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Abstract

We study the delay differential equation ẋ(t) = −µx(t) + f(x(t − 1)) with µ ≥ 0 and
C1-smooth real functions f satisfying f(0) = 0 and f ′ < 0. For a set of µ and f , we
determine the number of periodic orbits, and describe the structure of the global attractor
as the union of the strong unstable sets of the periodic orbits and of the stationary point
0.

The delay differential equation

ẋ(t) = −µx(t) + f(x(t− 1)) (1)

with parameter µ ≥ 0 and C1-smooth nonlinearities f : R → R satisfying f(0) = 0 models
a system governed by delayed feedback and instantaneous damping. The negative feedback
case, that is, ξf(ξ) < 0 for all ξ 6= 0, arises e.g. in physiological processes or diseases [MG].
The positive feedback case, that is, ξf(ξ) > 0 for all ξ 6= 0, occurs e.g. in neural network
theory [MW].

A tremendous number of results are known about Eq. (1), mostly concerning existence
and qualitative properties of periodic solutions. The introduction of a discrete Lyapunov
functional by Mallet-Paret and Sell in [MPS1] (see also Mallet-Paret [MP] for an earlier
version) opened the door to a general inquiry into the structure of the attractor of Eq. (1)
and more general cyclic feedback systems with delay.

For the negative feedback case Mallet-Paret [MP] obtained a Morse decomposition of
the global attractor of Eq. (1). An analogous result for the positive feedback case was
shown by Polner [P]. Connecting orbits between some of the Morse sets were obtained by
Fiedler and Mallet-Paret [FMP] and by McCord and Mischaikow [MCM]. Although the
existence of a Morse decomposition means a gradient-like structure of the attractor, the
dynamics under the above negative or positive feedback conditions can be complicated.
We refer to Lani-Wayda [LW] and references in it for chaotic behavior of solutions of Eq.
(1).
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In the monotone feedback case, i.e.,

either f ′(ξ) < 0 for all ξ ∈ R, or f ′(ξ) > 0 for all ξ ∈ R,

much more is known about the asymptotic behavior of the solutions of Eq. (1). Mallet-
Paret and Sell [MPS2] proved that a Poincaré–Bendixson type theorem holds. In the
monotone negative feedback case, i.e., f ′ < 0, Walther [Wa1,Wa2] and Walther and Yebdri
[WY] described the attractor of slowly oscillating solutions. Mallet-Paret and Walther
[MPW] obtained that the domain of attraction of the attractor of the slowly oscillating
solutions is an open and dense subset of the phase space. In [Wa1], for a set of µ and f ,
Walther showed that the global attractor of Eq. (1) is a 2-dimensional disk with a slowly
oscillating periodic orbit on the boundary. In the monotone positive feedback case, i.e.,
f ′ > 0, Krisztin, Walther and Wu [KWW] and Krisztin and Walther [KWa] proved that,
for certain µ and f , the global attractor is a 3-dimensional smooth submanifold of the phase
space, and gave a description of it. Higher dimensional partial analogues of these results
can be found in [KWu] and [K]. In spite of the above mentioned nice results, there are still
several open problems for the monotone feedback cases. For example, the dynamics of the
famous Wright’s equation ẋ(t) = −α

(

ex(t−1) − 1
)

is still not completely understood.
In this note we consider Eq. (1) under a monotone negative feedback condition, that

is, we assume
(H1) µ ≥ 0, f : R → R is continuously differentiable, f ′(ξ) < 0 for all ξ ∈ R, f(0) = 0,

and f is bounded from above or from below.
Under hypothesis (H1) and an additional condition we state a result describing the

global attractor of the semiflow generated by Eq. (1) as the finite union of strong unstable
sets of periodic orbits and the strong unstable set of the stationary point 0. We sketch the
main ideas and main steps of the proof, and indicate how existing results for the monotone
positive feedback case can be modified for this situation.

Let C denote the Banach space of continuous functions φ : [−1, 0] → R with the norm
given by ||φ|| = max−1≤t≤0 |φ(t)|. C1 is the Banach space of all C1-maps φ : [−1, 0] → R,

with the norm ||φ||1 = ||φ|| + ||φ̇||. If I ⊂ R is an interval, x : I → R is a continuous
function, t ∈ R so that [t−1, t] ⊂ I, then the segment xt ∈ C is defined by xt(s) = x(t+s),
−1 ≤ s ≤ 0.

