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Abstract. This paper is concerned with the study of the global existence and the decay
of solutions of an evolution problem driven by an anisotropic operator and a nonlinear
perturbation, both of them having a variable exponent. Because the nonlinear pertur-
bation leads to difficulties in obtaining a priori estimates in the energy method, we had
to significantly modify the Tartar method. As a result, we could prove the existence of
global solutions at least for small initial data. The decay of the energy is derived by
using a differential inequality and applying a non-standard approach.

Keywords: variable exponent, energy not defined, existence of solutions.

2010 Mathematics Subject Classification: 35K92, 35K58, 35K55, 35160, 35L70.

1 Introduction

Let Q) be an open bounded set of R" with boundary T of class C?. Consider p,c € L*(Q).
The objective of this paper is to analyze the global existence and the decay of solutions of the
following parabolic problem:

h— — | |[=— _ o(x) _ .
! ,;axi < ox; o | T |ul 0 in Q x (0,00), (1.1a)
=0 onlx(0,c0) (1.1b)
u(x, 0) - uO(x) in Q). (11C)
The P(x)-Laplacian operator A given by Au = — }i', a%( %lf ‘p(X)_ngZ), arises in some phys-

ical problems. For example, in the theory of elasticity and in mechanics of fluids, more pre-
cisely, in fluids of electrorheological type (see [8,19,20]), whose equation of motion is given by

u' +divS(u) + (u-Vu)+Vr=f,
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where u : R3™! — R? is the velocity of the fluid at a point in space-time , V = (91,92, 93) the
gradient operator, 77 : R*™! — R the pressure, f : R>*™! — RR? represents external forces and S
is the stress tensor S : Wllo’g — IR3*3. This operator has the form

S(u)(x) = p(x)(1+ [D(u(x))| "= )D(u(x))

where D(u) = 1(Vu+ (Vu)T) is the symmetric part of the gradient of u. Note that if p(x) = 2,
then this equation reduces to the usual Navier-Stokes equation.

To obtain the existence of global solutions of (1.1a)-(1.1c) we cannot apply the energy
method because the term [ [u(x) |7y (x)dx does not have a definite sign. To overcome this
difficulty we apply a new method which has its motivation in the work of Tartar [24] (see
also [17]). With this approach and results on monotone operators (see [6,7,25]) we succeed in
obtaining a global solution of (1.1a) with small initial data. This is the main contribution of
the paper. The decay of the energy is derived by using differential inequalities and applying
a new approach.

Problem (1.1a) is an example of an evolution problem driven by an anisotropic operator
with variable exponents and a nonlinear perturbation, which has also a variable exponent.
Recent contributions to the study of anisotropic problems can be found, for instance, in [14,20]
and the references contained therein. Parabolic problems with variable exponents can be seen
in [3,4,10-12,18]. In [2], Antontsev analized the wave equation with p(x, t)-Laplacian. In [5],
those authors considered the energy decay for a class of plate equations with memory and a
lower order perturbation of p-Laplacian type. We can find elliptic problems with operators
having variable exponents in [1,22] and the references contained therein. Because the energy
method works very well, the proof of the existence of a solution in those papers is based on
the Galerkin method.

The paper is organized as following. In Section 2, we introduce notation and state the
results in form of theorems, whose proofs are given in Section 3.

2 Notations and main results

The scalar product and norm of L2(Q) are denoted by (u,v) and |u|, respectively. Consider a
function g € L®(Q) with ess infyeq g(x) = g~ > 1. The space

L1 (Q) = {u : 1 is a measurable real-valued function, / lu(x) |7 dx < oo} ,
0
equipped with the Luxemburg’s norm

(x)
||u||L,,(_)(Q) :inf{/\ > O:/‘u(/\x)‘qx dx < 1}
0

is a Banach space. With the notation g7 = ess infyc g(x) and the fact 1 < g~ < g(x) < g" ae.
in x € ), we have

il < /Q ()10 dx < HMHZ;(‘)(Q) if [[1al| gt ) < 15 (2.1a)

0y < 1G> 1 (2.1b)
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Assume that

p € C(Q)), pisLipschitzianand p(x) >2, VxeQ;
ceC(Q), o(x)>1, VxeQ.

