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Abstract. In this paper, we consider the following Schrödinger–Poisson system with
strong singularity 

−∆u + φu = f (x)u−γ, x ∈ Ω,
−∆φ = u2, x ∈ Ω,
u > 0, x ∈ Ω,
u = φ = 0, x ∈ ∂Ω,

where Ω ⊂ R3 is a smooth bounded domain, γ > 1, f ∈ L1(Ω) is a positive function
(i.e. f (x) > 0 a.e. in Ω). A necessary and sufficient condition on the existence and
uniqueness of positive weak solution of the system is obtained. The results supplement
the main conclusions in recent literature.

Keywords: Schrödinger–Poisson system, strong singularity, uniqueness, variational
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1 Introduction

In this paper, we consider the existence and uniqueness of positive solution for the following
Schrödinger–Poisson system 

−∆u + φu = f (x)u−γ, x ∈ Ω,

−∆φ = u2, x ∈ Ω,

u > 0, x ∈ Ω,

u = φ = 0, x ∈ ∂Ω,

(SP)
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where Ω ⊂ R3 is a smooth bounded domain, γ > 1, f ∈ L1(Ω) is a positive function (i.e.
f (x) > 0 a.e. in Ω). System (SP) can be viewed as a special case of the following Schrödinger–
Poisson system with singularity

−∆u + ηφu = f (x)u−γ + g(x, u), x ∈ Ω,

−∆φ = u2, x ∈ Ω,

u > 0, x ∈ Ω,

u = φ = 0, x ∈ ∂Ω,

(1.1)

which has been investigated recently. When g(x, u) = 0, f (x) = µ is a positive parameter and
0 < γ < 1 (i.e. weak singularity), Zhang [28] obtained a sufficient condition on the existence,
uniqueness and multiplicity of positive solutions for system (1.1) with η = ±1. When η = −1,
g(x, u) = λh(x)u + u3, f (x) = µ

|x|β and 0 < γ < 1, Wang [25] considered the existence and
multiplicity of positive solutions for system (1.1) under some suitable conditions by Nehari
manifold. Combining with variational method and Nehari manifold method, Lei and Liao
[7] generalized a part of the results in Zhang [28] to the critical problem and obtained two
positive solutions of system (1.1) with η = 1, g(x, u) = u5, f (x) = µ

|x|β and 0 < γ < 1.
Jiang and Zhou [5] established the existence and a priori estimate of positive solutions of non-
autonomous Schrödinger–Poisson system with singular potential. In addition, Kirchhoff type
of problems with singularity have been considered by many researchers, one could refer to
[3, 8, 9, 14–16, 24, 26] and the references cited therein. In a more general sense, Lei, Suo and
Chu [10] studied a class of Schrödinger–Newton systems with singular and critical growth
terms in unbounded domains and established results on the existence and multiplicity of
positive solutions. We [27] obtained the uniqueness and asymptotical behavior of solutions
to a Choquard equation with singularity in unbounded domains. Mu and Lu [17], Li et
al. [13] and Zhang [29] studied the existence, uniqueness and multiple results to singular
Schrödinger–Kirchhoff–Poisson system.

However, investigations (see [3, 5, 7–10, 13–17, 24–29] and references therein) considered
elliptic equations with singularity have mainly focused on weak singularity (i.e. 0 < γ < 1
) and seldom with strong singularity (i.e. γ > 1 ) which have been studied extensively (see
[1, 2, 4, 6, 11, 12, 18–23, 30] and references therein). In 2013, Sun [20] considered the following
nonlinear elliptic problem 

−∆u = f (x)u−γ + k(x)uq, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.2)

where Ω ⊂ RN , N ≥ 1, is a bounded open set with smooth boundary ∂Ω, k ∈ L∞(Ω) is a
non-negative function, q ∈ (0, 1), γ > 1 (i.e. strong singularity) and f ∈ L1(Ω) is positive (i.e.
f (x) > 0 a.e. in Ω). By using variational method, Sun [20] has derived a compatible condition
between coefficients and negative exponents, which is optimal for H1

0(Ω)-solutions of problem
(1.2). The results obtained by Sun [20] supplement and improve the main conclusions in [9-
13]. When N ≥ 3 and k(x) ≡ 0, Sun [22] further obtained the existence of solutions of problem
(1.2) and showed the reason on why 3 plays a crucial role in the study of elliptic equations
with negative exponents. When k(x) ≡ 0 and −∆u was replaced by −div(M(x)∇u) where
M(x) is a bounded elliptic matrix, Tan and Sun [23] also proved the existence of a positive
H1