Every φ ∈ C uniquely determines a solution xφ : [−1,∞) → R with xφ
0 = φ, i.e., a

continuous function x : [−1,∞) → R such that x is differentiable on (0,∞), x0 = φ, and
x satisfies Eq. (1) for all t > 0. The map

F : R
+ × C 3 (t, φ) 7→ xφ

t ∈ C

is a continuous semiflow. 0 is the only stationary points of F . All maps F (t, ·) : C → C,
t ≥ 0, are injective. It follows that for every φ ∈ C there is at most one solution x : R → R

of Eq. (1) with x0 = φ. We denote also by xφ such a solution on R whenever it exists.
The global attractor of the semiflow F is a nonempty compact set A ⊂ C which is

invariant in the sense that

F (t, A) = A for all t ≥ 0,
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and which attracts bounded sets in the sense that for every bounded set B ⊂ C and for
every open set U ⊃ A there exists t ≥ 0 with

F ([t,∞) ×B) ⊂ U.

Under hypothesis (H1) the semiflow F has a global attractor, see e.g. [Wa2].
It is not difficult to show that

A = {φ ∈ C : There are a bounded solution x : R → R

of Eq. (1) and t ∈ R so that φ = xt}.

The compactness of A, its invariance property and the injectivity of the maps F (t, ·), t ≥ 0,
combined give that the map

R
+ × A 3 (t, φ) 7→ F (t, φ) ∈ A

extends to a continuous flow
FA : R ×A→ A;

for every φ ∈ A and for all t ∈ R we have

FA(t, φ) = xt

with the uniquely determined solution x : R → R of Eq. (1) satisfying x0 = φ.
Now we linearize the semiflow F at its stationary point 0. The smoothness of f implies

that each map F (t, ·), t ≥ 0, is continuously differentiable. The operators D2F (t, 0), t ≥ 0,
form a strongly continuous semigroup. The spectrum of the generator of the semigroup
(D2F (t, 0))t≥0 consists of the solutions λ ∈ C of the characteristic equation

λ+ µ− f ′(0)e−λ = 0. (2)

In case f ′(0) < −e−µ−1, all points in the spectrum form a sequence of complex conjugate
pairs (λj , λj)

∞
0 with

Reλ0 > Reλ1 > Reλ2 > . . . , 2jπ < Imλj < (2j + 1)π

for all j ∈ N, and Reλj → −∞ as j → ∞. In particular, if the stationary point 0 is
linearly unstable, then all points in the spectrum occur in complex conjugate pairs.

The following explicit condition in terms of µ and f ′(0) for the location of the solutions
of (2) can be obtained e.g. from [DGVW].

Proposition 1. Let j ∈ N, and let θj denote the unique solution of the equation −θ cot θ =
µ in (2jπ, (2j + 1)π). Then

Reλj > 0 (= 0)
EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 15, p. 3
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if and only if

f ′(0) < −
θj

sin θj

(

= −
θj

sin θj

)

.

Assume that there exists N ∈ N so that

ReλN+1 < 0 < ReλN .

Let P denote the realified generalized eigenspace of the generator associated with the
spectral set {λ0, λ0, . . . , λN , λN}. Let Q denote the realified generalized eigenspace given
by the spectral set of all λk, λk with k ≥ N + 1. Then C = P ⊕ Q. The spaces P
and Q are also realified generalized eigenspaces of D2F (1, 0) given by the spectral sets

{eλ0 , eλ0 , . . . , eλN , eλN } and {eλk : k ≥ N + 1} ∪ {eλk : k ≥ N + 1}, respectively.
Choose β > 1 with β < eRe λN . According to Theorem I.3 in [KWW] there exist

convex open neighbourhoods NQ, NP of Q,P , respectively, and a C1-map wu : NP → Q
with Wu(NP ) ⊂ NQ, wu(0) = 0, Dwu(0) = 0 so that the strong unstable manifold of the
fixed point 0 of F (1, ·) in NQ +NP , namely

Wu(0, F (1, ·),NQ +NP ) = {φ ∈ NQ +NP : There is a trajectory (φn)0−∞

of F (1, ·) with φ0 = φ, φnβ
−n ∈ NQ +NP for all n ∈ −N,

and φnβ
−n → 0 as n→ −∞}

coincides with the graph {χ + wu(χ) : χ ∈ NP }. It is easy to show that every φ ∈
Wu(0, F (1, ·), NQ + NP ) uniquely determines a solution xφ : R → R of Eq. (1), and
for this solution xφ(t) → 0 as t → −∞ holds, moreover there exists t ∈ R with xφ

s ∈
Wu(0, F (1, ·), NQ +NP ) for all s ≤ t.