Introduce the notations

p- =minp(x), p'=maxp(x), ¢ =minc(x), ot =maxo(x).
xeQ) xeQ) xeQ) xeQ)
Thus
2<p <px)<p" and 1<o <o(x) <o
The space
W) (Q) = {u e LM (Q) : a;‘ LP(Q),i=1,2, ,n},
1

provided with the norm

||uHW1:l’(')(Q) = ||u||LP(‘)(Q) + Hvuumb)(g)r ue Wl'p(‘)(ﬂ)-

is a reflexive Banach space. The closure of C°(Q)) in W?(*)(Q) is denoted by Wé’p (x) (Q)). This

reflexive Banach space is equipped with the norm

n
el 1) Z
0 =1

axl LrO(Q) ‘

The dual space of W'P(*)(Q)) is denoted by W~ (*)(QQ), where

— + =1, Vx € Q.

Let denote by A the operator
AWy (Q) - w0 ()

defined by
2 Ju v
ox; axl

(Au,v) = Z/

It is known that .4 is monotone and hemicontinuous (see Diening [9]).

axZ

Proposition 2.1. The operator A takes bounded subsets of W&’P(x)(ﬂ) into bounded subsets of

w, "7 (q).
Proof. In fact, it holds that
p)-1 5,

— | dx.
axix

|(Au,v)| é/

ox;

In order to facilitate the notations, we denote the space Wg’p (x) (Q) by X.
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¢
Note that }g—;‘ e LT (Q)) since aa—;‘i € LPM)(Q). So by the Holder inequality for the spaces
LPO)(Q) (cf. [13, p. 341]), we obtain the estimate

ou [P 9y ou [P ov
/ ox; ax; | ¥ = 2|5y 0 ‘ ox;
o) axi axi axi Lp(’i)il( ) axi LP(')(Q)
oy |P)-1
<af| o ol
! LPO-T(Q)
Therefore, from the above two inequalities we have
n oy |P-1
(Au o) <2 () |5 L] Tellx. 4
- X p
i=1 LPO-T(0)
Let us define a and S as follows:
{p@)}‘:a {pu>]+:ﬁ
plx) -1 plx) -1
du p(x)_l .
Ifl; = ||| 55 () <1, by (2.1a), we obtain
l LrO-1(Q)
p(x) P Pt
llﬁ < / ou dx < ‘ ou ‘ ou
0 |0x; % || o) 119%i |l ()
- +
< ullk +lulk -
Thus,

1
- TN
< (el +lullk )"
In similar way, if /; > 1 we find

1

- 1
i< (lull + ull )"
These last two inequalities imply

1

n B i\ L B !

B I3
St < (e +lully )"+ (lully + ull )"
i=1

Now, this inequality and (2.4) provide

1
o

1

Al sy < 2 (el + Dl )" +2n (lully + 1wl

which proves the proposition. O
We also assume that

(p"—pn<pp, (2.52)

p+<a+1§a(x)—|—1§a++1<nn_psa), VxeQ (2.5b)
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if p(x) < n, for all x € (); and that

o satisfies hypothesis (2.2b) (2.6)
if p(x) > nforall x € Q.
Note that by (2.5b) we have
+ np(x) O
< —=, Vx € Q.
()

Under the hypotheses (2.2a), (2.5a) and (2.5b), we obtain
W," Q) = L7 Q) = LWF(Q) < L7 Q) - LX(Q) 2.7)
where — denotes continuous embedding. Note that
the embeddding of W&’p (=) (Q) in L7 Q) is compact. (2.8)

See Diening et al. [9], Fan and Zhao [13], Rddulescu et al. [20] and Kovécik and Rékosnik
[23] for detailed proofs of all these results on spaces with variable exponents that we have
used in the present paper.

By (2.7) there exists a positive constant K such that

1,p(-
lullzetraqy < Kllullyuor gy V1€ W™ (). 2.9)
Consider positive constants ag, a1, by and b; satisfying

. (f!a\*’*)" <

i=1

il <m (Z \éi!f) -, V& = (&,...,&) € RY; (2.10a)

i=1

-

Il
—_

1 1

bo <Z|§i|”_>p < Y |l < by <2|§i|f"> , V&= (&,...,&) € R (2.10b)
i=1 i=1 i

=

i=1

Further, set the notations

d= % M=K’ t14 g +1 (2.11a)
2ptal
1
. dp*t ot

Under the above considerations we have the following result.
Theorem 2.2. Assume that hypotheses (2.2a), (2.5a) and (2.6) hold. If u® € Wg’p(')(ﬂ) satisfies
HMOHWOLP(')(Q) < AO/ (212)

and
Lo L o, MO <yt 2.13)
by ab Wy (@) w0y S 40 '
Then there exists a function u € L*(0, oo; W&’p(')(Q)), with u’ € L*(0,00; L2(Q))) that satisfies

