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Abstract. The notion of Lyapunov regularity for a dynamics with discrete time defined
by a bounded sequence of matrices can be characterized in many ways, highlighting
different aspects of this important property introduced by Lyapunov. In strong contrast
to the case of bounded sequences, not all these properties are equivalent to regularity
for unbounded sequences. We first show that certain properties remain equivalent for
unbounded sequences of matrices. We then show that unlike for bounded sequences
and, more generally, tempered sequences, certain properties related to the existence of
limits for the Lyapunov exponents on the diagonal are no longer equivalent to regularity
for unbounded sequences.
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1 Introduction

1.1 Main theme

In this paper we consider the notion of Lyapunov regularity for a dynamics with discrete time
defined by a sequence of matrices that may be unbounded. More precisely, we consider a
sequence of invertible q× q matrices (An)n∈N with real entries and the associated dynamics

xn+1 = Anxn, for n ∈N, (1.1)

on Rq. Let

An =

{
An−1 · · · A1 if n > 1,

Id if n = 1.
(1.2)

Assuming that the Lyapunov exponent

λ(v) = lim sup
n→∞

1
n

log‖Anv‖
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is finite for all nonzero vectors v ∈ Rq, the sequence (An)n∈N is said to be Lyapunov regular if

lim inf
n→∞

1
n

log|detAn| =
q

∑
i=1

λ(vi) (1.3)

for some basis v1, . . . , vq for Rq. We emphasize that the sequence need not be bounded or even
tempered. We recall that a sequence (An)n∈N is said to be tempered if

lim sup
n→∞

1
n

log ‖An‖ ≤ 0, (1.4)

where as usual

‖An‖ = sup
v∈Rq\{0}

‖Anv‖
‖v‖ .

Our main aim is to show that whereas various characterizations of Lyapunov regularity
for bounded sequences extend to unbounded sequences, various others related to the trian-
gularization of the sequence do not. We recall that to make a triangularization of a sequence
of q× q matrices (An)n∈N corresponds to find a sequence of invertible q× q matrices (Vn)n∈N

satisfying

lim
n→∞

1
n

log‖Vn‖ = lim
n→∞

1
n

log‖V−1
n ‖ = 0 (1.5)

such that the matrices
Bn = V−1

n+1AnVn

are upper-triangular for each n ∈ N. Any sequence (Vn)n∈N satisfying (1.5) is called a Lya-
punov coordinate change (see Section 3 for some of its properties). In the latter case of the
triangularization of a sequence of matrices, we provide a gradation of successively weaker
properties that are all equivalent for bounded sequences, by providing explicit examples of
sequences of matrices for which each two of these successively weaker properties are not
both satisfied (thus showing that the properties are not equivalent). This recommends caution
when using Lyapunov regularity in the study of the stability of a nonlinear dynamics obtained
from perturbing a linear dynamics defined by an unbounded sequence since not all the usual
characterizations of regularity remain equivalent for unbounded sequences.

1.2 Lyapunov regularity

Before proceeding, we describe briefly why the theory of Lyapunov regularity plays an impor-
tant role in the stability theory of differential equations and dynamical systems (we refer the
reader to [5] for a detailed description). It is easy to verify (for example using the variation of
parameters formula, for continuous time, or a corresponding formula for discrete time) that
the uniform exponential stability of a linear dynamics as in (1.1) persists under sufficiently
small nonlinear perturbations, that is, perturbations of the form

xn+1 = Anxn + fn(xn)

with the maps fn sufficiently small in some appropriate sense. In general this is no longer true
when the exponential stability is not uniform, that is, when the time that it takes for the iter-
ation of the dynamics to reach a given neighborhood of zero with exponential decay depends
on the initial time. The notion of Lyapunov regularity was introduced by Lyapunov [12] and
then studied by many others (see for example the books [1,5,9,11] and the references therein)
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as a means to give quantitative conditions, also involving the Lyapunov exponents, under
which the nonuniform exponential stability of a linear dynamics persists under sufficiently
small perturbations. This amounts to introduce certain regularity coefficients such that when
they are sufficiently small the exponential stability persists. For example, the Lyapunov regu-
larity coefficient of a sequence of q× q matrices A = (An)n∈N is the number

σ(A) = min
q

∑
i=1

λ(vi)− lim inf
n→∞

1
n

log|detAn|,

where the minimum is taken over all bases v1, . . . , vq for Rq. One can show that the sequence
A is Lyapunov regular if and only if σ(A) = 0 (see [4] for a detailed exposition of the theory).

A major breakthrough in the theory of Lyapunov regularity occurred when Oseledets [13]
showed that in the context of ergodic theory any regularity coefficient vanishes almost ev-
erywhere (more precisely, it vanishes for almost all trajectories of a measure-preserving flow
under a certain integrability assumption). This eventually led to an exponential development
of the area, initially with seminal work of Pesin [14,15]. We refer the reader to the book [6] for
a sufficiently detailed description of the theory, nowadays referred to as nonuniform hyper-
bolicity theory or Pesin theory. The first nontrivial consequence of the persistence of nonuni-
form exponential stability can be considered the construction of stable and unstable invariant
manifolds by Pesin in [14]. It turns out that the notion of nonuniform hyperbolicity can be
deduced from the existence of nonzero Lyapunov exponents using the regularity coefficient to
show that the nonuniformity can be made arbitrarily small along almost all trajectories (since
the regularity coefficient vanishes almost everywhere). From this point of view, Lyapunov
regularity can be considered a principal technical device in the study of nonuniform hyper-
bolicity. This specific topic is not pursued in our paper and so we refrain from introducing
the notions and results explicitly, referring instead the reader to the former references.

In our paper, Lyapunov regularity is the main topic from beginning to end. In particu-
lar, we consider various properties that are equivalent to Lyapunov regularity for bounded
sequences and we establish their equivalence for arbitrary sequences (see Theorem 3.3). For
example, we show that for a sequence of invertible q× q matrices (An)n∈N whose Lyapunov
exponent takes only finite values on Rq \ {0}, the following properties are equivalent:

1. (An)n∈N is Lyapunov regular;

2. there exist a Lyapunov coordinate change (Vn)n∈N (see (1.5)) and a diagonal q× q ma-
trix D such that

V−1
n+1AnVn = D for all n ∈N;

3. there exists a basis v1, . . . , vq for Rq such that the limit

lim
n→∞

1
n

log‖Anvi‖

exists for i = 1, . . . , q and

lim
n→∞

1
n

log∠
(
Anvj, span{Anvj+1, . . . ,Anvq}

)
= 0 (1.6)

for j = 1, . . . , q− 1.
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We recall that the angle ∠(v, E) between a vector v ∈ Rq and a subspace E ⊂ Rq is defined by

∠(v, E) = inf
{
∠(v, w) : w ∈ E

}
∈ [0, π/2].

Property 2 says that the sequence (An)n∈N can be transformed into a constant diagonal se-
quence via a Lyapunov coordinate change. Property 3 says that the values λ(vi) of the Lya-
punov exponent are limits (which in fact implies that λ(v) is a limit for any v), while (1.6)
implies that any two sequences Anvi and Anvj with i 6= j approach at most with subexpo-
nential speed when n → ∞. To a certain extent, the proofs of the equivalence between these
and other properties are obtained by modifying existing arguments for bounded sequences,
although we give a clean streamlined argument. At the end of Section 3 we provide a detailed
list of references for the existing proofs of the relations between various properties that are
equivalent to Lyapunov regularity for bounded sequences (either for discrete or continuous
time).

1.3 Triangular reduction

In the second part of the paper we discuss how the reduction of a sequence of matrices to a
sequence of upper-triangular matrices via a Lyapunov coordinate change relates to Lyapunov
regularity. It turns out that unlike in the case of bounded sequences and, more generally,
tempered sequences, some of these properties are no longer equivalent.

We first describe the type of problems in which we are interested. Let (An)n∈N be a
tempered sequence of q× q upper-triangular matrices (see (1.4)). Denoting the entries of An by
aij(n), it follows for example from Theorem 1.3.12 in [6] that if the limits

ci := lim
n→∞

1
n

log
n−1

∏
l=1
|aii(l)| (1.7)

exist and are finite for i = 1, . . . , q, then the sequence is Lyapunov regular (in which case the
numbers c1, . . . , cq are the values of the Lyapunov exponent on Rq \ {0}, counted with their
multiplicities but possibly not ordered). On the other hand, we show in Theorem 4.1 that the
existence and finiteness of the limits in (1.7) is a necessary condition for Lyapunov regularity,
even if the sequence is not tempered (see (1.9) for an example of a nontempered sequence of
upper-triangular matrices illustrating that the condition is not sufficient). In fact, Theorem 4.1
considers also the more general case when the sequence of matrices (An)n∈N is transformed
into a sequence of upper-triangular matrices via a Lyapunov coordinate change.