We call the forward extension

Wu
str(0) = F (R+ ×W u(0, F (1, ·), NQ +NP ))

the strong unstable set of 0. The unstable set of 0 is defined by

Wu(0) = {φ ∈ C :There is a solution x : R → R of Eq. (1)

with x0 = φ and xt → 0 as t→ −∞}.

In case ReλN+1 < 0 < Re λN , 0 is hyperbolic and

Wu(0) = W u
str(0).

We recall the definition and some properties of a discrete Lyapunov functional

V : C \ {0} → N ∪ {∞}

which goes back to the work of Mallet-Paret [MP]. The version which we use was introduced
in Mallet-Paret and Sell [MPS1].
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The definition is as follows. First, set sc(φ) = 0 whenever φ ∈ C \ {0} is nonnegative
or nonpositive, otherwise, for nonzero elements of C, let

sc(φ) = sup
{

k ∈ N \ {0} : There is a strictly increasing finite sequence

(si)k
0 in [−1, 0] with φ(si−1)φ(si) < 0 for all i ∈ {1, 2, . . . , k}

}

≤ ∞.

Then define

V (φ) =

{

sc(φ) if sc(φ) is odd or ∞,

sc(φ) + 1 if sc(φ) is even.

Set

R = {φ ∈ C1 :φ(0) 6= 0 or φ̇(0)φ(−1) < 0,

φ(−1) 6= 0 or φ̇(−1)φ(0) > 0,

all zeros of φ in (−1, 0) are simple}.

The next lemma lists basic properties of V [MPS1,MPS2].

Proposition 2.

(i) For every φ ∈ C \ {0} and for every sequence (φn)∞0 in C \ {0} with φn → φ as
n→ ∞,

V (φ) ≤ lim inf
n→∞

V (φn).

(ii) For every φ ∈ R and for every sequence (φn)∞0 in C1 \ {0} with ||φn − φ||1 → 0 as
n→ ∞,

V (φ) = lim
n→∞

V (φn) <∞.

(iii) Let an interval I ⊂ R, a real ν ≥ 0, and continuous functions b : I → (−∞, 0) and
z : I + [−1, 0] → R be given so that z|I is differentiable with

ż(t) = −νz(t) + b(t)z(t− 1) (3)

for inf I < t ∈ I, and z(t) 6= 0 for some t ∈ I + [−1, 0]. Then the map I 3 t 7→
V (zt) ∈ N ∪ {∞} is monotone nonincreasing. If t ∈ I, t − 3 ∈ I and z(t) = 0 =
z(t − 1), then V (zt) = ∞ or V (zt−3) > V (zt). For all t ∈ I with t − 4 ∈ I and
V (zt−4) = V (zt) <∞, we have zt ∈ R.

(iv) If ν ≥ 0, b : R → (−∞, 0) is continuous and bounded, z : R → R is differentiable
and bounded, z satisfies (3) for all t ∈ R, and z(t) 6= 0 for some t ∈ R, then
V (zt) <∞ for all t ∈ R.

We need the following corollary of a general Poincaré–Bendixson type theorem for
monotone cyclic feedback systems due to Mallet-Paret and Sell [MPS2].
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Proposition 3. Let x : R → R be a bounded solution of Eq. (1). Then α(x) is either the
orbit of a nonconstant periodic solution of Eq. (1), or for every solution y : R → R of Eq.
(1) with y0 ∈ α(x) the sets α(y) and ω(y0) consist of stationary points of F . An analogous
statement holds for ω-limit sets.

We introduce an additional hypothesis on f :

(H2) f(ξ) = −f(−ξ) for all ξ ∈ R, and the function (0,∞) 3 ξ 7→ ξf ′(ξ)
f(ξ) ∈ R is strictly

decreasing.

