a notion which is a generaliza-
tion of (standard) invariants (many standard invariants can be found in [21–24, 26, 27]).
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Definition 1.3. Consider difference equation (1.15), where s ∈ N and k ∈ Z. If there is a
function I : Rl (or Cl) → R (or C), such that for every solution (xn)n≥−k to the difference
equation the following condition holds

I(xn+1, xn+2, . . . , xn+l) = bI(xn, xn+1, . . . , xn+l−1), (1.22)

for every n ≥ −k and for some constant b ∈ R(or C). Then the function is called the generalized
invariant for the difference equation.

2 Main results

In this section we prove our main results which extend solvability results regarding equations
(1.16) and (1.17).

2.1 An extension of difference equation (1.16)

Our first main theorem generalizes the solvability result concerning solutions to equation
(1.16) mentioned in the previous section. The proof essentially uses a generalized invariant.
Namely, we find a generalized invariant which helps in finding a closed-form formula for gen-
eral solution to a difference equation of first order, whose special case is difference equation
(1.16).

Theorem 2.1. Consider the following difference equation

xn+1 = axn +
√
(a2 − b)x2

n + cbn, n ∈N0, (2.1)

where parameters a, b, c are positive real numbers, such that a2 > b.
Then, for x0 ∈ [0, ∞) the difference equation is solvable in closed form.

Proof. By using the assumptions

min{a, b, c, a2 − b} > 0 and x0 ≥ 0, (2.2)

we have

x1 = ax0 +
√
(a2 − b)x2

0 + c >
√

c > 0. (2.3)

By using (2.1), (2.2), (2.3), and a simple inductive argument we obtain that

xn > 0, n ∈N. (2.4)

We also have

xn+1 − axn =
√
(a2 − b)x2

n + cbn ≥
√

c (
√

b)n > 0, (2.5)

for n ∈N0.
By squaring both sides of the equality in (2.5), and after some simple calculation, we obtain

x2
n+1 − 2axn+1xn + bx2

n = cbn, (2.6)

for n ∈N0.



Nonlinear first-order difference equations 9

Let
I3(xn, xn+1) := x2

n+1 − 2axn+1xn + bx2
n,

for n ∈N0.
Then, from (2.6), we have

I3(xn, xn+1) = bI3(xn−1, xn), n ∈N, (2.7)

which means that the function I3(u, v) := u2 − 2auv + bv2 is a generalized invariant for equa-
tion (2.1).

Relation (2.7) can be written as follows

x2
n+1 − 2axn+1xn + 2abxn−1xn − b2x2

n−1 = 0, n ∈N,

which can be further written in the following form

(xn+1 − bxn−1)(xn+1 − 2axn + bxn−1) = 0, (2.8)

for n ∈N.
Now note that form (2.1), (2.2) and (2.4), we have

xn+1 = axn +
√
(a2 − b)x2

n + cbn > (a +
√

a2 − b)xn, (2.9)

for n ∈N.
By iterating inequality (2.9), using (2.2) and (2.4), we obtain

xn+1 > (a +
√

a2 − b)2xn−1

= (2a2 − b + 2a
√

a2 − b)xn−1

> (2a2 − b)xn−1

> bxn−1, (2.10)

for n ≥ 2.
If x0 > 0, then inequality (2.9) also holds for n = 0, and consequently inequality (2.10)

holds for n = 1.
If x0 = 0, then we have x1 =

√
c, from which it follows that

x2 = a
√

c +
√
(a2 − b)c + cb = 2a

√
c > 0 = bx0,

so that inequality (2.10) also holds for n = 1 in this case.
From this analysis and inequality (2.10) we see that

xn+1 6= bxn−1, (2.11)

for every n ∈N.
From (2.8) and (2.11) we obtain that it must be

xn+1 − 2axn + bxn−1 = 0, (2.12)

for n ∈N.
The characteristic polynomial

P̃2(λ) = λ2 − 2aλ + b (2.13)
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associated with equation (2.12) has the following two zeros

λ1 = a +
√

a2 − b and λ2 = a−
√

a2 − b.