In strong contrast, the fact that a nontempered sequence (An)n∈N can be reduced via a
Lyapunov coordinate change to a sequence of upper-triangular matrices Bn = (bij(n))1≤i≤j≤q
such that the limits

di := lim
n→∞

1
n

log
n−1

∏
l=1
|bii(l)| (1.8)

exist and are finite for i = 1, . . . , q, is not sufficient for the Lyapunov regularity of the sequence
(An)n∈N. For example, take

An =

(
1 2n−1

0 1

)
(1.9)

for n ≥ 1. Then, by (1.2), we have

An =

(
1 2n−1 − 1
0 1

)
for n > 1.



Lyapunov regularity and triangularization 5

Clearly, the limits in (1.7) exist for this sequence. Moreover, the values of the associated
Lyapunov exponent are λ′1 = 0 and λ′2 = log 2. On the other hand, since detAn = 1, we have

0 = lim
n→∞

1
n

log|detAn| 6= min
2

∑
i=1

λ(vi) = λ′1 + λ′2 = log 2,

where the minimum is taken over all bases v1, v2 for R2, and so the sequence (An)n∈N is not
Lyapunov regular (see (1.3)).

In fact we provide even more detailed information on the relation between the Lyapunov
regularity of a sequence of matrices and its reduction to a sequence of upper-triangular ma-
trices via a Lyapunov coordinate change. Namely, consider the following classes of matrices:

1. let S1 be the set of all sequences of invertible q× q matrices that are Lyapunov regular;

2. let S3 be the set of all sequences of invertible q× q matrices (An)n∈N such that after a
reduction to a sequence of upper-triangular matrices via a Lyapunov coordinate change
the limits in (1.8) exist and are finite for i = 1, . . . , q;

3. let S2 be the set of all sequences of invertible q × q matrices (An)n∈N ∈ S3 such that,
up to a permutation, the vector (d1, . . . , dq) given by (1.8) is the same for any Lyapunov
coordinate change.

We show in Theorem 4.2 that
S1 ⊂ S2 ⊂ S3 ⊂ L, (1.10)

where L is the set of all sequences of invertible q× q matrices whose Lyapunov exponent takes
only finite values on Rq \ {0}. We also show that these inclusions are proper, by giving explicit
examples. On the other hand, for tempered sequences of matrices the first two inclusions
in (1.10) become equalities. More precisely, if T is the set of all tempered sequences of q× q
matrices, then

S1 ∩ T = S2 ∩ T = S3 ∩ T. (1.11)

Indeed, for example by Theorem 1.3.12 in [6], if (Bn)n∈N is a tempered sequence of upper-
triangular matrices and the limits di in (1.8) exist and are finite for i = 1, . . . , q, then the
sequence is Lyapunov regular. Hence, by Proposition 3.1 below, for tempered sequences we
have S3 ∩ T ⊂ S1 ∩ T and so it follows from (1.10) that property (1.11) holds for tempered
sequences.

Our arguments are inspired by work of Barabanov and Konyukh in [3] where they estab-
lished earlier corresponding results for continuous time. To the possible extent we follow their
approach.

2 Gramians and volumes

In this section we collect a few notions and basic results on Gramians and volumes that are
used in the remainder of the paper. We refer the reader to the books [10, 16] for details.

We recall that the Gramian (or the Gram determinant) G = G(v1, . . . , vp) of a set of vectors
v1, . . . , vp ∈ Rq is the determinant of the matrix of inner products Gij = 〈vi, vj〉, using the
standard inner product on Rq. One can show that the Gramian G coincides with the square
of the p-volume Γ(v1, . . . , vp) determined by the vectors v1, . . . , vp, that is,

G(v1, . . . , vp) = Γ(v1, . . . , vp)
2.
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In particular, the Gramian has the following properties:

1. G(v1, . . . , vp) ≥ 0 for any vectors v1, . . . , vp ∈ Rq;

2. G(v1, . . . , vp) = 0 if and only if v1, . . . , vp are linearly dependent;

3. G(v) = ‖v‖2 and G(v, w) = ‖v‖2‖w‖2 − 〈v, w〉2.

By properties 1 and 3 we obtain as a particular case the Cauchy–Schwarz inequality |〈v, w〉| ≤
‖v‖ · ‖w‖ (with equality if and only if v and w are colinear, in view of property 2). Moreover,
we have the inequalities

G(v1, . . . , vp) ≤ G(v1, . . . , vi)G(vi+1, . . . , vp)

and so also
Γ(v1, . . . , vp) ≤ Γ(v1, . . . , vi)Γ(vi+1, . . . , vp),

for i = 1, . . . , p− 1. In fact, these inequalities follow from a more general result in Proposi-
tion 2.1 below.

We also recall that the angle between two subspaces E, F ⊂ Rq is defined by

∠(E, F) = arccos〈u1, v1〉 ∈ [0, π/2],

where u1 ∈ E and v1 ∈ F are unit vectors such that

〈u1, v1〉 = max
{
〈u, v〉 : u ∈ E, v ∈ F, ‖u‖ = ‖v‖ = 1

}
.

Now let k = dim E, l = dim F and p = min{k, l}. Set θi = ∠(E, F). The principal angles

θ1 ≤ θ2 ≤ · · · ≤ θp

between E and F are defined recursively by

θi = arccos〈ui, vi〉 ∈ [0, π/2],

where ui ∈ E and vi ∈ F are unit vectors such that

〈ui, vi〉 = max
{
〈u, v〉 : u ∈ E ∩ G⊥i , v ∈ F ∩ H⊥i , ‖u‖ = ‖v‖ = 1

}
,

with
Gi = span{u1, . . . , ui−1} and Hi = span{v1, . . . , vi−1}.

Proposition 2.1 ([2]). For any subspaces

E = span{u1, . . . , uk} and F = span{v1, . . . , vl}

we have

G(u1, . . . , uk, v1, . . . , vl) = G(u1, . . . , uk)G(v1, . . . , vl)
p

∏
i=1

sin2 θi,

where θ1 ≤ θ2 ≤ · · · ≤ θp are the principal angles between E and F.
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When l = 1, there exists a single principal angle between E and F (which in fact is the angle
between the two spaces). Hence, writing E = span{u1, . . . , uk} and F = span{v} we have

G(u1, . . . , uk, v) = G(u1, . . . , uk)G(v) sin2 θ1

or, equivalently,
Γ(u1, . . . , uk, v) = Γ(u1, . . . , uk)‖v‖ sin∠(v, E). (2.1)

Moreover, it follows from Proposition 2.1 that given v1, . . . , vk ∈ Rq and i ∈ [1, k) ∩N, we
have

G(v1, . . . , vk) ≤ G(v1, . . . , vi)G(vi+1, . . . , vk) ≤
k

∏
j=1

G(vj).

In particular, taking k = q and vi = ei for i = 1, . . . , q, where e1, . . . , eq is the canonical basis
for Rq, we obtain Hadamard’s inequality

|det A| ≤
q

∏
i=1
‖Aei‖ (2.2)

(using the 2-norm on Rq). This inequality can be seen as a consequence of the fact that |det A|
gives the volume of the parallelepiped determined by the vectors Ae1, . . . , Aeq. For complete-
ness we give an elementary derivation. Let U be the orthogonal matrix whose columns are
obtained applying the Gram–Schmidt process to the basis Ae1, . . . , Aeq. Then

span{Ae1, . . . , Aej} = span{Ue1, . . . , Uej}

for each j ≤ q and writing Aej = ∑
j
i=1 αijUei, we obtain 〈Aej, Uei〉 = αij because U is orthogo-

nal. Hence,

Aej =
j

∑
i=1
〈Aej, Uei〉Uei

and so also

‖Aej‖2 =
j

∑
i=1
|〈Aej, Uei〉|2 =

j

∑
i=1
|αij|2. (2.3)

Now let B be the upper-triangular matrix with entries bij = αij for i ≤ j. Then A = UB and
since U is orthogonal, we obtain

|det A|2 = det(A∗A) = det(B∗U∗UB)

= det(B∗B) = |det B|2

=
q

∏
i=1
|αii|2 ≤

q

∏
i=1
‖Aei‖2,

using (2.3) in the last inequality.

3 Criteria for Lyapunov regularity

In this section we describe several criteria for the Lyapunov regularity of a sequence of invert-
ible q× q matrices with finite values of the Lyapunov exponent on Rq \ {0}. We emphasize
that the sequence need not be bounded or even tempered. All matrices are assumed to have
real entries.
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3.1 Basic notions

Without loss of generality we shall always consider the 2-norm ‖·‖ on Rq and for each q× q
matrix A we consider its operator norm

‖A‖ = sup
v∈Rq\{0}

‖Av‖
‖v‖ .