0(Ω)-solutions of problem (1.2). Furthermore, Cong and Han [2], Li and Gao [11] both



Schrödinger–Poisson system with strong singularity 3

considered the existence of positive solutions to elliptic boundary value problem with strong
singularity and p-Laplace operator. As for Kirchhoff type equations with strong singularities,
Li et al. [12], Tan and Sun [21] and Santos et al. [18] have obtained some perfect results.
However, to the best of our knowledge, Schrödinger–Poisson system with strong singularity
has not been studied until now. Thus, the main purpose of this paper is to consider the
existence and uniqueness of positive solution for system (SP) with strong singularity. Indeed,
we obtain the following results.

Theorem 1.1. Assume that f ∈ L1(Ω) is a positive function (i.e. f (x) > 0 a.e. in Ω), γ > 1, then
system (SP) admits a unique positive solution if and only if there exists a u0 ∈ H1

0(Ω), such that∫
Ω

f (x)|u0|1−γdx < +∞. (1.3)

As a consequence of Theorem 1.1, we also have the following.

Theorem 1.2. Suppose f1, f2 ∈ L1(Ω) are two positive functions (i.e. fi(x) > 0, i = 1, 2 a.e. in Ω)
with

∫
Ω fi(x)|u0|1−γdx < +∞, i = 1, 2 and u1, u2 are the corresponding solutions of system (SP)

obtained in Theorem 1.1, then f1 ≥ f2 implies u1 ≥ u2.

Theorem 1.3. Let Ω ⊂ R3 be a smooth bounded domain containing 0. Suppose 0 < α < 3 and
1 < γ < 3, then 

−∆u + φu = |x|−αu−γ, x ∈ Ω,

−∆φ = u2, x ∈ Ω,

u > 0, x ∈ Ω,

u = φ = 0, x ∈ ∂Ω,

admits a unique positive solution u ∈ H1
0(Ω).

We then consider the property of the H1
0(Ω)-solution in Theorem 1.3 and get the following

result.

Theorem 1.4. Let Ω ⊂ R3 be a smooth bounded domain containing 0. Suppose α > 2 and γ > 0,
then 

−∆u + φu = |x|−αu−γ, x ∈ Ω,

−∆φ = u2, x ∈ Ω,

u > 0, x ∈ Ω,

u = φ = 0, x ∈ ∂Ω,

admits no bounded positive solution.

Notations

• Ls(Ω) is a Lebesgue space whose norm is denoted by |u|s = (
∫

Ω |u|
sdx)

1
s .

• H1
0(Ω) is the usual Sobolev space equipped with the norm ‖u‖2 =

∫
Ω |∇u|2dx.

• u+ = max{u, 0} and u− = min{u, 0} for any function u.

• → denotes the strong convergence and ⇀ denotes the weak convergence.

• Br(x0) denotes the Euclidean ball of center x0 and radius r.

• C and Ci (i = 1, 2, . . .) denotes various positive constants, which may vary from line to
line.
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2 Proof of main results

Before proving our main results, we need the following lemma (see [28]).

Lemma 2.1. For each u ∈ H1
0(Ω), there exists a unique φu ∈ H1

0(Ω) solution of{
−∆φ = u2, x ∈ Ω,

φ = 0, x ∈ ∂Ω.

Moreover,

(i) ‖φu‖2 =
∫

Ω φuu2dx;

(ii) φu ≥ 0. Moreover, φu > 0 when u 6= 0;

(iii) for each t 6= 0, φtu = t2φu;

(iv) for any u ∈ H1
0(Ω),∫

Ω
φuu2dx =

∫
Ω
|∇φu|2dx ≤ S−1|u|412/5 ≤ S−1|u|44|Ω|2/3 ≤ S−3‖u‖4|Ω|,

where S > 0 is the best Sobolev embedding constant.

(v) assume that un ⇀ u in H1
0(Ω), then φun → φu in H1

0(Ω) and
∫

Ω φununvdx →
∫

Ω φuuvdx for
any v ∈ H1

0(Ω);

(vi) we denote Ψ(u) =
∫

Ω φuu2dx, then Ψ : H1
0(Ω)→ R is C1 and for any v ∈ H1

0(Ω),

〈Ψ′(u), v〉 = 4
∫

Ω
φuuvdx;

(vii) for u, v ∈ H1
0(Ω),

∫
Ω(φuu− φvv)(u− v)dx ≥ 1

2
‖φu − φv‖2.