"9
ul_;%(

u
ax,‘

p(-)=2 )
3)“”'0('):0 in Lo (0,0 W7 0(Q)),  (214)

u(0)=u’ inQ. (2.15)
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Remark 2.3. We note that in the particular case p(x) = ¢, ¢ > 2, hypothesis (2.5a) is always
holds. Thus by applying the same method used to prove Theorem 2.2, we obtain global
solutions to Problem (1.1a)—(1.1c) under only the hypotheses (2.5a) and

ot +1< P ifp<n
n—p

no restrictionon o if p > n.

In order to state the result of the decay of solutions, we introduce some notations.
By (2.7), there exists a constant L > 0 such that

1,p(-
o] < Lol 0 vo e WP (), (2.16)

()
where |- | = |- [12(q)- Set the notation

1

—
a’f Lr*

Let u be the solution given by Theorem 2.2. Define the energy E(t) by
E(t) = |u(t)]?,  Vt>0. (2.17)
By u € L®(0, o0; Wé’p(')(ﬂ)) and u’ € L2(0,00; L2(Q)), we have that E € C([0,0); L?(Q))).
Theorem 2.4. Let u be the solution given by Theorem 2.2. Then
(i) if p* =2, that is, p(x) = 2, Vx € Q, we have

E(t) <E(0)e™,  Vt>0; (2.18)
ii) if p* > 2, weset & =1+, > 0. In this case we have
p 2

E(t) < E(0)(1+E(0)"yyt)™7,  Vt>0. (2.19)

3 Proof of the results

Proof of Theorem 2.2. Consider a Schauder basis {wq, w2, w3, ...} of Wé’p (x)(Q). Let u,, be an
approximate solution of Problem (1.1a)—(1.1c), more precisely,

U (x,t) = igjm(t)w]'(x),
j=1

E)xi axi

Oty (1)
axi

A1
+/ um()|"Vodx =0, forallv € Vy = [wy, ..., wn); G
0

um(0) = ul, ud, € Vi, 1% — u’in Wg’p(x)(Q).

We denote by [0, t,) the maximal interval of existence of the solution u,.
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By (2.12) and (2.13), we obtain
4l llx < Ao, Vm > myg; (3.2)
1 1 o1 p
<bp+0> ud )% + M|jud )% T < dAL, Ym > my. (3.3)
Fixing m such that m > mg, we have the following estimate:
Lemma 3.1. We have ||u,,(t)||x < Ao, Vt € [0,00).
Proof. We argue by contradiction. Assume that there exists t; € (0, t,,) such that
[m (t1) [ x = Ao

Consider the set
O={t€(0,tn): lum(t)llx > Ao}

and
inf T =t"
€0
We have
|t (F)||x = Ao and > 0.
In fact, the function B(t) = |lum(t)||x is continuous on [0,t,) then |ju,(t*)||x > Ag. If

llm (t*)||x > Ao, the Intermediate Value Theorem and noting that ||u,(0)||x < Ao, imply
that t* is not the infimum on O, which is a contradiction. Thus ||u,, (+*)||x = A¢. Also t* > 0
because ||u,(0)|x < Ao Note that

lum(t)[x < Ao, VEE[0,t7).

Consider t € [0,+*) and v = 1), in (3.1), we obtain

2 m n m o(x),,/ _
"l +Z/ axl axl ox; d”/ﬂ [ (#1703, (#)dx = 0.
It follows
"d Aty (1) [PV d 1
? rn YRy . — - o(x) _
t>| +1:21dt Q ox; dx+dt Qa.(x)_’_1|um(t)‘ um(t) dx = 0.
Integrating on [0, ], we find
Ot (1) p(x)
I - (x)
/ 140 (5)] dS—FZ/ (x) | 9x; dx+/ ( )_|_1’“m(t)| U ()dx
1 n p(x
- Z/ 5 d +/ |um|"(x)u°mdx.
i=1 Qp axl
By (23)/ we get
/ ! ( st+2/ Aty (1) [P dx+/ ;‘u (8)[70 1 (1)
ax, ot 17 m
(3.4)
ty o(x)+1
Z/Q ax, dx—i— /Q o ‘“m| dx.
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As Ap < 1and t € [0,t*), we have Hau’” < A <1,i=1,2,...,n. Therefore it