We define the Lyapunov exponent λ : Rq → [−∞,+∞] of a sequence of invertible q× q matrices
A = (An)n∈N by

λ(v) = λA(v) = lim sup
n→∞

1
n

log‖Anv‖, (3.1)

where

An =

{
An−1 · · · A1 if n > 1,

Id if n = 1
(3.2)

(with the convention that log 0 = −∞). We denote by L the set of all sequences of invertible
q× q matrices whose Lyapunov exponent λ takes only finite values on Rq \ {0}. By the theory
of Lyapunov exponents (see [5]), for each A ∈ L the Lyapunov exponent λ can take at most q
values on Rq \ {0}, say

λ1 < · · · < λp

for some integer p ≤ q, and the sets

Ei =
{

v ∈ Rq : λ(v) ≤ λi
}

are linear subspaces. We denote by
λ′1 ≤ · · · ≤ λ′q (3.3)

the values of λ counted with their multiplicities, that is, λ′j = λi for j = dim Ei−1 + 1, . . . , dim Ei
and i = 1, . . . , p, with the convention that E0 = {0}. A basis v1, . . . , vq for Rq is said to be
normal (with respect to the sequence A) if for each i = 1, . . . , p there exists a basis for Ei composed
of vectors in {v1, . . . , vq}. Finally, a sequence of matrices A ∈ L is said to be Lyapunov regular
if there exists a basis v1, . . . , vq for Rq such that

lim inf
n→∞

1
n

log|detAn| =
q

∑
i=1

λ(vi). (3.4)

Equivalently, a sequence A ∈ L is Lyapunov regular if (3.4) holds for some normal basis
v1, . . . , vq for Rq (see [5]). Moreover, by (2.2) we have

|det(AnV)| ≤
q

∏
i=1
‖Anvi‖

for the matrix V with columns v1, . . . , vq, and so

lim sup
n→∞

1
n

log|detAn| ≤
q

∑
i=1

λ(vi).

Hence, it follows from (3.4) that a sequence A ∈ L is Lyapunov regular if and only if

lim
n→∞

1
n

log|detAn| =
q

∑
i=1

λ(vi)
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for some basis v1, . . . , vq for Rq (that is, if and only if the limit exists and is equal to the
right-hand side).

Given a sequence of invertible q × q matrices (An)n∈N, we consider the new sequence
Cn = (A∗n)−1, for n ∈ N, where A∗n denotes the transpose of An. In a similar manner to that
in (3.2), we define

Cn = (A∗n)
−1 =

{
(A∗n−1)

−1 · · · (A∗1)
−1 if n > 1,

Id if n = 1.

The Lyapunov exponent µA = λC of the sequence C = (Cn)n∈N is given by

µA(w) = lim sup
n→∞

1
n

log‖Cnw‖.

Moreover, in a similar manner to that in (3.3), we denote by

µ′1 ≥ · · · ≥ µ′q

the values of µA counted with their multiplicities.
A sequence of invertible q × q matrices (Vn)n∈N is called a Lyapunov coordinate change if

condition (1.5) holds, that is, if

lim
n→∞

1
n

log‖Vn‖ = lim
n→∞

1
n

log‖V−1
n ‖ = 0.

For the matrices Bn = V−1
n+1AnVn, for n ∈ N, we have AnV1 = VnBn, with An as in (3.2) and

where

Bn =

{
Bn−1 · · · B1 if n > 1,

Id if n = 1.

Hence, it follows readily from (1.5) that

λA(V1v) = lim sup
n→∞

1
n

log‖AnV1v‖

= lim sup
n→∞

1
n

log‖Bnv‖ = λB(v)
(3.5)

for any v ∈ Rq. This shows that any Lyapunov coordinate change preserves the values of the
Lyapunov exponent. In fact it also preserves Lyapunov regularity.

Proposition 3.1. If the sequences A = (An)n∈N and B = (Bn)n∈N are in L and are related by
Bn = V−1

n+1 AnVn, for each n ∈N, for some Lyapunov coordinate change (Vn)n∈N, then σ(A) = σ(B).
In particular, A is Lyapunov regular if and only if B is Lyapunov regular.

Proof. Note that Bn = V−1
n AnV1 and so

σ(B) = min
q

∑
i=1

λB(vi)− lim inf
n→∞

1
n

log|detBn|

= min
q

∑
i=1

λA(V1vi)− lim inf
n→∞

1
n

log|detAn|,

with the minimum taken over all basis v1, . . . , vq for Rq. Since any basis for Rq can be written
in the form V1v1, . . . , V1vq for some basis v1, . . . , vq for Rq, we conclude that σ(B) = σ(A).
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Now let e1, . . . , eq be the canonical basis for Rq.

Proposition 3.2. For a Lyapunov coordinate change (Vn)n∈N we have

lim
n→∞

1
n

log|det Vn| = 0 and lim
n→∞

1
n

log‖Vnei‖ = 0, for i = 1, . . . , q

(that is, the limits exist and are zero).

Proof. For the first statement, by (2.2) we have

|det Vn| ≤
q

∏
i=1
‖Vnei‖ ≤

q

∏
i=1
‖Vn‖ = ‖Vn‖q. (3.6)

Together with (1.5), this implies that

lim sup
n→∞

1
n

log|det Vn| ≤ 0. (3.7)

In a similar manner, we have |det(V−1
n )| ≤ ‖V−1

n ‖q and so again by (1.5) we obtain

lim sup
n→∞

1
n

log|det(V−1
n )| ≤ 0.

Hence,

lim inf
n→∞

1
n

log|det Vn| = − lim sup
n→∞

1
n

log|det(V−1
n )| ≥ 0,

with together with (3.7) yields the first statement in the proposition. For the second statement
we first observe that

‖Vn‖ ≥ c

√√√√ q

∑
i=1
‖Vnei‖2 ≥ c‖Vnei‖

for some positive constant c (since all norms on a finite-dimensional space are equivalent).
Thus, by (1.5) we obtain

lim sup
n→∞

1
n

log‖Vnei‖ ≤ 0. (3.8)

On the other hand, proceeding as in (3.6) one can write

|det Vn| ≤
q

∏
i=1
‖Vnei‖ = ‖Vnei‖∏

j 6=i
‖Vnej‖ ≤ ‖Vnei‖ · ‖Vn‖q−1.

Hence, by (1.5) and the first statement in the proposition, we obtain

lim inf
n→∞

1
n

log‖Vnei‖ ≥ 0. (3.9)

The second statement follows now readily from (3.8) and (3.9).
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3.2 Criteria for Lyapunov regularity

The following result describes several criteria for Lyapunov regularity. The emphasis is on
sequences of matrices that need not be bounded, although their Lyapunov exponent takes
only finite values on Rq \ {0}. To the possible extent, the proofs are obtained by modifying
existing arguments for bounded sequences, although we give a clean streamlined argument.

Theorem 3.3. For a sequence of invertible q× q matrices (An)n∈N ∈ L, the following properties are
equivalent:

1. (An)n∈N is Lyapunov regular;

2. (Cn)n∈N = ((A∗n)−1)n∈N ∈ L and λ′k = −µ′q−k+1 for k = 1, . . . , q;

3. there exist a Lyapunov coordinate change (Vn)n∈N and a diagonal q × q matrix D such that
V−1

n+1 AnVn = D for all n ∈N;

4. given a normal basis v1, . . . , vq for Rq, we have

λ(vi) = lim
n→∞

1
n

log‖Anvi‖ (3.10)

for i = 1, . . . , q and

lim
n→∞

1
n

log γjn = 0 (3.11)

for j = 1, . . . , q− 1, where

γjn = ∠
(
Anvj, span{Anvj+1, . . . ,Anvq}

)
; (3.12)

5. there exists a basis v1, . . . , vq for Rq such that properties (3.10) and (3.11) hold for i = 1, . . . , q
and j = 1, . . . , q− 1.

Proof. We separate the proof into several steps.

Step 1: 3⇒ 2

Property 3 says that
V−1

n+1AnVn = diag(d1, . . . , dq), (3.13)

for some Lyapunov coordinate change (Vn)n∈N and some numbers d1, . . . , dq in R. Hence,

V−1
n AnV1 = diag(dn−1

1 , . . . , dn−1
q ) (3.14)

and so

detAn det V1 = det Vn

q

∏
i=1

dn−1
i ,

which by Proposition 3.2 yields the identity

lim
n→∞

1
n

log|detAn| =
q

∑
i=1

log|di|.

Moreover,
AnV1ei = dn−1

i Vnei and so ‖AnV1ei‖ = |di|n−1‖Vnei‖.
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Again it follows from Proposition 3.2 that

λA(V1ei) = lim
n→∞

1
n

log‖AnV1ei‖ = log|di|. (3.15)

Now we consider the sequence of matrices Cn = (A∗n)−1, for n ∈ N. Let Un = (V∗n )−1.
It follows from (3.13) and (3.14) that

U−1
n+1CnUn = diag(d−1

1 , . . . , d−1
q )

and so
U−1

n CnU1 = diag(d−n+1
1 , . . . , d−n+1

q ).

Therefore,

detCn det U1 = det Un

q

∏
i=1

d−n+1
i ,

which by Proposition 3.2 yields the identity

lim
n→∞

1
n

log|detCn| = −
q

∑
i=1

log|di|.

Moreover,
CnU1ei = d−n+1

i Unei and so ‖CnU1ei‖ = |di|−n+1‖Unei‖.