According to Lemma 2.1, we substitute φu to the first equation of system (SP), then system
(SP) transforms into the following equation

−∆u + φuu = f (x)u−γ, x ∈ Ω,

u > 0, x ∈ Ω,

u = 0, x ∈ ∂Ω.

(2.1)

The energy functional corresponding to equation (2.1) given by

I(u) =
1
2
‖u‖2 +

1
4

∫
Ω

φu|u|2dx− 1
1− γ

∫
Ω

f (x)|u|1−γdx, (2.2)

and a function u is called a solution of equation (2.1), i.e. (u, φu) is a solution of system (SP) if
u ∈ H1

0(Ω) such that u > 0 in Ω and for every ψ ∈ H1
0(Ω),∫

Ω
∇u∇ψdx +

∫
Ω

φuuψdx−
∫

Ω
f (x)u−γψdx = 0. (2.3)
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For the sake of simplicity, we just say u instead of (u, φu) is a solution of system (SP). In order
to motivate our results, we consider the following two constrained sets:

N1 =

{
u ∈ H1

0(Ω) : ‖u‖2 +
∫

Ω
φu|u|2dx−

∫
Ω

f (x)|u|1−γdx ≥ 0
}

,

and

N2 =

{
u ∈ H1

0(Ω) : ‖u‖2 +
∫

Ω
φu|u|2dx−

∫
Ω

f (x)|u|1−γdx = 0
}

.

We now come to prove our main results.

Proof of Theorem 1.1. (Necessity). Suppose u ∈ H1
0(Ω) is the solution of system (SP), then

u > 0 and satisfies (2.3). Choosing ψ = u in (2.3) leads to∫
Ω

f (x)u1−γdx = ‖u‖2 +
∫

Ω
φuu2dx < +∞,

and the necessity is proved.

(Sufficiency) The proof will be complete in six steps.

Step 1. N i 6= ∅, i = 1, 2.

Fix u ∈ H1
0(Ω) with

∫
Ω f (x)|u|1−γdx < +∞. For any t > 0, according to Lemma 2.1 (iii),

we have

I(tu) =
t2

2
‖u‖2 +

t4

4

∫
Ω

φu|u|2dx− t1−γ

1− γ

∫
Ω

f (x)|u|1−γdx.

Set g(t) = t dI(tu)
dt , then

g(t) = t2‖u‖2 + t4
∫

Ω
φu|u|2dx− t1−γ

∫
Ω

f (x)|u|1−γdx.

Since γ > 1, one can easily obtain that g(t) is increasing on (0,+∞) with limt→0+ g(t) =

−∞ and limt→+∞ g(t) = +∞. Thus, there exists a unique t(u) > 0 such that I(t(u)u) =

mint>0 I(tu) and g(t(u)) = 0, i.e.

t2(u)‖u‖2 + t4(u)
∫

Ω
φu|u|2dx− t1−γ(u)

∫
Ω

f (x)|u|1−γdx = 0,

that is t(u)u ∈ N2. Specially, the assumption (1.3) implies that there exists a t(u0) > 0 such
that t(u0)u0 ∈ N2 ⊂ N1, and so Ni 6= ∅, i = 1, 2.

Step 2. N 1 is an unbounded closed set in H1
0(Ω) and there exists a positive constant C1,

such that ‖u‖ ≥ C1 for all u ∈ N 1.

According to Step 1, tu ∈ N1 for any t ≥ t(u0), so N1 is unbounded in H1
0(Ω). The

closeness of N1 follows easily from Lemma 2.1 (v) and Fatou’s lemma. We claim that there
exists a positive constant C1, such that ‖u‖ ≥ C1 for all u ∈ N1. Arguing by contradiction,
there exists a sequence {un} ⊂ N1 satisfying un → 0 in H1

0(Ω). Since γ > 1 and un ∈ N1, by
the reverse form of Hölder’s inequality and Lemma 2.1 (v), one can get(∫

Ω
f

1
γ (x)dx

)γ (∫
Ω
|un|dx

)1−γ

≤
∫

Ω
f (x)|un|1−γdx ≤ ‖un‖2 +

∫
Ω

φun |un|2dx → 0.