These zeros are different if a2 6= b, which is the case here.
By using de Moivre formula (1.5), we have

xn =
(x1 − λ2x0)λn

1 + (x0λ1 − x1)λ
n
2

2
√

a2 − b
, (2.14)

for n ∈N0.
Now note that

x1 = ax0 +
√
(a2 − b)x2

0 + c. (2.15)

Using (2.15) in (2.14), we obtain that general solution to equation (2.12) in this case is

xn =

(
x0
√

a2 − b +
√
(a2 − b)x2

0 + c
)

λn
1 +

(
x0
√

a2 − b−
√
(a2 − b)x2

0 + c
)

λn
2

2
√

a2 − b
, (2.16)

for n ∈N0.
Let

x̃n := c1λn
1 + c2λn

2 , (2.17)

for n ∈N0, where

c1 :=
x0
√

a2 − b +
√
(a2 − b)x2

0 + c

2
√

a2 − b
and c2 :=

x0
√

a2 − b−
√
(a2 − b)x2

0 + c

2
√

a2 − b
.

Then, by using the facts that λ1λ2 = b, c1c2 = − c
4(a2−b) , c1 > 0 > c2 and min{λ1, λ2} > 0, the

assumption c > 0, as well as some calculation, we have

x̃n+1 − ax̃n −
√
(a2 − b)x̃2

n + cbn

= c1(λ1 − a)λn
1 + c2(λ2 − a)λn

2 −
√
(a2 − b)(c2

1λ2n
1 + 2c1c2(λ1λ2)n + c2

2λ2n
2 ) + cbn

=
√

a2 − b (c1λn
1 − c2λn

2)−
√
(a2 − b)(c2

1λ2n
1 + 2c1c2(λ1λ2)n + c2

2λ2n
2 − 4c1c2(λ1λ2)n)

=
√

a2 − b
(
c1λn

1 − c2λn
2 − |c1λn

1 − c2λn
2 |
)
= 0, (2.18)

for n ∈N0.
From (2.18) and since it obviously holds x̃0 = x0, we see that the sequence defined in (2.17)

(i.e. in (2.16)) is the solution to equation (2.1) with the initial value x0.

Remark 2.2. If a2 = b, then the zeros of characteristic polynomial (2.13) are

λ1 = λ2 = a.

Hence, general solution to equation (2.12) has the following form

xn = (c1 + c2n)an, n ∈N0.
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By using initial values x0 and x1, it is easily obtained that general solution to equation
(2.12) in this case is given by the following formula

xn = (ax0 + (x1 − ax0)n)an−1, n ∈N0. (2.19)

In this case, we also have

x1 = ax0 +
√

c. (2.20)

Employing (2.20) in (2.19), we obtain

xn = (ax0 +
√

cn)an−1, n ∈N0. (2.21)

However, in this case equation (2.1) becomes

xn+1 = axn +
√

can, n ∈N0, (2.22)

which is a special case of equation (1.1), and can be solved by using one of above mentioned
ways.

For example, by dividing equation (2.22) by an+1, we get

xn+1

an+1 =
xn

an +

√
c

a
, n ∈N0. (2.23)

By telescoping summation of the equalities which are obtained when in (2.23), n is replaced
by 0, 1, . . . , n− 1, respectively, we obtain

xn

an = x0 + n
√

c
a

, n ∈N0,

from which is also obtained formula (2.21), in the case a 6= 0.
If a = 0, then equation (2.22) is trivial.

2.2 An extension of difference equation (1.17)

Our second main theorem generalizes the solvability result concerning solutions to equation
(1.17) mentioned in the previous section. This time the proof essentially uses an invariant
(generalized invariant with b = 1 in the definition), for finding a closed-form formula for
general solution to a difference equation of first order.

Theorem 2.3. Consider the following difference equation

xn+1 = axn + b +
√

cx2
n + dxn + f , n ∈N0, (2.24)

where parameters a, b, c, d, f ∈ [0,+∞), are such that b > 0,

a2 = c + 1 and 2b(a + 1) = d. (2.25)

Then, for x0 ∈ [0, ∞) the difference equation is solvable in closed form.
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Proof. By using the assumptions a, c, d, f ∈ [0,+∞), b > 0 and x0 ≥ 0, we have

x1 = ax0 + b +
√

cx2
0 + dx0 + f > b > 0,

from which, along with equation (2.24) and by a simple inductive argument, it follows that

xn > 0, n ∈N. (2.26)