Again by Proposition 3.2 we obtain

µA(U1ei) = lim
n→∞

1
n

log‖CnU1ei‖ = − log|di|. (3.16)

Since e1, . . . , eq is a normal basis with respect to any constant of sequence of diagonal matrices,
it follows from (3.15) that λ′i = log|di| for i = 1, . . . , q and it follows from (3.16) that µ′i =

− log|dq−i+1| for i = 1, . . . , q.

Step 2: 2⇒ 1

Property 2 says that the numbers µ′1 ≥ · · · ≥ µ′q are finite and coincide, respectively, with

−λ′q ≥ · · · ≥ −λ′1.

For any normal basis v1, . . . , vq for Rq with respect to the sequence A = (An)n∈N we have

|det(AnV)| ≤
q

∏
i=1
‖Anvi‖, (3.17)

where V is the matrix whose columns are v1, . . . , vq. This follows readily from Hadamard’s
inequality in (2.2). It follows from (3.17) that

lim sup
n→∞

1
n

log|detAn| ≤
q

∑
i=1

lim sup
n→∞

1
n

log‖Anvi‖

=
q

∑
i=1

λA(vi) =
q

∑
i=1

λ′i.

(3.18)
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In a similar manner, for any normal basis w1, . . . , wq for Rq with respect to the sequence
(Cn)n∈N we have

− lim inf
n→∞

1
n

log|detAn| = lim sup
n→∞

1
n

log|detCn| ≤
q

∑
i=1

µA(wi) =
q

∑
i=1

µ′i.

Therefore, it follows from property 2 that

lim inf
n→∞

1
n

log|detAn| ≥ −
q

∑
i=1

µ′i =
q

∑
i=1

λ′i

and so, by (3.18),

lim
n→∞

1
n

log|detAn| =
q

∑
i=1

λ′i.

This shows that the sequence A is Lyapunov regular.

Step 3: 1⇒ 4

Consider a sequence (An)n∈N satisfying property 1. This corresponds to assume that the
numbers λ′1 ≤ · · · ≤ λ′q satisfy

lim inf
n→∞

1
n

log|detAn| =
q

∑
i=1

λ′i.

We claim that each number λ′i is a limit, that is,

λ′i = lim
n→∞

1
n

log‖Anvi‖ (3.19)

for i = 1, . . . , q and any normal basis v1, . . . , vq with λ(v1) ≤ · · · ≤ λ(vq). We proceed by
contradiction. Assume that there exists a vector v 6= 0 for which λ(v) is not a limit, that is,

lim
k→∞

1
nk

log‖Ank v‖ < λ(v)

along some sequence (nk)k∈N ↗ +∞. Now we consider any normal basis v1, . . . , vq such that
vj = v for some j. Then

|detAn| ≤ ‖Anv‖∏
i 6=j
‖Anvi‖ (3.20)

and so, by (3.20), we have

q

∑
i=1

λ(vi) ≤ lim sup
k→∞

1
nk

log|detAnk |

≤ lim sup
k→∞

1
nk

log‖Ank v‖+ ∑
i 6=j

λ(vi)

< λ(v) + ∑
i 6=j

λ(vi) =
q

∑
i=1

λ(vi).

This contradiction shows that (3.19) holds.
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To establish (3.11) we consider an arbitrary normal basis v1, . . . , vq. Let V be the matrix
whose columns are the vectors v1, . . . , vq. We claim that

|det(AnV)| =
q

∏
i=1
‖Anvi‖

q−1

∏
i=1

sin γin, (3.21)

with the angles γin as in (3.12). First observe that

|det(AnV)|2 = G(Anv1, . . . ,Anvq).

By Proposition 2.1 we have

G(Anv1, . . . ,Anvq) = G(Anvi)G(Anvi+1, . . . ,Anvq) sin2 γin

for each i ∈ [1, q)∩N. Indeed, since Anvj generates a space E of dimension 1, there is a single
principal angle between E and

F = span
{
Anvi+1, . . . ,Anvq

}
,

which is simply the angle between E and F. Proceeding by induction we obtain

|det(AnV)|2 =
q

∏
i=1

G(Anvi)
q−1

∏
i=1

sin2 γin,

which yields identity (3.21) since G(Anvi) = ‖Anvi‖2.
Since the basis v1, . . . , vq is normal and the numbers λ(vi) = λ′i are limits, it follows

from (3.21) that
q

∑
i=1

λ(vi) = lim
n→∞

1
n

log|detAn|

=
q

∑
i=1

lim
n→∞

1
n

log‖Anvi‖+ lim
n→∞

q−1

∑
i=1

1
n

log sin γin

=
q−1

∑
i=1

λ(vi) + lim
n→∞

q−1

∑
i=1

1
n

log sin γin

and so

lim
n→∞

q−1

∑
i=1

1
n

log sin γin = 0. (3.22)

Given j ∈ {1, . . . , q− 1}, we take a sequence (nk)k∈N ↗ +∞ such that

lim inf
n→∞

1
n

log sin γjn = lim
k→∞

1
nk

log sin γjnk .

Since sin γjnk ≤ 1, it follows from (3.22) that

0 = lim
n→∞

q−1

∑
i=1

1
n

log sin γin = lim
k→∞

q−1

∑
i=1

1
nk

log sin γink

≤ lim inf
n→∞

1
n

log sin γjn ≤ lim sup
n→∞

1
n

log sin γjn ≤ 0

and so
lim
n→∞

1
n

log sin γjn = 0, for j = 1, . . . , q− 1.

Since 2x/π ≤ sin x ≤ x for x ∈ [0, π/2], this implies that

lim
n→∞

1
n

log γjn = 0, for j = 1, . . . , q− 1.



Lyapunov regularity and triangularization 15

Step 4: 4⇒ 5

It is immediate that property 4 implies property 5.

Step 5: 5⇒ 3

It follows from property 5 and (3.21) that the limit

lim
n→∞

1
n

log|detAn| =
q

∑
i=1

lim
n→∞

1
n

log‖Anvi‖+
q−1

∑
i=1

lim
n→∞

1
n

log sin γin

=
q

∑
i=1

λ(vi)

exists. Hence, by (3.18), the sequence of matrices (An)n∈N is Lyapunov regular. One can now
apply Theorem 2 in [8] to conclude that property 3 holds. This completes the proof of the
theorem.

The equivalence between properties 1 and 2 in Theorem 3.3 was obtained in [7, Theorem 9],
following to the possible extent the case of continuous time in Section 1.3 of [5] (the results
are formulated for a smaller class of linear dynamics although the arguments apply to the
more general case considered here). It was shown in [8, Theorem 2] that property 1 implies
property 3 (the converse is immediate). Moreover, it was shown in [6, Theorem 1.3.11] that
properties 1 and 4 are equivalent. It is also simple to show that properties 4 and 5 are also
equivalent. A version of Theorem 3.3 for continuous time was obtained earlier by Barabanov
and Konyukh in [3].

4 Triangular reduction

In this section we discuss how the reduction of a sequence of matrices to a sequence of upper-
triangular matrices via a Lyapunov coordinate change relates to Lyapunov regularity. It turns
out that unlike in the case of bounded sequences and, more generally, tempered sequences,
certain related properties are no longer equivalent. We refer the reader to [3] for corresponding
earlier work of Barabanov and Konyukh in the case of continuous time.

4.1 Necessary condition for regularity

As noted in the introduction, for a tempered sequence of upper-triangular matrices, it follows
for example from Theorem 1.3.12 in [6] that if the limits in (1.7) exist and are finite, then the
sequence is Lyapunov regular. On the other hand, the example of a nontempered sequence of
upper-triangular matrices in (1.9) shows that the existence and finiteness of those limits is not
a sufficient condition for Lyapunov regularity.

The following result shows that the former condition (that is, the requirement that the
limits in (1.7) exist and are finite) is always necessary for Lyapunov regularity, even for non-
tempered sequences. We recall that the values of the Lyapunov exponent λ in (3.1), counted
with their multiplicities, are denoted by λ′1, . . . , λ′q (see (3.3)).
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Theorem 4.1. For any reduction of a Lyapunov regular sequence (An)n∈N to a sequence of upper-
triangular matrices Bn = (bij(n))1≤i≤j≤q via a Lyapunov coordinate change (Vn)n∈N, the limits

di := lim
n→∞

1
n

log
n−1

∏
l=1
|bii(l)| (4.1)

exist and are finite, for i = 1, . . . , q, and (d1, . . . , dq) is a permutation of (λ′1, . . . , λ′q).

Proof. Let (An)n∈N be a Lyapunov regular sequence and let (Vn)n∈N be a Lyapunov coordinate
change such that Bn = V−1

n+1AnVn is upper-triangular for n ∈ N. Since Bn = V−1
n AnV1, we

have
detAn = detBn det Vn det(V−1

1 ). (4.2)

Moreover, since (An)n∈N is Lyapunov regular, it follows from Proposition 3.2 together with
(3.5) and (4.2) that (Bn)n∈N is also Lyapunov regular and

lim
n→∞

1
n

log|detBn| = lim
n→∞

1
n

log|detAn| =
q

∑
i=1

λ′i. (4.3)

Now let

ci = lim sup
n→∞

1
n

log
n−1

∏
l=1
|bii(l)| = lim sup

n→∞

1
n

n−1

∑
l=1

log|bii(l)|.