Since
∫

Ω f
1
γ (x)dx > 0, we have

∫
Ω |un|dx → ∞, which is impossible. So there exists a positive

constant C1, such that ‖u‖ ≥ C1 for all u ∈ N1.
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Step 3. Properties of the minimizing sequence {un}.
For any u ∈ N1, according to Step 2, there exists a positive constant C1 such that ‖u‖ ≥ C1,

then by (2.2), γ > 1 and Lemma 2.1 (ii), one has

I(u) =
1
2
‖u‖2 +

1
4

∫
Ω

φu|u|2dx− 1
1− γ

∫
Ω

f (x)|u|1−γdx ≥ 1
2
‖u‖2,

therefore, I(u) is coercive and bounded from below on N1 and so infN1 I is well defined. Since
N1 is closed, applying the Ekeland variational principle to construct a minimizing sequence
{un} ⊂ N1 satisfying:

(1) I(un) < infN1 I + 1
n ;

(2) I(z) ≥ I(un)− 1
n‖un − z‖, ∀z ∈ N1.

The coerciveness of I on N1 shows that ‖un‖ ≤ C2 uniformly for some suitable positive
constant C2. Hence, C1 ≤ ‖un‖ ≤ C2 and then there exists a subsequence of {un} (still
denoted by {un}) and a function u∗ ∈ H1

0(Ω) such that

un ⇀ u∗ in H1
0(Ω),

un → u∗ in Lp(Ω), p ∈ [1, 6),

un → u∗ a.e. in Ω.

Since I(|u|) = I(u), we could assume that un ≥ 0. By {un} ⊂ N1, Lemma 2.1 (iv) and the
boundness of {un}, we have

∫
Ω f (x)u1−γ

n dx < +∞ which implies that un(x) > 0 a.e. in Ω
since f (x) > 0 a.e. in Ω, and γ > 1. Therefore, u∗(x) ≥ 0. Furthermore, by Fatou’s Lemma,
we get

∫
Ω f (x)u1−γ

∗ dx < +∞ which in turn implies u∗(x) > 0 a.e. in Ω.

Step 4. u∗ ∈ N 2, infN1 I = I(u∗), u∗ > 0 in Ω and for any 0 ≤ v ∈ H1
0(Ω),∫

Ω
∇u∗∇vdx +

∫
Ω

φu∗u∗vdx−
∫

Ω
f (x)u−γ

∗ vdx ≥ 0.

To prove the above statements, we consider the following two cases regarding whether
{un} belongs to N1 \ N2 or N2.

Case 1. Suppose that {un} ⊂ N1 \N2 for all n large.

For any 0 ≤ v ∈ H1
0(Ω), since {un} ⊂ N1 \ N2, f (x) > 0 a.e. in Ω and γ > 1, we can

derive ∫
Ω

f (x)(un + tv)1−γdx ≤
∫

Ω
f (x)u1−γ

n dx < ‖un‖2 +
∫

Ω
φun u2

ndx, ∀t ≥ 0.

Therefore, we could choose t > 0 small enough such that∫
Ω

f (x)(un + tv)1−γdx < ‖un + tv‖2 +
∫

Ω
φun+tv(un + tv)2dx,

that is un + tv ∈ N1. Applying condition (2) with z = un + tv leads to

‖tv‖
n
≥ I(un)− I(un + tv)

=
1
2
(‖un‖2 − ‖un + tv‖2) +

1
4

∫
Ω
[φun u2

n − φun+tv(un + tv)2]dx

+
1

1− γ

∫
Ω

f (x)[(un + tv)1−γ − u1−γ
n ]dx.
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Dividing by t > 0 and passing to the liminf as t → 0+, then we obtain from Fatou’s Lemma
that

‖v‖
n

+
∫

Ω
∇un · ∇vdx +

∫
Ω

φun unvdx ≥ lim inf
t→0+

1
1− γ

∫
Ω

f (x)
(un + tv)1−γ − u1−γ

n

t
dx

≥
∫

Ω
lim inf

t→0+

f (x)
1− γ

(un + tv)1−γ − u1−γ
n

t
dx

=
∫

Ω
f (x)u−γ

n vdx, (since un > 0 a. e. in Ω).