From (2.25), we have a ≥ 1, from which along with the assumptions a, c, d, f ∈ [0,+∞),
b > 0, (2.24) and (2.26), it follows that

xn+1 − xn = (a− 1)xn + b +
√

cx2
n + dxn + f > b > 0,

for n ∈N0, that is, sequence (xn)n∈N0 is strictly increasing.
We also have

xn+1 − axn − b =
√

cx2
n + dxn + f ≥ 0, n ∈N0. (2.27)

By squaring both sides of the equality in (2.27), and after some simple calculation, we
obtain

x2
n+1 + (a2 − c)x2

n − 2axn+1xn − 2bxn+1 + (2ab− d)xn = f − b2, n ∈N0.

Let

I4(xn, xn+1) := x2
n+1 + (a2 − c)x2

n − 2axn+1xn − 2bxn+1 + (2ab− d)xn, n ∈N0.

Then, clearly we have
I4(xn, xn+1) = I4(xn−1, xn), n ∈N,

which means that the function I4(u, v) = u2 + (a2 − c)v2 − 2auv − 2bu + (2ab − d)v is an
invariant for equation (2.24), and that

x2
n+1 + (a2 − c)x2

n − 2axn+1xn − 2bxn+1 + (2ab− d)xn

= x2
n + (a2 − c)x2

n−1 − 2axnxn−1 − 2bxn + (2ab− d)xn−1, (2.28)

for n ∈N.
By using (2.25) in (2.28), we obtain

x2
n+1 − 2axn+1xn − 2bxn+1 − x2

n−1 + 2axnxn−1 + 2bxn−1 = 0, (2.29)

for n ∈N, that is,

(xn+1 − xn−1)(xn+1 − 2axn + xn−1 − 2b) = 0, (2.30)

for n ∈N.
Using the strict monotonicity of the sequence xn in (2.30), we have

xn+1 − 2axn + xn−1 = 2b, n ∈N. (2.31)

The characteristic polynomial P̂2(λ) = λ2 − 2aλ + 1 associated with equation

xn+1 − 2axn + xn−1 = 0, n ∈N, (2.32)
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has the following two zeros

λ1 = a +
√

a2 − 1 and λ2 = a−
√

a2 − 1,

which are different when a > 1.
Case a > 1. When a > 1 general solution to equation (2.32) is

xh
n = c1(a +

√
a2 − 1)n + c2(a−

√
a2 − 1)n, n ∈N0.

In this case a solution to equation (2.31) can be found in the form

xp
n := c, n ∈N0

where c is a real constant.
Putting it in (2.31), we easily obtain

xp
n =

b
1− a

, n ∈N0.

Hence, when a > 1, the general solution to equation (2.31) is

xn = c1(a +
√

a2 − 1)n + c2(a−
√

a2 − 1)n +
b

1− a
, (2.33)

for n ∈N0.
To find constants c1 and c2 in terms of initial values, we need to solve the linear system

c1 + c2 = x0 +
b

a− 1
,

λ1c1 + λ2c2 = x1 +
b

a− 1
,

from which it follows that

c1 =
x1 +

b
a−1 − λ2(x0 +

b
a−1 )

λ1 − λ2

=

√
a2 − 1((a− 1)x0 + b) + (a− 1)

√
(a2 − 1)x2

0 + 2b(a + 1)x0 + f

2(a− 1)
√

a2 − 1
, (2.34)

and

c2 =
λ1(x0 +

b
a−1 )− (x1 +

b
a−1 )

λ1 − λ2

=

√
a2 − 1((a− 1)x0 + b)− (a− 1)

√
(a2 − 1)x2

0 + 2b(a + 1)x0 + f

2(a− 1)
√

a2 − 1
. (2.35)

By using (2.34) and (2.35) in (2.33), general solution to equation (2.31) is

xn =

√
a2 − 1((a− 1)x0 + b) + (a− 1)

√
(a2 − 1)x2

0 + 2b(a + 1)x0 + f

2(a− 1)
√

a2 − 1
λn

1

+

√
a2 − 1((a− 1)x0 + b)− (a− 1)

√
(a2 − 1)x2

0 + 2b(a + 1)x0 + f

2(a− 1)
√

a2 − 1
λn

2

+
b

1− a
, n ∈N0. (2.36)
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Let

x̃n =

√
a2 − 1((a− 1)x0 + b) + (a− 1)