We have

Bnei =

(
. . . ,

n−1

∏
l=1

bii(l), 0, . . . , 0

)∗
,

with the term ∏n−1
l=1 bii(l) at the ith position, and so

λB(ei) = lim sup
n→∞

1
n

log‖Bnei‖ ≥ ci

for i = 1, . . . , q. Since (Bn)n∈N is Lyapunov regular, its Lyapunov exponent takes only finite
values on Rq \ {0} and so ci ≤ λB(ei) < +∞ for i = 1, . . . , q.

To show that ci is not −∞, we consider the diagonal sequence

Dn = diag(b11(n), . . . , bqq(n)).

Then the matrices

Dn =

{
Dn−1 · · ·D1 if n > 1,

Id if n = 1

are given explicitly by

Dn = diag

(
n−1

∏
l=1

b11(l), . . . ,
n−1

∏
l=1

bqq(l)

)
. (4.4)

Now assume that along some sequence (nk)k∈N ↗ +∞ we have

lim
k→∞

1
nk

log‖Dnk ej‖ = −∞

for some j ∈ {1, . . . , q}. Since

|detDn| ≤
q

∏
i=1
‖Dnei‖,
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we have
q

∑
i=1

λ′i = lim
n→∞

1
n

log|detBn| = lim
n→∞

1
n

log|detDn|

= lim
k→∞

1
nk

log|detDnk | ≤
q

∑
i=1

lim sup
k→∞

1
nk

log‖Dnk ei‖.

But the last inequality cannot hold since the right-hand side is −∞ while the numbers λ′i are
finite. This contradiction shows that ci > −∞ for i = 1, . . . , q.

Now let c′1 ≤ · · · ≤ c′q be the numbers c1, . . . , cq written in increasing order. It follows from
the general theory that there exists an upper-triangular matrix ( fij)1≤i≤j≤q with unit diagonal
such that the vectors

wi = ei + fi,i+1ei+1 + · · ·+ fiqeq, for i = 1, . . . , q,

form a normal basis with respect to the sequence B = (Bn)n∈N. The numbers fij can be
obtained as follows. Take wq = eq. Now we proceed by induction. After having wi+1, . . . , wq

we construct wi as follows. Take numbers fij for j = i + 1, . . . , q such that λB(wi) takes the
smallest possible value. Then w1, . . . , wq is a normal basis with respect to B. This is a variation
of Lyapunov’s construction of a normal basis (see Section 1.2 in [5]). By (4.4) we have

Dnei =

(
0, . . . , 0,

n−1

∏
l=1

bii(l), 0, . . . , 0

)∗
,

with the term ∏n−1
l=1 bii(l) at the ith position, and so

lim sup
n→∞

1
n

log‖Dnwi‖ ≥ ci, for i = 1, . . . , q.

Since w1, . . . , wq is a normal basis, the values λ′i of the Lyapunov exponent of the sequence
(Bn)n∈N (that are the same as those of (An)n∈N) satisfy

λ′k = min max
{

lim sup
n→∞

1
n

log‖Bnwi1‖, . . . , lim sup
n→∞

1
n

log‖Bnwik‖
}

,

where the minimum is taken over all collections of numbers i1 < · · · < ik in the set {1, . . . , q}.
Since

max
{

lim sup
n→∞

1
n

log‖Bnwi1‖, . . . , lim sup
n→∞

1
n

log‖Bnwik‖
}
≥ c′k

for any such set, we have λ′k ≥ c′k for k = 1, . . . , q. In particular,
q

∑
i=1

λ′i ≥
q

∑
i=1

c′i =
q

∑
i=1

ci. (4.5)

Finally, we show that each number ci is a limit. Since the matrices Dn are diagonal, the
canonical basis is a normal basis with respect to the sequence D = (Dn)n∈N and the finite
numbers c1, . . . , cq are the values of the Lyapunov exponent of this sequence. Therefore,

q

∑
i=1

ci =
q

∑
i=1

lim sup
n→∞

1
n

log
n−1

∏
l=1
|bii(l)| ≥ lim sup

n→∞

1
n

q

∑
i=1

log
n−1

∏
l=1
|bii(l)|

= lim sup
n→∞

1
n

log
q

∏
i=1

n−1

∏
l=1
|bii(l)| = lim sup

n→∞

1
n

log|detDn|

≥ lim inf
n→∞

1
n

log|detDn| = lim
n→∞

1
n

log|detBn| =
q

∑
i=1

λ′i,
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using (4.3) in the last line. It follows from (4.5) that

lim inf
n→∞

1
n

log|detDn| =
q

∑
i=1

ci =
q

∑
i=1

λD(ei)

and so the sequence (Dn)n∈N is Lyapunov regular. Hence, it follows from property 4 in
Theorem 3.3 that each number ci is a limit. Together with (4.5) this establishes the last property
in the theorem.

4.2 Lyapunov regularity and triangularization

Now we provide an even more detailed information on the relation between the Lyapunov
regularity of a sequence of matrices and its reduction to sequences of upper-triangular matri-
ces via Lyapunov coordinate changes.

We first introduce three classes of matrices:

1. S1 is the set of all sequences of invertible q× q matrices that are Lyapunov regular;

2. S3 is the set of all sequences of invertible q × q matrices (An)n∈N such that after a re-
duction to a sequence of upper-triangular matrices Bn = (bij(n))1≤i≤j≤q via a Lyapunov
coordinate change (Vn)n∈N the limits in (4.1), that is,

di := lim
n→∞

1
n

log
n−1

∏
l=1
|bii(l)|

exist and are finite for i = 1, . . . , q;

3. S2 is the set of all sequences of invertible q× q matrices (An)n∈N ∈ S3 such that, up to a
permutation, the vector (d1, . . . , dq) is the same for any Lyapunov coordinate change.

The following result clarifies the relation between these classes of matrices.

Theorem 4.2. We have S1 ⊂ S2 ⊂ S3 ⊂ L and these inclusions are proper.

Proof. We divide the proof of the theorem into steps.

Step 1: Auxiliary results I

We start with two auxiliary results. We recall that all Gramians are nonnegative and that a
Gramian G(v1, . . . , vk) vanishes if and only if the vectors v1, . . . , vk are linearly dependent.

Lemma 4.3. If (Vn)n∈N is a sequence of invertible q × q matrices and Bn = V−1
n+1AnVn is upper-

triangular for each n ∈N, then for the vectors vi = V1ei, for i = 1, . . . , q, we have

G(Anv1, . . . ,Anvk)

G(Anv1, . . . ,Anvk−1)
=

(
n−1

∏
l=1

bkk(l)

)2
G(Vne1, . . . , Vnek)

G(Vne1, . . . , Vnek−1)
(4.6)

for k = 1, . . . , q, where Bn = (bij(n))1≤i≤j≤q.
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Proof of the lemma. We have V−1
n AnV1 = Bn and so

AnV1 = VnBn = (Vne1 · · ·Vneq)Bn

= (Vne1 · · ·Vneq)


c11(n) c12(n) · · · c1q(n)

0 c22(n) · · · c2q(n)

0 0
. . .

...
0 0 0 cqq(n),

 ,

where Bn = (cij(n))1≤i≤j≤q. In particular, we have cii(n) = ∏n−1
l=1 bii(l) for each i. Now write

V1ei = vi for i = 1, . . . , q. Then

Anvi = AnV1ei =
i

∑
j=1

cji(n)Vnej, for i = 1, . . . , q.

Since the Gramian is the determinant of a matrix of inner products and Anvi − cii(n)Vnei is a
linear combination of the vectors Vne1, . . . , Vnei−1, one can show that

G(Anv1, . . . ,Anvk) = G
(
c11(n)Vne1, c22(n)Vne2, . . . , ckk(n)Vnek

)
. (4.7)

For completeness we detail the argument. Consider the q× q matrix M with entries mij =

〈Anvi,Anvj〉. Multiplying the first column of M by −c12(n)/c11(n) and adding it to the second
column corresponds to replace the entries in this column by

〈Anvi,Anv2〉+
〈
Anvi,−

c12(n)
c11(n)

Anv1

〉
= 〈Anvi, c22(n)Vne2〉.

Similarly, multiplying the first row of M by −c12(n)/c11(n) and adding it to the second row
corresponds to replace the entries in this row by

〈Anv2,Anvi〉+
〈
− c12(n)

c11(n)
Anv1,Anvi

〉
= 〈c22(n)Vne2,Anvi〉.

Now we apply successively these two operations to the matrix M, after which we apply
successively similar operations to the remaining columns and rows. Namely, for i = 3, . . . , q
(in this order) we multiply each kth column with k < i by −cki(n)/ckk(n) and we add it to the
ith column. Then, for i = 3, . . . , q (again in this order) we multiply each kth row with k < i
by −cki/ckk(n) and we add it to the ith row. After all these operations we obtain the matrix of
inner products

〈cii(n)Vnei, cjj(n)Vnej〉.