Letting n→ ∞, according to Lemma 2.1 (v) and Fatou’s Lemma again, one can get∫
Ω
∇u∗∇vdx +

∫
Ω

φu∗u∗vdx ≥
∫

Ω
f (x)u−γ

∗ vdx and
∫

Ω
f (x)u−γ

∗ vdx < +∞. (2.4)

Choose v = u∗ in (2.4), we get u∗ ∈ N1,
∫

Ω f (x)u1−γ
∗ dx < +∞ and then Step 1 shows

the existence of unique t(u∗) > 0 satisfying t(u∗)u∗ ∈ N2 and I(t(u∗)u∗) = mint>0 I(tu∗).
Hence, according to the weakly lower semi-continuity of the norm, Lemma 2.1 (v) and Fatou’s
Lemma, one has

inf
N1

I = lim
n→∞

I(un)

= lim inf
n→∞

[
1
2
‖un‖2 +

1
4

∫
Ω

φun u2
ndx− 1

1− γ

∫
Ω

f (x)u1−γ
n dx

]
≥ lim inf

n→∞

[
1
2
‖un‖2

]
+ lim inf

n→∞

[
1
4

∫
Ω

φun u2
ndx

]
+ lim inf

n→∞

[
1

γ− 1

∫
Ω

f (x)u1−γ
n dx

]
≥ 1

2
‖u∗‖2 +

1
4

∫
Ω

φu∗u
2
∗dx +

1
γ− 1

∫
Ω

f (x)u1−γ
∗ dx

= I(u∗) ≥ I(t(u∗)u∗) ≥ inf
N2

I ≥ inf
N1

I.

Thus, the above inequalities are actually equalities. By the uniqueness of t(u∗), we have
t(u∗) = 1, which implies that

u∗ ∈ N2, inf
N1

I = I(u∗). (2.5)

Moreover, we can also obtain that lim infn→∞ ‖un‖2 = ‖u∗‖2 and a subsequence of {un} (still
denoted by {un}), such that limn→∞ ‖un‖2 = ‖u∗‖2. This together with the weak convergence
of {un} in H1

0(Ω) implies un → u∗ strongly in H1
0(Ω).

Case 2. There exists a subsequence of {un} (still denoted by {un}) which belongs to N 2.

For any 0 ≤ v ∈ H1
0(Ω), according to γ > 1, the boundness of {un}, Lemma 2.1 (iv), we

have ∫
Ω

f (x)(un + tv)1−γdx ≤
∫

Ω
f (x)u1−γ

n dx = ‖un‖2 +
∫

Ω
φun u2

ndx < +∞, ∀t ≥ 0,

then Step 1 shows the existence of some functions hn,v(t) : [0,+∞) → (0,+∞) corresponding
to un + tv such that

hn,v(0) = 1, hn,v(t)(un + tv) ∈ N2, ∀t ≥ 0.
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The continuity of hn,v(t) with respect to t follows from Lemma 2.1 (v) and the dominated
convergence theorem since γ > 1 and

∫
Ω f (x)|un|1−γdx < +∞. However, we have no idea

whether or not hn,v(t) is differentiable. For the sake of proof, we set

h′n,v(0) = lim
t→0+

hn,v(t)− 1
t

∈ [−∞,+∞].

If the above limit does not exist, we choose tk → 0 (instead of t → 0) with tk > 0 such that
h′n,v(0) = limk→∞

hn,v(tk)−1
tk

∈ [−∞,+∞]. According to un ∈ N2, hn,v(t)(un + tv) ∈ N2 and
Lemma 2.1 (iii), we have

‖un‖2 +
∫

Ω
φun u2

ndx−
∫

Ω
f (x)u1−γ

n dx = 0,

h2
n,v(t)‖un + tv‖2 + h4

n,v(t)
∫

Ω
φun+tv(un + tv)2dx− h1−γ

n,v (t)
∫

Ω
f (x)(un + tv)1−γdx = 0.

Since γ > 1, the above two equalities yield

0 = [hn,v(t)− 1]
{
[hn,v(t) + 1] ‖un + tv‖2 − h1−γ

n,v (t)− 1
hn,v(t)− 1

∫
Ω

f (x)(un + tv)1−γdx

+
[
h2

n,v(t) + 1
]
[hn,v(t) + 1]

∫
Ω

φun+tv(un + tv)2dx
}
+
[
‖un + tv‖2 − ‖un‖2]

+
∫

Ω

[
φun+tv(un + tv)2 − φun u2

n
]

dx−
∫

Ω
f (x)

[
(un + tv)1−γ − u1−γ

n

]
dx

Dividing by t > 0 and passing to the limit as t → 0+, using Lemma 2.1 (vi), the continuity of
hn,v(t) and un ∈ N2, we obtain