√
(a2 − 1)x2

0 + 2b(a + 1)x0 + f

2(a− 1)
√

a2 − 1
λn

1

+

√
a2 − 1((a− 1)x0 + b)− (a− 1)

√
(a2 − 1)x2

0 + 2b(a + 1)x0 + f

2(a− 1)
√

a2 − 1
λn

2

+
b

1− a
, n ∈N0. (2.37)

Then, since λ1λ2 = 1, c1 > c2, λ1 > λ2 > 0, and by some calculation, we have

x̃n+1 − ax̃n − b−
√
(a2 − 1)x̃2

n + 2b(a + 1)x̃n + f

= c1(λ1 − a)λn
1 + c2(λ2 − a)λn

2

−
(
(a2 − 1)

(
c2

1λ2n
1 + 2c1c2 + c2

2λ2n
2 +

b2

(1− a)2 +
2b(c1λn

1 + c2λn
2)

1− a

)
+ 2b(a + 1)

(
c1λn

1 + c2λn
2 +

b
1− a

)
+ f

)1/2

=
√

a2 − 1

(
c1λn

1 − c2λn
2 −

(
(c1λn

1 − c2λn
2)

2 + 4c1c2 −
b2

(a− 1)2 +
f

a2 − 1

)1/2
)

= 0, (2.38)

where in the last equality, we have used the fact that

4c1c2 =
b2

(a− 1)2 −
f

a2 − 1
,

which is checked by some calculation.
From (2.38) and since it obviously holds x̃0 = x0, we see that the sequence defined in (2.37)

(i.e. in (2.36)) is the solution to equation (2.24) with the initial value x0, finishing the proof in
this case.

Case a = 1. When a = 1, then the zeros of the characteristic polynomial P̂2 are

λ1 = λ2 = 1,

and consequently general solution to equation (2.32) in this case is

xh
n = c1 + c2n, n ∈N0. (2.39)

A solution to equation (2.31) can be found in the following form

xp
n := c̃n2, n ∈N0,

for some c̃ ∈ R.
Putting it in (2.31), we easily obtain

xp
n = bn2, n ∈N0. (2.40)
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Hence, from (2.39) and (2.40), we have that general solution to equation (2.31) in this case,
has the following form

xn = c1 + c2n + bn2, n ∈N0. (2.41)

To find constants c1 and c2 in terms of initial values x0 and x1, we need to solve the linear
system

c1 = x0,

c1 + c2 = x1 − b,

from which it follows that

c1 = x0 and c2 = x1 − x0 − b. (2.42)

By using (2.42) in (2.41), general solution to equation (2.31) in this case, is

xn = x0 + (x1 − x0 − b)n + bn2, n ∈N0. (2.43)

From (2.43) and since
x1 = x0 + b +

√
4bx0 + f ,

we have

xn = x0 +
√

4bx0 + f n + bn2, n ∈N0. (2.44)

Let

x̃n = x0 +
√

4bx0 + f n + bn2, n ∈N0. (2.45)

Then, by using the fact λ1λ2 = 1 and some calculation, we have

x̃n+1 − x̃n − b−
√

4bx̃n + f

= x0 +
√

4bx0 + f (n + 1) + b(n + 1)2 − (x0 +
√

4bx0 + f n + bn2)− b

−
√

4b(x0 +
√

4bx0 + f n + bn2) + f

=
√

4bx0 + f + 2bn−
√
(
√

4bx0 + f + 2bn)2 = 0, (2.46)

since √
4bx0 + f + 2bn ≥ 0, n ∈N0.

From (2.46) and since it obviously holds x̃0 = x0, we see that the sequence defined in (2.45)
(i.e. in (2.44)) is the solution to equation (2.24) with the initial value x0, finishing the proof of
the theorem.

Remark 2.4. When a = 1 and d = 4b, then equation (2.24), can be solved in another natural
way.