From Lemma 2(iii) and (iv) it follows that for any nonconstant periodic solution x :
R → R of Eq. (1) there exists k ∈ N so that V (xt) = 2k + 1 and xt ∈ R for all t ∈ R.
For k ∈ N, we say that Eq. (1) has a periodic orbit in V −1(2k+ 1) if it has a nonconstant
periodic solution x : R → R with V (xt) = 2k + 1 for all t ∈ R.

The following result considers uniqueness and absence of periodic orbits.

Proposition 4. Assume that hypotheses (H1) and (H2) are satisfied.

(i) For every k ∈ N, Eq. (1) has at most one periodic orbit in V −1(2k + 1).

(ii) Eq. (1) has no periodic orbit in V −1(2k + 1) if Reλk ≤ 0.

In [KWa] we proved an analogous result for the monotone positive feedback. That
proof can be easily modified to obtain Proposition 4. The approach uses the technique of
Cao [Ca2] who studied slowly oscillating periodic orbits, i.e., periodic orbits in V −1(1), for
Eq. (1). For periodic orbits in V −1(2k + 1) with 0 < k ∈ N, not all arguments from [Ca2]
seem to work. The oddness condition in (H2) is applied to overcome the difficulties. By
a results of Mallet-Paret and Sell [MPS2] the oddness of f implies a special symmetry of
the periodic solutions of Eq. (1).

The next result of [KWu] guarantees the existence of a periodic orbit with a given
oscillation frequency.

Proposition 5. Assume that hypothesis (H1) holds. If k ∈ N and Reλk > 0, then Eq.
(1) has a periodic orbit Ok in V −1(2k + 1).

For a given k ∈ N, let p : R → R denote the periodic solution guaranteed by Proposition
5 and normalized so that p(0) = 0 and p(−1) < 0. Then Ok = {pt : t ∈ R}. It is also true
that three consecutive zeros of p determine the minimal period ω of p [MPS2]. All zeros of
p are simple since pt ∈ R for all t ∈ R by Proposition 2(iii). Then the definition of V and
the fact V (pt) = 2k+ 1 for all t ∈ R combined yield (k+ 1)ω > 1. Define the monodromy
operator

M = D2F (ω, p0).

The operator Mk+1 is compact since ω > 1/(k+ 1). We then have that the spectrum σ of
M contains 0, and that every point λ ∈ σ \ {0} is an eigenvalue of M of finite multiplicity,
and is isolated in σ. These eigenvalues in σ \ {0} are called Floquet multipliers.

For 0 6= λ ∈ σ with Imλ ≥ 0, let GR(λ) stand for the realified generalized eigenspace
of the eigenvalue λ of M . If r > 0 and {λ ∈ σ : r < |λ|} 6= ∅, then we use C≤r and Cr<

to denote the realified generalized eigenspaces of M associated with the nonempty disjoint
EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 15, p. 6
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spectral sets {λ ∈ σ : |λ| ≤ r} and {λ ∈ σ : r < |λ|}, respectively. Then

C = C≤r ⊕ Cr<, Cr< =
⊕

λ∈σ,r<|λ|,Im λ≥0

GR(λ).

In [KWu] the following result can be found on the Floquet multipliers of the periodic
orbit Ok:

There exists rM ∈ (0, 1) such that

C≤rM
∩ V −1({1, 3, . . . , 2k + 1}) = ∅, CrM < ∩ C≤1 ⊂ V −1(2k + 1) ∪ {0},

dimCrM < ∩ C≤1 = 2, 0 ≤ dimC1< ≤ 2k.

Choose λ ∈ (0, 1) so that

λ > max

{

max
ζ∈σ,|ζ|>1

1

|ζ|
, max
ζ∈σ,|ζ|<1

|ζ|

}

.

Theorem I.3 in [KWW] guarantees the existence of a local strong unstable manifold of the
period-ω map F (ω, ·) at its fixed point p0; namely, there are convex open neighbourhoods
N1< of 0 in C1< and N≤1 of 0 in C≤1, a C1-map wu : N1< → C≤1 so that wu(0) = 0,
Dwu(0) = 0, wu(N1<) ⊂ N≤1, and with Nu = N≤1 +N1< the shifted graph

Wu(p0, F (ω, ·), Nu) = {p0 + χ+ wu(χ) : χ ∈ N1<}

is equal to the set

{χ ∈ p0 +Nu : There is a trajectory (χn)0−∞ of F (ω, ·) with χ0 = χ,

λn(χn − p0) ∈ Nu for all n ∈ −N, and λn(χn − p0) → 0 as n→ −∞}.