0 ≥ h′n,v(0)
{

2‖un‖2 + (γ− 1)
∫

Ω
f (x)u1−γ

n dx + 4
∫

Ω
φun u2

ndx
}

+ 2
∫

Ω
∇un∇vdx + 4

∫
Ω

φun unvdx

= h′n,v(0)
{
(γ + 1)‖un‖2 + (γ + 3)

∫
Ω

φun u2
ndx

}
+ 2

∫
Ω
∇un∇vdx + 4

∫
Ω

φun unvdx

We claim that there exists C3 > 0, such that h′n,v(0) ≤ C3 uniformly in n. Fix n, either h′n,v(0) is
nonnegative, or h′n,v(0) is negative. If h′n,v(0) ≥ 0, then from the above inequality and Lemma
2.1 (ii), one can get

0 ≥ (γ + 1)h′n,v(0)‖un‖2 + 2
∫

Ω
∇un∇vdx.

Since C1 ≤ ‖un‖ ≤ C2 by Step 3, we can conclude that

h′n,v(0) ≤ C3 uniformly in n (2.6)

for some suitable constant C3 > 0 and

‖un‖
n
− (γ + 1)C2

1
γ− 1

< 0

for n large enough. We also claim that there exists a constant C4, such that h′n,v(0) ≥ C4

uniformly in all n large. If h′n,v(0) < 0, then hn,v(t) < 1 for t > 0 small. Applying condition
(2) with z = hn,v(t)(un + tv) leads to

1
n
[1− hn,v(t)]‖un‖+

t
n

hn,v(t)‖v‖ ≥
1
n
‖un − hn,v(t)(un + tv)‖

≥ I(un)− I[hn,v(t)(un + tv)].
(2.7)
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Since un ∈ N2, Lemma 2.1 (iii) together with (2.7) leads to

‖v‖
n

hn,v(t) ≥
hn,v(t)− 1

t

{‖un‖
n
−
(

1
2
+

1
γ− 1

)
[hn,v(t) + 1]‖un + tv‖2

−
(

1
4
+

1
γ− 1

) [
h2

n,v(t) + 1
]
[hn,v(t) + 1]

∫
Ω

φun+tv(un + tv)2dx
}

−
(

1
2
+

1
γ− 1

)
‖un + tv‖2 − ‖un‖2

t

−
(

1
4
+

1
γ− 1

) ∫
Ω

φun+tv(un + tv)2 − φun u2
n

t
dx.

Letting t→ 0+, using Lemma 2.1 (vi), the continuity of hn,v(t) and C1 ≤ ‖un‖ ≤ C2, we obtain

‖v‖
n
≥ h′n,v(0)

{
‖un‖

n
− 2

(
1
2
+

1
γ− 1

)
‖un‖2 − 4

(
1
4
+

1
γ− 1

) ∫
Ω

φun u2
ndx

}
− 2

(
1
2
+

1
γ− 1

) ∫
Ω
∇un∇vdx− 4

(
1
4
+

1
γ− 1

) ∫
Ω

φun unvdx

= h′n,v(0)
{
‖un‖

n
− 1

γ− 1

(
(γ + 1)‖un‖2 + (γ + 3)

∫
Ω

φun u2
ndx

)}
−
(

1 +
2

γ− 1

) ∫
Ω
∇un∇vdx−

(
1 +

4
γ− 1

) ∫
Ω

φun unvdx

≥ h′n,v(0)
{
‖un‖

n
− (γ + 1)C2

1
γ− 1

}
−
(

1 +
2

γ− 1

) ∫
Ω
∇un∇vdx

−
(

1 +
4

γ− 1

) ∫
Ω

φun unvdx

since γ > 1 and h′n,v(0) < 0. Then, from the construction of coefficient we see that h′n,v(0) 6=
−∞ and cannot diverge to −∞ as n→ ∞, that is,

h′n,v(0) 6= −∞ and h′n,v(0) ≥ C4 uniformly in n large (2.8)

for some suitable constant C4. So, it follows from (2.6) and (2.8) that

h′n,v(0) ∈ (−∞,+∞) and |h′n,v(0)| ≤ C uniformly in n large,

where C = max{C3, |C4|} is independent of n. Furthermore, applying condition (2) with
z = hn,v(t)(un + tv) again leads to

|1− hn,v(t)|
t

‖un‖
n

+
‖v‖

n
hn,v(t)