Since none of the former operations changes the determinant, we obtain identity (4.7). There-
fore,

G(Anv1, . . . ,Anvk) =

(
k

∏
i=1

n−1

∏
l=1

bii(l)

)2

G(Vne1, . . . , Vnek). (4.8)

Identity (4.6) follows now immediately from (4.8).

Lemma 4.4. A sequence of invertible q× q matrices (Vn)n∈N is a Lyapunov coordinate change if and
only if the sequence of matrices An = Vn+1V−1

n is Lyapunov regular and all values of its Lyapunov
exponent on Rq \ {0} are zero. In this case we have

lim
n→∞

1
n

log G(Vne1, . . . , Vnek) = 0, for k = 1, . . . , q. (4.9)
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Proof of the lemma. Assume that (Vn)n∈N is a Lyapunov coordinate change. Then the matrices
An = Vn+1V−1

n satisfy V−1
n+1AnVn = Id and by Theorem 3.3 (see property 3), the sequence

(An)n∈N is Lyapunov regular. Moreover, the values of its Lyapunov exponent on Rq \ {0} are
zero (because the constant diagonal matrix D is the identity matrix).

In the other direction, if the sequence of matrices An = Vn+1V−1
n is Lyapunov regular and

all values of its Lyapunov exponent on Rq \ {0} are zero, then it follows from Theorem 3.3
that there exists a Lyapunov coordinate change (Un)n∈N such that U−1

n+1AnUn = D is a fixed
diagonal matrix for n ∈N, with entries ±1 in the main diagonal. Therefore,

An = VnV−1
1 = UnDn−1U−1

1 .

Since (Un)n∈N is a Lyapunov coordinate change, the same is true for the sequence

Vn = UnDn−1U−1
1 V1.

Now we establish the last statement in the lemma. It follows from Theorem 1.3.11 in [6]
that for k = 1, . . . , q the limit

lim
n→∞

1
n

log G(Vne1, . . . , Vnek)

exists and is equal to a sum of values of the Lyapunov exponent of the sequence An = V−1
n+1Vn.

Since all these values are zero, property (4.9) holds.

Step 2: Auxiliary results II

Now we use the former results to show that the limits in (1.7) can be obtained considering
smaller classes of Lyapunov coordinate changes. This will be crucial later on in the proof of
the theorem.

Let E be the set of all Lyapunov coordinate changes (Vn)n∈N such that

V−1
n+1AnVn = Bn

is upper-triangular for all n ∈ N. On the other hand, given a normal basis v1, . . . , vq for Rq

with respect to the sequence (An)n∈N, let Un be the orthogonal matrix whose columns are
obtained applying the Gram–Schmidt process to the basis Anv1, . . . ,Anvq. Then

U−1
n+1AnUn = Cn (4.10)

is upper-triangular for all n ∈N (see [7, Theorem 7]) and so the set F of all such sequences of
orthogonal matrices (Un)n∈N satisfies F ⊂ E. We write

Bn = (bij(n))1≤i≤j≤q and Cn = (cij(n))1≤i≤j≤q.

Finally, let
bV = (b1, . . . , bq), bV = (b1, . . . , bq),

where

bi = lim inf
n→∞

1
n

log
n−1

∏
l=1
|bii(l)|, bi = lim sup

n→∞

1
n

log
n−1

∏
l=1
|bii(l)|,

and let
cU = (c1, . . . , cq), cU = (c1, . . . , cq),

where

ci = lim inf
n→∞

1
n

log
n−1

∏
l=1
|cii(l)|, ci = lim sup

n→∞

1
n

log
n−1

∏
l=1
|cii(l)|. (4.11)
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Lemma 4.5. For a sequence of invertible q× q matrices A = (An)n∈N ∈ L we have

{(bV , bV) : V ∈ E} = {(cU , cU) : U ∈ F}.

Proof of the lemma. Since F ⊂ E, we have

{(bV , bV) : V ∈ E} ⊃ {(cU , cU) : U ∈ F}.

For the reverse inclusion, take (Vn)n∈N ∈ E and let v1, . . . , vq be the columns of the matrix V1.
By Lemmas 4.3 and 4.4 we obtain

lim sup
n→∞

1
n

log
G(Anv1, . . . ,Anvi)

G(Anv1, . . . ,Anvi−1)
= 2 lim sup

n→∞

1
n

log
n−1

∏
l=1
|bii(l)| (4.12)

and

lim inf
n→∞

1
n

log
G(Anv1, . . . ,Anvi)

G(Anv1, . . . ,Anvi−1)
= 2 lim inf

n→∞

1
n

log
n−1

∏
l=1
|bii(l)|. (4.13)

Now observe that there exists an upper-triangular matrix B with unit diagonal such that
the columns u1, . . . , uq of V1B form a normal basis with respect to A. Let Un be the matrix
whose columns are obtained applying the Gram–Schmidt process to the basis Anu1, . . . ,Anuq.
Then (Un)n∈N ∈ F (see [7, Theorem 7]). Moreover, let wi = U1ei be the columns of U1, for
i = 1, . . . , q. Again by Lemmas 4.3 and 4.4 we obtain

lim sup
n→∞

1
n

log
G(Anw1, . . . ,Anwi)

G(Anw1, . . . ,Anwi−1)
= 2 lim sup

n→∞

1
n

log
n−1

∏
l=1
|cii(l)| (4.14)

and

lim inf
n→∞

1
n

log
G(Anw1, . . . ,Anwi)

G(Anw1, . . . ,Anwi−1)
= 2 lim inf

n→∞

1
n

log
n−1

∏
l=1
|cii(l)|. (4.15)

On the other hand, using the properties of the Gramian, one can show that

G(Anw1, . . . ,Anwi) = ρiG(Anu1, . . . ,Anui) = ρiG(Anv1, . . . ,Anvi)

for some constants ρi independent of n, for i = 1, . . . , q. This follows as in the proof of
Lemma 4.3. Indeed, note that

ui = vi +
i−1

∑
j=1

bijvj,

denoting by bij the entries of B. Since Anui−Anvi is a linear combination of the vectors bijAnvj
with j < i, we obtain

G(Anu1, . . . ,Anui) = G(Anv1, . . . ,Anvi).

Similarly, since

wi =
i

∑
j=1

cijuj = ciiui +
i−1

∑
j=1

cijuj

for some constants cij with cii 6= 0, it follows as before that

G(Anw1, . . . ,Anwi) = G(c11Anu1, . . . , ciiAnui)

=
i

∏
j=1
|cjj|2G(Anu1, . . . ,Anui).
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This shows that

ρi =
i

∏
j=1
|cjj|2.

Hence, it follows from (4.12) and (4.13) together with (4.14) and (4.15) that for these particular
sequences we have cU = bV and cU = bV . Therefore,

{(bV , bV) : V ∈ E} ⊂ {(cU , cU) : U ∈ F}

and the lemma is proved.

Now we turn to the proof of the statement in the theorem. We consider each inclusion
separately.

Step 3: S1 ⊂ S2

This inclusion is the content of Theorem 4.1. To show that it is strict, for each n ≥ 1 let

An = diag
((

e en

0 1

)
, Idq−2

)
,

where Idq−2 denotes the (q− 2)× (q− 2) identity matrix. Then

An = diag
((

en−1 (n− 1)en−1

0 1

)
, Idq−2

)
. (4.16)

Clearly, the values of the Lyapunov exponent are limits and are equal to 1 (with multiplicity 2)
and 0 (with multiplicity q− 2). The sum of these values is 2 while

lim
n→∞

1
n

log|detAn| = 1

and so A 6∈ S1. It remains to show that A ∈ S2.
In view of Lemma 4.5, it suffices to show that the limits di in (4.1) exist, are finite, and

that up to a permutation the vector (d1, . . . , dq) is the same, considering instead of general
upper-triangular matrices Bn only those upper-triangular matrices Cn as in (4.10) obtained
from a normal basis v1, . . . , vq or, without loss of generality, from a normal orthonormal basis
u1, . . . , uq (it is easy to verify that when the limits in (4.1) exist for some matrices Cn they also
exist for any particular matrices obtained from a normal orthonormal basis). More precisely,
when computing the numbers di, instead of considering Bn we can consider the matrices
U−1

n AnU1, where Un is the orthogonal matrix whose columns are obtained applying the Gram–
Schmidt process to the basis Anu1, . . . ,Anuq. Moreover, in view of Lemma 4.4 we may simply
consider the matrices AnU1, where U1 is the matrix with columns u1, . . . , uq.

A normal basis u1, . . . , uq with respect to A has q− 2 vectors that are in

E = span{e3, . . . , eq} (4.17)

and vectors xi = (ci
1, . . . , ci

q)
∗, for i = 1, 2, where ci

j are constants such that θ = c1
1c2

2 − c1
2c2

1 6= 0.
For simplicity of the notation, we shall write

ui(n) = Anui and xi(n) = Anxi.
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In particular,
xi(n) =

(
(ci

1 + ci
2(n− 1))en−1, ci

2, . . . , ci
q
)∗.