The C1-submanifold W u(p0, F (ω, ·), Nu) of C is called a local strong unstable manifold of
F (ω, ·) at p0.

The strong unstable set W u
str(Ok) of the periodic orbit Ok is defined by

Wu
str(Ok) = F (R+ ×W u(p0, F (ω, ·), Nu)).

The unstable set W u(Ok) of the periodic orbit Ok is given by

Wu(Ok) = {φ ∈ C : There exists a solution x : R → R

so that x0 = φ and dist(xt,Ok) → 0 as t→ −∞}.

It is not difficult to show that

Wu
str(Ok) ⊂W u(Ok).

If Ok is hyperbolic, i.e., σ∩S1
C

= {1} and the generalized eigenspace of M associated with
1 is 1-dimensional, then the equality W u

str(Ok) = W u(Ok) holds. For a nonhyperbolic Ok,
in general, we do not have equality.

In [Kr] in the case of monotone positive delayed feedback we proved the equality
Wu

str(O) = W u(O) for a periodic orbit O without assuming hyperbolicity. We can use
essentially the same ideas even for the negative feedback case to obtain
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Proposition 6. Under hypotheses (H1) and (H2), for each periodic orbit O, W u
str(O) =

Wu(O) holds.

The basic idea of the proof of the above equality is simple. Propositions 4 and 5
guarantee existence and uniqueness of periodic orbits with a given oscillation frequency.
Let p : R → R be a periodic solution of Eq. (1) with minimal period ω > 0 so that
O = {pt : t ∈ [0, ω]}. We construct two solutions x : [−1,∞) → R and y : [−1,∞) → R of
Eq. (1) such that in the plane R2 the curve

X : [0,∞) 3 t 7→

(

x(t)
x(t− 1)

)

∈ R
2

spirals toward the trace |P | of the simple closed curve

P : [0, ω] 3 t 7→

(

p(t)
p(t− 1)

)

∈ R
2

in the interior of P as t→ ∞, while the curve

Y : [0,∞) 3 t 7→

(

y(t)
y(t− 1)

)

∈ R
2

spirals toward |P | in the exterior of P as t → ∞. If W u(O) 6= W u
str(O) then there is a

solution z : R → R of Eq. (1) such that the curve

Z : (−∞, 0] 3 t 7→

(

z(t)
z(t− 1)

)

∈ R
2

does not intersect the curves P,X, Y , and Z(t) spirals toward |P | as t → −∞. A planar
argument applying the Jordan curve theorem leads to a contradiction. A solution x with
the above property is given in Krisztin and Wu [KWu]. The existence of the solution y is
shown by using homotopy methods and the Brouwer degree. The construction of z requires
some information about the Floquet multipliers of the periodic orbit O.

Now we can state the main result of this note.

Theorem 7. Assume that hypotheses (H1) and (H2) hold, and N ≥ 0 is an integer such
that

−
θN+1

sin θN+1
< f ′(0) < −

θN

sin θN

is satisfied where θN , θN+1 denote the unique solution of −θ cot θ = µ in (2Nπ, (2N+1)π),
(2(N+2)π, (2N+3)π), respectively. Then the semiflow F has exactly N+1 periodic orbits
O0,O1, . . . ,ON , and, for the global attractor A of F , we have

A = W u
str(0) ∪

(

N
⋃

k=1

Wu
str(Ok)

)

. (4)
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Sketch of the proof. Hypothesis (H1) implies that the semiflow F has a global attractor
A. 0 is the only stationary point, and it is hyperbolic and unstable. In particular, W u(0) =
Wu

str(0).
Propositions 1, 4 and 5 imply that F has exactly N+1 periodic orbits O0,O1, . . . ,ON ,

and Ok ⊂ V −1(2k + 1), k ∈ {0, 1, . . . , N}. Proposition 6 shows W u(Ok) = W u
str(Ok) for

all k ∈ {0, 1, . . . , N}.
Let φ ∈ A. By the invariance of A, there exists a solution x : R → R so that x0 = φ and

xt ∈ A for all t ∈ R. Proposition 3 gives that either α(x) = Ok for some k ∈ {0, 1, . . . , N}
or, for every solution y : R → R of Eq. (1) with y0 ∈ α(x), the sets α(y) and ω(y0) consist
of stationary points of F , i.e., 0. In order to show (4) it suffices to verify that in case α(x)
is not a periodic orbit we have α(x) = {0}. Suppose

α(x) 6= Ok for all k ∈ {0, 1, . . . , N}.