≥ 1
nt
‖un − hn,v(t)(un + tv)‖ ≥ 1

t
[I(un)− I(hn,v(t)(un + tv))]

≥ hn,v(t)− 1
t

{
− hn,v(t) + 1

2
‖un + tv‖2 +

h1−γ
n,v (t)− 1

(1− γ)[hn,v(t)− 1]

∫
Ω

f (x)(un + tv)1−γdx

− 1
4
[
h2

n,v(t) + 1
]
[hn,v(t) + 1]

∫
Ω

φun+tv(un + tv)2dx
}
− 1

2
‖un + tv‖2 − ‖un‖2

t

− 1
4

∫
Ω

φun+tv(un + tv)2 − φun u2
n

t
dx +

1
1− γ

∫
Ω

f (x)
(un + tv)1−γ − u1−γ

n

t
dx
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Passing to the liminf as t→ 0+, then we get from Lemma 2.1 (vi), the continuity of hn,v(t) and
Fatou’s Lemma that

|h′n,v(0)| · ‖un‖
n

+
‖v‖

n

≥ h′n,v(0)
{
− ‖un‖2 +

∫
Ω

f (x)u1−γ
n dx−

∫
Ω

φun u2
ndx

}
−
∫

Ω
∇un∇vdx−

∫
Ω

φun unvdx + lim inf
t→0+

1
1− γ

∫
Ω

f (x)
(un + tv)1−γ − u1−γ

n

t
dx

≥ −
∫

Ω
∇un∇vdx−

∫
Ω

φun unvdx +
∫

Ω

f (x)
1− γ

lim inf
t→0+

(un + tv)1−γ − u1−γ
n

t
dx

= −
∫

Ω
∇un∇vdx−

∫
Ω

φun unvdx +
∫

Ω
f (x)u−γ

n vdx,

since un ∈ N2. Furthermore, by Lemma 2.1 (iv), for n large, we have

∫
Ω

f (x)u−γ
n vdx ≤

|h′n,v(0)| · ‖un‖
n

+
‖v‖

n
+
∫

Ω
∇un∇vdx +

∫
Ω

φun unvdx

≤ C · C2 + ‖v‖
n

+
∫

Ω
∇un∇vdx +

∫
Ω

φun unvdx < +∞,

thanks to C1 ≤ ‖un‖ ≤ C2 and |h′n,v(0)| ≤ C uniformly in n large. Passing to the limit as
n→ ∞ with using Lemma 2.1 (v) and Fatou’s Lemma again leads to

∫
Ω

f (x)u−γ
∗ vdx ≤ lim inf

n→∞

∫
Ω

f (x)u−γ
n vdx ≤

∫
Ω
∇u∗∇vdx +

∫
Ω

φu∗u∗vdx < +∞, (2.9)

for any 0 ≤ v ∈ H1
0(Ω). By the same argument as in Case 1, we can also obtain that

u∗ ∈ N2, inf
N1

I = I(u∗). (2.10)

in Case 2. Therefore, Combining (2.4), (2.5), (2.9) and (2.10), we could conclude that in either
case, up to subsequence, un → u∗ strongly in H1

0(Ω), u∗ ∈ N2, infN1 I = I(u∗) and

∫
Ω
∇u∗∇vdx +

∫
Ω

φu∗u∗vdx−
∫

Ω
f (x)u−γ

∗ vdx ≥ 0, (2.11)

for any 0 ≤ v ∈ H1
0(Ω). Hence, −∆u∗ + φu∗u∗ ≥ 0 in the week sense. By Step 3, u∗(x) > 0 a.e.

in Ω and similar to the proof in [28], we get u∗ > 0 in Ω.

Step 5. u∗ is a solution of system (SP).

For any ψ ∈ H1
0(Ω) \ {0} and ε > 0. Since 0 < u∗ ∈ N2, applying inequality (2.11) with

v = (u∗ + εψ)+ leads to
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0 ≤ 1
ε

{ ∫
Ω
∇u∗∇(u∗ + εψ)+dx +

∫
Ω

φu∗u∗(u∗ + εψ)+dx−
∫

Ω
f (x)u−γ

∗ (u∗ + εψ)+dx
}

=
1
ε

∫
[u∗+εψ≥0]

{
∇u∗∇(u∗ + εψ) + φu∗u∗(u∗ + εψ)− f (x)u−γ

∗ (u∗ + εψ)
}

dx

=
1
ε

( ∫
Ω
−
∫
[u∗+εψ<0]