HLr7 )(Q)

follows from (2.1a) that
p n p(x)
% Aty (1) < LJF 2/ Ay (1) .
Pl oxi i o) P30 0x;
By (2.10a) we obtain
n p+ n PJr
Z Oty (t < aiﬁ Z Oty (1) ‘
- axz LrO)(Q) i—1 ox; O (Q)
These last two inequalities furnish
1 Oty (t
e CCTAPINESS 3y M) 5

ptay

We modify the third term of (3.4). From the inequalities (2.9) and (2.1a) and noting that
lum () ||x < 1, because t € [0,t*) it follows that

‘ / |t (1) um t)dx
. 1
Thus, noting that 7 < 1,

1
L g e (O P (t)ax

where M was defined in (2.11a).
We modify the last two terms of (3.4). Note that % <1,

observing that ||u,||x < 1, we obtain

L(7

< [l (0179 < a1 ) + N (D5

< KT (5 7+ KT ()1

< Mflum(t)]1% (3.6)

< 1. By (2.1a), (2.10a) and

c—+1

n auO
l 1 axl El axl Lp (Q) axl Lp (Q)
1
P o r*
< bTHMmHX +%?Hum“X :
Thus
p(x)
dx < | — 4+ — 3.7
Z/Q Tl dx < (bo + )Humnx 67)
In a similar way, we find
LI e < 58 )+
+
< Ko~ +1HumH0 +1_|_K¢7 +1||um||¢>7(++1.
That is
— +1/ 2, |70+ g < M[ud, 1%+, (3.8)
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Plugging (3.5)—(3.8) into (3.4), we obtain
+ +
[ s + a5+ (1~ Ml
1 1 co+1 _ 0
< g o ) Ml IG5 = T 69
O

where d, M, ap and by were defined, respectively, in (2.11a), (2.10a) and (2.10b).
We now compare the third and four term of the last expression. Consider the function

O(A) =dAP" —MAT *L, A >0.

By hypothesis (2.5a) we have that 0~ +1 — p™ > 0. We find that if

dp+ o +1-pt
<AL | —F —— =
<0< ()

then
6(A) > 0.

In particular if
0 <A <min{l, P} = A

(Ao defined in (2.11a)), we have

B(A) > 0.
As ||luy(t)]|x < Ao, for all t € [0,t*), we deduce that
O([[un(D)llx) = dlum )y — Mlun(®)|% 20, te[0,8). (3.10)
Thus by (3.9) we get

[ )P + a1 < 163), € 0.
By (3.3) and (3.4), we obtain
I(ud) < d)\g+.

Therefore,
d || (t )||X <Iud) <r< d)\g , forsomer € R.

Taking the limit t — t*, t < t*, in the above inequality, we obtain
+ +
dllun(t)]x <r<dA§
which is a contradiction because ||u, (t*)|x = Ag. Thus the lemma is proved. O

Returning to the Proof of Theorem 2.2
By Lemma 3.1, (3.9) and properties of operator .4, we obtain that there exists a subsequence
of (uy,), still denoted by (u,,), and a function u such that

Uy — u weak star in L(0, oo; Wé’p(')(())); (3.11a)
ul, — u’ weak in L2(0, 00; L2(Q))); (3.11b)
A(uy) — x weak star in L*(0,00; W~ 17'0)(Q)). (3.11¢c)
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The next step is to prove that x = Au and for that we need to show that

T T
/ /]um\“(x)umdxdt%/ /\u!”(x)udxdt (3.12)
0o Jo 0o Ja

for any T > 0. Introduce the notations:
Qr=0Qx(0,T);
Fu={(x,t) € Qr; lum(x,t)| < 1};
Gm = {(x,t) € Qr; |um(x, t)| > 1}.
By compactness (2.8) (see [16] or Corollary 6 in [21]) and convergences (3.11a) and (3.11b), we
find
Uy — uin C([0, T]; L7 ()

therefore,
Uy — uin LY T1(Qr) (3.13)
and
U (x,t) — u(x,t) a.e. in Qr.
Hence

|um(x,t)]‘7(x) — |u(x,t)|‘7(x) a.e.in Qr. (3.14)
By (3.13), we have

/ [|um(x,t)|‘7(")]i7+“dxdt:/ [|um(x,t)|ﬂ<x>]%dxdt+/ (it (x, £)|70] 5 dxdt
T Fm Gm