Without loss of generality, we assume that ul = x1 and um = x2 for some l < m. Since ci
1

and ci
2 cannot be zero simultaneously, there exists D ≥ 1 such that

D−1en ≤ ‖xi(n)‖ ≤ Dnen, for n ∈N, i = 1, 2. (4.18)

Before proceeding we establish two auxiliary results.

Lemma 4.6. There exists C > 0 such that

αn := ∠(x2(n), x1(n)) ≤ Ce−n, for n ∈N. (4.19)

Proof of the lemma. The triangle inequality for a trihedral angle says that

〈u, v〉 ≤ ∠(u, w) +∠(w, v) (4.20)

for any vectors u, v, w ∈ Rq \ {0} (this follows readily from considering the space spanned
by u, v, w, and using the triangle inequality for a spherical triangle). Hence, letting αi(n) =

∠(xi(n), e1) we obtain

αn ≤ ∠(x1(x), e1) +∠(x2(n), e1) = α1(n) + α2(n), (4.21)

for n ∈N. On the other hand,

cos αi(n) =
〈xi(n), e1〉
‖xi(n)‖

=
(ci

1 + ci
2(n− 1))en−1√

(ci
1 + ci

2(n− 1))2e2(n−1) + ∑
q
k=2(c

i
k)

2

and so

sin αi(n) =
√

1− cos2 αi(n) =
(∑

q
k=2(c

i
k)

2)1/2

‖xi(n)‖
.

By (4.18), there exists K > 0 such that

sin αi(n) ≤ Ke−n, for n ∈N, i = 1, 2.

Since x/ sin x → 1 when x → 0, this implies that there exists K′ > 0 such that αi(n) ≤ K′e−n

for all n ∈N and i = 1, 2. Hence, it follows from (4.21) that property (4.19) holds.

Furthermore, since αi(n) = ∠(xi(n), e1) → 0 when n → ∞ and e1 ⊥ E with E as in (4.17),
there exists K1 > 0 such that

∠(x1(n), W) ≥ ∠(x1(n), E) > K1 (4.22)

for any n ∈N and any subspace W 6= {0} of E.
Now let W(n) be the space generated by the set

{u1(n), . . . , uq(n)} \ {um(n)}.

Lemma 4.7. There exists K2 > 0 such that

βn := ∠(x2(n), W(n)) ≥ K2n−2e−n, for n ∈N. (4.23)
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Proof of the lemma. Consider the vector

w(n) =
(
−c1

2, (c1
1 + c1

2(n− 1))en−1, 0, . . . , 0
)∗

that is orthogonal to W(n). Since dim W(n) = q− 1 for all n ∈N, we have

βn =
π

2
− γn, where γn = ∠(x2(n), w(n)).

Moreover, since 〈x2(n), w(n)〉 = θen−1 with θ = c1
1c2

2 − c1
2c2

1, we obtain

sin βn =
|θ|en−1

‖x2(n)‖ · ‖w(n)‖ .

Clearly, ‖w(n)‖ ≤ K3nen for some constant K3 > 0. Hence, by (4.18), there exists K4 > 0 such
that

sin βn ≥ K4n−2e−n, for n ∈N,

thus yielding property (4.23).

Given a finite set R ⊂ {v1, . . . , vq}, we denote by VR(n) the vector space spanned by the
vectors Anv with v ∈ R and by ΓR(n) the square root of the Gramian of the vectors Anv with
v ∈ R. We use the former lemmas to estimate the Gramians ΓR(n) for some subsets of the
basis. Then identity (4.6) together with Lemma 4.4 will allow us to compute the limits di
in (4.1). Let

Rk = {u1, . . . , uk} \ {ul , um}

(recall that ul = x1 and um = x2). Moreover, let

Sk = Rk ∪ {x1} and Tk = Rk ∪ {x1, x2} (4.24)

for k = 1, . . . , q. Note that W(n) = VRq(n).

Lemma 4.8. There exist D1, D2 > 0 such that for each k = 1, . . . , q and n ∈N we have

D−1
1 en ≤ ΓSk(n) ≤ D1nen (4.25)

and
D−1

2 n−2en ≤ ΓTk(n) ≤ D2n2en. (4.26)

Proof of the lemma. Since Rk ⊂ E (see (4.17)), we have ΓRk(n) = ΓRk(1) for all n and it follows
from (4.22) that

∠(x1(n), VRk(n)) ≥ K1, for n ∈N. (4.27)

On the other hand, by (2.1) we have

ΓSk(n) = ΓRk(n)
√

G(x1(n)) sin∠(x1(n), VRk(n))

= ΓRk(1)‖x1(n)‖ sin∠(x1(n), VRk(n)),

and so in view of (4.18) and (4.27) there exists D1 ≥ 1 such that

D−1
1 en ≤ ΓSk(n) ≤ D1nen, for n ∈N. (4.28)
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Similarly, by (2.1) we have

ΓTk(n) = ΓSk(n)‖x2(n)‖ sin∠(x2(n), VSk(n)).

Since VSk(n) ⊂ W(n) and x1(n) ∈ W(n), it follows readily from the definitions of αn and βn

in (4.19) and (4.23) that

∠(x2(n), VSk(n)) ≥ βn and ∠(x2(n), VSk(n)) ≤ αn.

Again by (4.19) and (4.23) this implies that

K2n−2e−n ≤ ∠(x2(n), VSk(n)) ≤ Ce−n

for n ∈N. Hence, by (4.18) and (4.28) there exists D2 ≥ 1 such that

D−1
2 n−2en ≤ ΓTk(n) ≤ D2n2en, for n ∈N.

This completes the proof of the lemma.

Now let
Γk(n) =

√
G(Anu1, . . . ,Anuk), for k = 1, . . . , q.

For k < l we have u1, . . . , uk ∈ E (see (4.17)) and so it follows from the form of the matrix An

in (4.16) that Anui = ui for i ≤ k. Therefore,

Γk(n) =
√

G(u1, . . . , uk) = Γk(1).

On the other hand, it follows from the definition of Sk and Tk in (4.24) that

Γk(n) = ΓSk(n), for k = l, . . . , m− 1,

and

Γk(n) = ΓTk(n), for k = m, . . . , q.

Summing up, we have

Γk(n) =


Γk(1) if k = 1, . . . , l − 1,

ΓSk(n) if k = l, . . . , m− 1,

ΓTk(n) if k = m, . . . , q.

In particular, by (4.25) and (4.26) we obtain

D−1
1 en ≤ Γk(n) ≤ D1nen

for k = l, . . . , m− 1 and
D−1

2 n−2en ≤ Γk(n) ≤ D2n2en

for k = m, . . . , q, which readily implies that

lim
n→∞

1
n

log
Γk(n)

Γk−1(n)
=

{
0 if k 6= l,

1 if k = l.

Hence, it follows from Lemma 4.3 that

ci = ci = lim
n→∞

1
n

log
n−1

∏
l=1
|cii(l)| =

{
0 if k 6= l,

1 if k = l

for i = 1, . . . , q (see (4.11)). As detailed in the beginning of Step 3, in view of Lemma 4.5 this
readily implies that A ∈ S2.
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Step 4: S2 ⊂ S3

This inclusion is clear from the definitions of the sets S2 and S3. To show that it is strict, for
n ≥ 1 let

An =

 1 0q−2 en − en−1

0∗q−2 Idq−2 0∗q−2
0 0q−2 1

 ,

where 0q−2 denotes the (q− 2)-vector (0, . . . , 0) and 0∗q−2 denotes its transpose. Then

An =

 1 0q−2 en−1 − 1
0∗q−2 Idq−2 0∗q−2

0 0q−2 1

 . (4.29)

Clearly, the values of the Lyapunov exponent are 1 (with multiplicity 1) and 0 (with multi-
plicity q − 1). We will show that for any reduction by a Lyapunov coordinate change to a
sequence of upper-triangular matrices Bn the limits

di := lim
n→∞

1
n

log
n−1

∏
l=1
|bii(l)|, for i = 1, . . . , q,

exist and are finite, but consist of either q zeros or q− 2 zeros, 1 and −1. Moreover, we will
show that both possibilities occur, and so A 6∈ S2. It remains to show that A ∈ S3.

As in Step 3, in view of Lemma 4.5, it suffices to show that the limits di in (4.1) exist, are
finite, and that up to a permutation the vector (d1, . . . , dq) is the same, considering instead
of general upper-triangular matrices Bn only those upper-triangular matrices Cn as in (4.10)
obtained from a normal basis v1, . . . , vq. Moreover, in view of Lemma 4.4 we may simply
consider the matrices AnV1, where V1 is the matrix with columns v1, . . . , vq.

We start with an auxiliary result. We shall write ϕn ≈ ψn if there exist C1, C2 > 0 such that

C1ϕn ≤ ψn ≤ C2ϕn

for all n ∈N. Let
F = span{e1, . . . , eq−1} (4.30)

and
xn = An(c1, . . . , cq)

∗ =
(
c1 + cq(en−1 − 1), c2, . . . , cq

)∗, (4.31)

with c1, . . . , cq−1 ∈ R and cq 6= 0.