Let us conduct an analysis of equation (2.24) in the case when c = 0 and d > 0. In this
case the equation becomes

xn+1 = axn + b +
√

dxn + f , n ∈N0. (2.47)
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where f , x0 ≥ 0, and min{a, b, d} > 0.
By using a simple inductive argument it is easy to see that xn > 0, n ∈N. Let

yn =
√

dxn + f , n ∈N0. (2.48)

Then, we have

xn =
y2

n − f
d

, n ∈N0. (2.49)

By using (2.49) in (2.47), we have

y2
n+1 − f

d
= a

y2
n − f

d
+ b + yn, n ∈N0,

from which it follows that

y2
n+1 = ay2

n + dyn + db + f − a f

= a
(

yn +
d
2a

)2

+ db + f − a f − d2

4a
, (2.50)

for n ∈N0.
Hence, if

4a(bd + f (1− a)) = d2, (2.51)

from (2.50), we obtain

y2
n+1 =a

(
yn +

d
2a

)2

, (2.52)

for n ∈N0.
Since yn is obviously a nonnegative sequence, from (2.52) we have

yn+1 =
√

ayn +
d

2
√

a
, n ∈N0.

By the Langrage formula it follows that

yn = (
√

a)ny0 +
d

2
√

a
(
√

a)n − 1√
a− 1

, n ∈N0, (2.53)

when a 6= 1, and

yn = y0 +
d
2

n, n ∈N0, (2.54)

when a = 1.
Using (2.53) in (2.49) we have

xn =
1
d

((
(
√

a)n
√

dx0 + f +
d

2
√

a
(
√

a)n − 1√
a− 1

)2

− f

)
, n ∈N0, (2.55)

when a 6= 1, while when a = 1, then by using (2.54) in (2.49), we obtain

xn =
1
d

((√
dx0 + f +

d
2

n
)2

− f

)
, n ∈N0. (2.56)

From the above analysis we see that the following result holds.
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Theorem 2.5. Consider difference equation (2.47), where f , x0 ≥ 0, and min{a, b, d} > 0. Then the
following statements hold.

(a) If a 6= 1, then general solution to the equation is given by formula (2.55).

(b) If a = 1, then general solution to the equation is given by formula (2.56).

Remark 2.6. Note that if a = 1 and the second condition in (2.25) holds, that is, d = 4b, then it
is easy to see that condition (2.51) is satisfied. Hence, formula (2.56) presents general solution
to equation (2.24) in this case, but this is nothing but formula (2.45) when d = 4b.

2.3 A natural way for obtaining equations (1.16) and (1.17)

It is a natural question if there is a way how equations (1.16) and (1.17) can be naturally
obtained from some linear second-order difference equations with constant coefficients. The
answer to the question is positive. To do this we will use an idea, which essentially belongs
to Euler [8].

Consider difference equation

xn+2 − 2pxn+1 + qxn = r, n ∈N0, (2.57)

where p, q, r are reals such that q 6= 0.
Assume that the both roots λ1 and λ2 of the characteristic polynomial P2(λ) = λ2− 2pλ +

q, associated with the difference equation

xn+2 − 2pxn+1 + qxn = 0, n ∈N0,

are such that λ1 6= 1 6= λ2 6= λ1. This means that the following conditions must hold

q 6= 2p− 1 and p2 6= q.

Then, general solution to equation (2.57) has the following form

xn = Aλn
1 +Bλn

2 + C, n ∈N0. (2.58)

Note also that from Viete’s formulas, we have

λ1 + λ2 = 2p and λ1λ2 = q, (2.59)

and that

λ1 = p +
√

p2 − q and λ2 = p−
√

p2 − q. (2.60)

By using (2.58), we have

xn+1 − λ1xn = B(λ2 − λ1)λ
n
2 + (1− λ1)C, (2.61)

xn+1 − λ2xn = A(λ1 − λ2)λ
n
1 + (1− λ2)C, (2.62)

for n ∈N0.
From (2.59), (2.60), (2.61) and (2.62), we have

(xn+1 − λ1xn + (λ1 − 1)C)(xn+1 − λ2xn + (λ2 − 1)C) = 4AB(q− p2)qn,
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for n ∈N0, from which after some calculation and use of (2.59) and (2.60), we get

x2
n+1 − (2pxn + 2(1− p)C)xn+1 + qx2

n + 2(p− q)Cxn

+ (1− 2p + q)C2 + 4AB(p2 − q)qn = 0, (2.63)

for n ∈N0.
To find A and B, it should be solved the following linear system

A+B = x0 − C

λ1A+ λ2B = x1 − C,

from which it easily follows that

A =
λ2(x0 − C)− (x1 − C)