Then 0 ∈ α(x) since 0 is the only stationary point of F . Assume α(x) 6= {0}. Then there
exist ψ ∈ α(x) \ {0} and a nonzero solution y : R → R with y0 = ψ and α(y) ∪ ω(y0) ⊂
α(x) ∩ {0} = {0}. Thus, α(y) = ω(y0) = {0}.

From y(t) → 0 as t→ −∞, it follows that there is a sequence (tn)∞0 with tn → −∞ so
that

|y(tn)| = sup
t≤0

|y(t+ tn)|.

The functions

zn : R 3 t 7→
y(t+ tn)

|y(tn)|
∈ R

satisfy |zn(t)| ≤ 1 for all t ≤ 0, and

żn(t) = −µzn(t) + bn(t)zn(t− 1) for all t ∈ R

with

bn(t) =

∫ 1

0

f ′(sy(t− 1 + tn)) ds→ f ′(0) as n→ ∞ uniformly in (−∞, 0].

The Arzela–Ascoli theorem can be applied to find a subsequence (znk)∞k=0 of (zn)∞0 and a
continuously differentiable function z : (−∞, 0] → R with

znk → z, żnk → ż as k → ∞

uniformly on compact subsets of (−∞, 0], and

ż(t) = −µz(t) + f ′(0)z(t− 1) for all t ≤ 0,

||z0|| = 1, |z(t)| ≤ 1 for all t ≤ 0. It is not difficult to show that zt ∈ P for all t ≤ 0.
Indeed, this follows using the definition of (zn), the facts that yt ∈W u(0) = W u

str(0) for all
EJQTDE, Proc. 6th Coll. QTDE, 2000 No. 15, p. 9
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t ∈ R, that W u
str(0) is the forward extension of W u(0, F (1, ·), NQ+NP ) = {χ+wu(χ) : χ ∈

NP }, and Dwu(0) = 0. The information on the imaginary parts of λ0, λ1, . . . , λN yields
V (zt) ≤ 2N + 1 for all t ≤ 0. By Proposition 2(iii), there exists T < 0 with zT ∈ R. Using
Proposition 2(ii) and ||znk

T −zT ||1 → 0 as k → ∞, we find V (znk

T ) = V (zT ) ≤ 2N+1 for all
sufficiently large k. This fact, the definition of (zn) and the monotonicity of V combined
imply

V (yt) ≤ 2N + 1 for all t ∈ R.

By the above upper bound on the number of sign changes of y and the boundedness
of y, a result of Cao [Ca1] or Arino [Ar] (see also Mallet-Paret [MP]) can be used to show
that y(t) can not decay too fast as t→ ∞. More precisely, there exist a > 0, b > 0 so that

||yt|| ≥ ae−bt for all t ≥ 0.

Then, as y(t) → 0 (t → ∞), an asymptotic expansion holds for y(t) as t → ∞. Namely,
there are an integer j > N and (c, d) ∈ R2 \ {(0, 0)} so that

y(t) = eRe λjt
(

c cos(Imλjt) + d sin(Imλjt) + o(1)
)

as t→ ∞.

A consequence of this fact is that

V (yt) ≥ 2j + 1 > 2N + 1

for all sufficiently large t. This is a contradiction. Therefore α(x) = {0}, and the proof is
complete.

Remarks 1. We emphasize that no hyperbolicity condition on the periodic orbits is
assumed in Theorem 7.

2. As the maps F (t, ·) and D2F (t, ·) are injective for all t ≥ 0, Theorem 6.1.9 in Henry
[He] can be used to show that the strong unstable sets

Wu
str(O0), . . . ,W

u
str(ON )

in (4) are C1 immersed submanifolds of C. We suspect that these strong unstable sets are
also C1-submanifolds of C.

3. Hypotheses (H1) and (H2) hold, for example, for the functions

f(ξ) = −α tanh(βξ), f(ξ) = −α tan−1(βξ)

with parameters α > 0 and β > 0.
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