Lemma 4.9. If V, W ⊂ F are vector spaces such that e1 6∈ V and e1 ∈W, then there exists a constant
DV > 0 such that

∠(xn, V) ≥ DV and ∠(xn, W) ≈ e−n. (4.32)

Proof of the lemma. We have

cos∠(xn, e1) =
〈xn, e1〉
‖xn‖

=
c1 + cq(en−1 − 1)√

(c1 + cq(en−1 − 1))2 + ∑
q
i=2 c2

i

and

sin∠(xn, e1) =
(∑

q
i=2 c2

i )
1/2√

(c1 + cq(en−1 − 1))2 + ∑
q
i=2 c2

i

.
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Since

(c1 + cq(en−1 − 1))2 +
q

∑
i=2

c2
i = c2

qe2(n−1)an

for some sequence an → 1 when n→ ∞, we obtain

∠(xn, e1) ≈ e−n. (4.33)

By (4.20) we have
∠(e1, v) ≤ ∠(xn, e1) +∠(xn, v)

for all v ∈ V and so

∠(e1, v) = inf
v∈V

∠(e1, v) ≤ ∠(xn, e1) +∠(xn, V).

This implies that there exists c̃ > 0 such that

∠(xn, V) ≥ ∠(e1, V)−∠(xn, e1) ≥ ∠(e1, V)− c̃e−n. (4.34)

Since ∠(e1, V) 6= 0, one can take p ∈N such that

∠(e1, v)− c̃e−n ≥ 1
2
∠(e1, v), for n ≥ p.

Therefore, by (4.34), we obtain

∠(xn, v) ≥ min
{

min
m≤p

∠(xm, V),
1
2
∠(e1, v)

}
=: DV > 0. (4.35)

Moreover, since ∠(xn, W) ≤ ∠(xn, e1), it follows from (4.33) that there exists C1 > 0 such
that

∠(xn, W) ≤ C1e−n, for n ∈N.

Finally, since ∠(xn, W) ≥ ∠(xn, F) with F as in (4.30), it follows from (4.33) and (4.35) with

V = span{e2, . . . , eq−1}

that ∠(xn, F) ≥ C2e−n for some C2 > 0. This establishes property (4.32).

Note that any normal basis with respect to A is of the form v1, . . . , vq, with all vectors but
one in the space F in (4.30). Assume that vl is equal to the vector x1 = (c1, . . . , cq)∗ in (4.31).
Note that x1 6∈ F since cq 6= 0. Let Vl−1 = span{v1, . . . , vl−1} and

Vk = span
{

v1, . . . , vl−1, vl+1, . . . , vk
}

for k ≥ l + 1. Moreover, let

Γk(n) =
√

G(Anv1, . . . ,Anvk)

for k ≤ l and
Γ′k(n) =

√
G(Anv1, . . . ,Anvl−1,Anvl+1, . . . ,Anvk)

for k ≥ l + 1.

Lemma 4.10. If e1 ∈ Vl−1, then

lim
n→∞

1
n

log
Γk(n)

Γk−1(n)
= 0, for k = 1, . . . , q. (4.36)
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Proof of the lemma. For k = 1, . . . , l − 1, the volume Γk(n) is independent of n since the same
is true for Anvi for i 6= l (then vi ∈ F and so it follows from the form for An in (4.29) that
Anvi = vi for all n). Therefore,

Γk(n) = Γk(1) for k = 1, . . . , l − 1. (4.37)

On the other hand, by (2.1) we have

Γl(n) = Γl−1(n)‖xn‖ sin∠(xn, Vl−1). (4.38)

Moreover, by (4.31) we have ‖xn‖ ≈ en and it follows from (4.32) that

sin∠(xn, Vl−1) ≈ e−n

(because e1 ∈ Vl−1). Hence, there exist constants c, d > 0 such that

cen ≤ ‖xn‖ ≤ den, ce−n ≤ sin∠(xn, Vl−1) ≤ de−n,

and so it follows from (4.38) that

c2Γl−1(1) ≤ Γl(n) ≤ Γl−1(1)d2 (4.39)

for all n ∈N, that is, Γl(n) ≈ 1.
In a similar manner, by (2.1) we have

Γk(n) = Γ′k(n)‖xn‖ sin∠(xn, Vk)

for k ≥ l + 1. As in (4.37), for i 6= l we have vi ∈ F and so it follows from (4.29) that Anvi = vi,
which implies that Γ′k(n) = Γ′k(1). Since ‖xn‖ ≈ en and

sin∠(xn, Vk) ≈ e−n

(in view of (4.32), because e1 ∈ Vk), it follows as in (4.39) that Γk(n) ≈ 1.
Summing up, we showed that Γk(n) = Γk(1) for k < l and that Γk(n) ≈ 1 for k ≥ l. Hence,

there exist constants c, d > 0 such that

c ≤ Γk(n) ≤ d, for n ∈N, k = 1, . . . , q.

This readily yields property (4.36).

Now we consider the complimentary case.

Lemma 4.11. If e1 6∈ Vl−1, then there exists m > l such that

lim
n→∞

1
n

log
Γk(n)

Γk−1(n)
=


0 if k 6= l and k 6= m,

1 if k = l,

−1 if k = m

(4.40)

for k = 1, . . . , q.
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Proof of the lemma. First note that there exists m ≥ l + 1 such that e1 ∈ Vm and e1 6∈ Vm−1. As in
the proof of Lemma 4.10, we have Γk(n) ≈ 1 for k < l and by (2.1) we obtain

Γl(n) =

{
‖xn‖ if l = 1,

Γl−1(n)‖xn‖ sin∠(xn, Vl−1) if l > 1.

By (4.31) we obtain ‖xn‖ ≈ en and so it follows from (4.32) that Γl(n) ≈ en. Indeed, for l = 1
we have Γl(n) = ‖xn‖ ≈ en. For l > 1, by (4.37) we have Γl−1(n) = Γl−1(1). Moreover,

cen ≤ ‖xn‖ ≤ den (4.41)

for some constants c, d > 0 and since e1 6∈ Vl−1, it follows from (4.32) that

DVl−1 ≤ ∠(xn, Vl−1) ≤
π

2
.

Hence,

Γl−1(1)cDVl−1 en ≤ Γl(n) ≤ Γl−1(1)
πd
2

den

and so Γl(n) ≈ en.
Finally, we have

Γk(n) = Γ′k(n)‖xn‖ sin∠(xn, Vk), for k ≥ l + 1.

Since e1 ∈ Vm but e1 6∈ Vm−1, it follows from (4.32) that

∠(xn, Vk) ≈
{

1 if k < m,

e−n if k ≥ m.

On the other hand, we have Γ′k(n) = Γ′k(1) for k ≥ l + 1 and so it follows from (4.41) that

Γk(n) ≈ en, for l + 1 ≤ k ≤ m− 1

and that Γk(n) ≈ 1 for k ≥ m. Summing up, we have

Γk(n) ≈
{

1 if k 6∈ [l, m),

en if k ∈ [l, m)

and so

Γk(n)
Γk−1(n)

≈


1 if k 6= l and k 6= m,

en if k = l,

e−n if k = m.

This readily yields property (4.40).

Proceeding as in Step 3, it follows from Lemma 4.3 together with properties (4.36) and
(4.40) that A ∈ S3.
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Step 5: S3 ⊂ L

Assume that (An)n∈N ∈ S3. Given a vector v 6= 0, let v1, . . . , vq be a basis for Rq with v1 = v.
Moreover, let Vn be the matrix whose columns are obtained applying the Gram–Schmidt
process to the basis Anv1, . . . ,Anvq. Then Bn = V−1

n+1AnVn is upper-triangular for all n ∈ N.
We have V1e1 = v/‖v‖ and so

‖Anv‖
‖v‖ = ‖AnV1e1‖ = ‖V−1

n AnV1e1‖

= ‖Bne1‖ =
n−1

∏
l=1
|b11(l)|.

Hence,

λA(v) = lim
n→∞

1
n

log
n−1

∏
l=1
|b11(l)| < +∞,

which shows that S3 ⊂ L.
To show that the inclusion is strict, for n ≥ 1 let

An =

(
en sin n−(n−1) sin(n−1) 0q−1

0∗q−1 Idq−1

)
.

Then

An =

(
e(n−1) sin(n−1) 0q−1

0∗q−1 Idq−1

)
.

Clearly, the values of the Lyapunov exponents are finite. Moreover, they are equal to 1 (with
multiplicity 1) and 0 (with multiplicity q− 1). In particular, A ∈ L. On the other hand (An is
triangular itself, so (Un)n∈N = Id is a Lyapunov coordinate change) the limit

lim
n→∞

1
n

log
n−1

∏
l=1
|a11(l)| = lim

n→∞

1
n

log e(n−1) sin(n−1)

= lim
n→∞

(n− 1) sin(n− 1)
n

does not exist and so the sequence A = (An)n∈N 6∈ S3. This concludes the proof of the
theorem.
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