λ2 − λ1
and B =

x1 − C− λ1(x0 − C)

λ2 − λ1
. (2.64)

Multiplying the quantities in (2.64), and using (2.59) and (2.60), we obtain

AB = − (x1 − C)2 − 2p(x0 − C)(x1 − C) + q(x0 − C)2

4(p2 − q)
. (2.65)

By using (2.65) in (2.63), it follows that

x2
n+1 − (2pxn + 2(1− p)C)xn+1 + qx2

n + 2(p− q)Cxn + (1− 2p + q)C2

− ((x1 − C)2 − 2p(x0 − C)(x1 − C) + q(x0 − C)2)qn = 0,

for n ∈N0, which is a quadratic equation in variable xn+1.
Hence, by solving the quadratic equation in xn+1 and after some calculations, we obtain

xn+1 = pxn + (1− p)C

±
√
(p2 − q)(xn − C)2 + ((x1 − C)2 − 2p(x0 − C)(x1 − C) + q(x0 − C)2)qn, (2.66)

for n ∈N0.
Constant C can be obtained by searching a solution to equation (2.57) in the form xp

n := C,
from which it easily follows that

C =
r

1− 2p + q
. (2.67)

Employing (2.67) in (2.66) is obtained a nonlinear multi-valued first-order difference equa-
tion which is satisfied by solutions to equation (2.57).

If in equation (2.57) is taken r = 0, then C = 0. Hence, in this case equation (2.66) becomes

xn+1 = pxn ±
√
(p2 − q)xn + (x2

1 − 2px0x1 + qx2
0)qn,

for n ∈ N0, which for the case when for every n is taken positive sign before the square root,
is essentially an equation of the form in (2.1).

If in equation (2.57) is taken q = 1, then equation (2.66) becomes

xn+1 = pxn + (1− p)C

±
√
(p2 − 1)(xn − C)2 + (x1 − C)2 − 2p(x0 − C)(x1 − C) + (x0 − C)2, (2.68)

for n ∈ N0, where C = r
2(1−p) , which for the case when for every n is taken positive sign

before the square root in (2.68), is essentially an equation of the form in (2.24).
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Knjiga, Beograd, 1984.

[20] N. E. Nörlund, Vorlesungen über Differenzenrechnung (in German), Berlin, Springer, 1924.

[21] G. Papaschinopoulos, C. J. Schinas, On the behavior of the solutions of a system of
two nonlinear difference equations, Comm. Appl. Nonlinear Anal. 5(1998), No. 2, 47–59.
MR1621223

[22] G. Papaschinopoulos, C. J. Schinas, Invariants for systems of two nonlinear difference
equations, Differ. Equ. Dynam. Systems 7(1999), 181–196. MR1860787

[23] G. Papaschinopoulos, C. J. Schinas, Invariants and oscillation for systems of two
nonlinear difference equations, Nonlinear Anal. 46(2001), 967–978. https://doi.org/10.
1016/S0362-546X(00)00146-2; MR1866733

[24] G. Papaschinopoulos, C. J. Schinas, G. Stefanidou, On a k-order system of Lyness-type
difference equations, Adv. Difference Equ. 2007, Art. ID 31272, 13 pp. MR2322487

[25] G. Papaschinopoulos, G. Stefanidou, Asymptotic behavior of the solutions of a class
of rational difference equations, Inter. J. Difference Equations 5(2010), No. 2, 233–249.
MR2771327

[26] C. Schinas, Invariants for difference equations and systems of difference equations of
rational form, J. Math. Anal. Appl. 216(1997), 164–179. https://doi.org/10.1006/jmaa.
1997.5667; MR1487258

[27] C. Schinas, Invariants for some difference equations, J. Math. Anal. Appl. 212(1997), 281–
291. https://doi.org/10.1006/jmaa.1997.5499; MR1460198
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[37] S. Stević, Representations of solutions to linear and bilinear difference equations and
systems of bilinear difference equations, Adv. Difference Equ. 2018, Paper No. 474, 21 pp.
https://doi.org/10.1186/s13662-018-1930-2; MR3894606
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