< T(meas Q) + / i (x, )| Tldxdt < C,  Vm e N,
Qr

that is,
ot
/ (it (x, )70 dxdt < C,  Vm e N. (3.15)
T
From (3.14), (3.15) and Lions” Lemma (see [15] or [16]) it follows that
ot
11| 7%) = u|”®) weak in LTH(QT). (3.16)

This result and convergence (3.13) imply convergence (3.12).
By the theory of monotone operators and the convergences (3.12) and (3.16), we deduce
(see Lions [15])
x = Au. (3.17)

Also by applying the diagonalization process to the sequence of (u,,), we find from (3.16)

ot
ot

1|0 = |u|™) weakin L' (Qr), VT >0. (3.18)

Convergences (3.11a), (3.18) and equality (3.17) allows us to pass to the limit in the ap-
proximate equation (3.1) and so it holds that

/0 (u’,(p)dt+/0 (Au,<p)dt+/0 /Q\u|‘7<pdxdtzo
Vo € L2 (0,00; W&’p(x)(-)), supp ¢ compact in (0, c0).

loc

Taking ¢ € C5°(Q x (0,T)) in the last equality, we find equation (2.14). The initial condition
(2.15) follows by convergences (3.11a) and (3.11b). This concludes the proof of Theorem 2.2.
O
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Proof of Theorem 2.4. Multiply both sides of (2.14) by u and integrate on (). We obtain

u( X+ u udax = 0. .
2 dt )| d Oydx =0 (3.19)
o)
By Lemma 3.1 we have [[u(t)||x < Ap < 1 then H HX <1,i=1,2,...,n. Therefore, from
(2.1a) it follows that
oullP" n / u [P
— dx.
=9 || () Z 9x;

On the other side, by (2.10a) we obtain

p+
+ " || ou & || ou
ut)|I% = e <al — .
() (Z o m,)(g)) < L5 o
These two preceding inequalities furnish
1 + du [P
elu@ly <) [ |sE| 3.20
IO <X [ o] o (3.20)

Also by (2.1a) and (2.1b), we obtain

JACTE

N
< et ) + OIS

and by (2.9),

+ - - + +
()1 e i ) + 1O Toih ) < KT a1 o g + KT Hu@IT0h,

As |lu(t||x <1, we find

- + +
(5o h )+ 1O ISoch ) < KT O T+ K7 ) IE

As |lu(t)]|x <1, we find
+ -1
(Do o) + 1O o ) < Mlu®I

where M was defined in (2.11a). Then three preceding inequalities provide

(O)TSu(t)dx| < M||u(t Mg (3.21)

Plugging inequalities (3.20) and (3.21) in (3.19), we obtain

d + _
yr (>|2+ Hu()l\é’( —2M]lu(t)|% ' <o.

Noting that —+ > 2d because p™ > 1, we derive of the last inequality

1

d

+ +
dtr<>\2+ =Nl +2 (Allu®l —Mlu@lg ) <o

1
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By (2.16) and (3.10), we get

d 2 1 +
—|u(t HF <0
P + ol <

that is

TEW +9E®DT <0, (3:22)

We prove (i). For p(x) = 2, for all x € Q, that is, p™ = 2, we have

d
— <
th(t) +71E(t) <0
that implies (2.18).

Before proving (ii), we make the following considerations. If u® = 0, we take u = 0 as
the solution of Problem (1.1a)—(1.1c). Assume u’ # 0. If there exists t; € (0,00) such that
E(t1) = 0, we consider the set

P = {1 € (0,00); E(7) = 0}

and

t* = inf T.
TEP

Then t* > 0 because E(0) > 0. Also E(t*) = 0. As E'(t) < 0 a.e. in (0,00), then E(t) is
decreasing, therefore E(t) = 0 for all + > t*. Thus

either E(t) =0, forallt>t" or E(t)>0, forallt>D0.

We prove inequality (2.19) for the second case, that is, E(t) > 0, for all t € [0, c0). The inequal-
ity (2.19) for t € [0,t*) is derived in a similar way. Recalling that % =1+1,9>0. By (3.22),

we obtain
(—7)E'(H)

which implies

(E®]™) =7y

Thus

E7(t) = E7T(0) + vt
that is,

- (1+EY(0)n~t)

v > .
F=

This implies inequality (2.19). O
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