){
∇u∗∇(u∗ + εψ) + φu∗u∗(u∗ + εψ)− f (x)u−γ

∗ (u∗ + εψ)
}

dx

≤ 1
ε

{
‖u∗‖2 +

∫
Ω

φu∗u
2
∗dx−

∫
Ω

f (x)u1−γ
∗ dx

}
+
{ ∫

Ω
∇u∗∇ψdx +

∫
Ω

φu∗u∗ψdx−
∫

Ω
f (x)u−γ

∗ ψdx
}

− 1
ε

∫
[u∗+εψ<0]

[
∇u∗∇(u∗ + εψ) + φu∗u∗(u∗ + εψ)

]
dx

+
1
ε

∫
[u∗+εψ<0]

f (x)u−γ
∗ (u∗ + εψ)dx

≤
{ ∫

Ω
∇u∗∇ψdx +

∫
Ω

φu∗u∗ψdx−
∫

Ω
f (x)u−γ

∗ ψdx
}

− 1
ε

∫
[u∗+εψ<0]

[
∇u∗∇u∗ + φu∗u

2
∗

]
dx−

∫
[u∗+εψ<0]

[
∇u∗∇ψ + φu∗u∗ψ

]
dx

≤
{ ∫

Ω
∇u∗∇ψdx +

∫
Ω

φu∗u∗ψdx−
∫

Ω
f (x)u−γ

∗ ψdx
}
−
∫
[u∗+εψ<0]

[
∇u∗∇ψ + φu∗u∗ψ

]
dx.

Letting ε → 0+ to the above inequality and using the fact that meas[u∗ + εψ < 0] → 0 as
ε→ 0+, we have∫

Ω
∇u∗∇ψdx +

∫
Ω

φu∗u∗ψdx−
∫

Ω
f (x)u−γ

∗ ψdx ≥ 0, ∀ψ ∈ H1
0(Ω).

This inequality also holds for −ψ, hence we obtain∫
Ω
∇u∗∇ψdx +

∫
Ω

φu∗u∗ψdx−
∫

Ω
f (x)u−γ

∗ ψdx = 0, ∀ψ ∈ H1
0(Ω). (2.12)

Thus u∗ ∈ H1
0(Ω) is a solution of system (SP).

Step 6. u∗ is a unique solution of system (SP).
Suppose v∗ ∈ H1

0(Ω) is also a solution of system (SP), then for any ψ ∈ H1
0(Ω), we have∫

Ω
∇v∗∇ψdx +

∫
Ω

φv∗v∗ψdx−
∫

Ω
f (x)v−γ

∗ ψdx = 0, ∀ψ ∈ H1
0(Ω). (2.13)

Taking ψ = u∗ − v∗ in both equations (2.12)–(2.13) and subtracting term by term, we obtain

0 ≥
∫

Ω
f (x)(u−γ

∗ − v−γ
∗ )(u∗ − v∗)dx

= ‖u∗ − v∗‖2 +
∫

Ω
(φu∗u∗ − φv∗v∗)(u∗ − v∗)dx

≥ ‖u∗ − v∗‖2 +
1
2
‖φu∗ − φv∗‖2 ≥ ‖u∗ − v∗‖2 ≥ 0,

where we use Lemma 2.1 (vii). So ‖u∗ − v∗‖2 = 0, then u∗ = v∗ and u∗ is the unique solution
of system (SP).
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Proof of Theorem 1.2. Since u1, u2 ∈ H1
0(Ω) are two positive solutions of system (SP) corre-

sponding to f1 and f2 respectively, then for any ψ ∈ H1
0(Ω), we have∫

Ω
∇u1∇ψdx +

∫
Ω

φu1 u1ψdx−
∫

Ω
f1(x)u−γ

1 ψdx = 0,∫
Ω
∇u2∇ψdx +

∫
Ω

φu2 u2ψdx−
∫

Ω
f2(x)u−γ

2 ψdx = 0.

Set Ω1 = {x|u2(x) ≥ u1(x), x ∈ Ω}, then subtracting the above two equations and choosing
ψ = (u2 − u1)

+ ∈ H1
0(Ω) yield

0 ≥
∫

Ω
( f2(x)u−γ

2 − f1(x)u−γ
1 )(u2 − u1)

+dx

= ‖(u2 − u1)
+‖2 +

∫
Ω
(φu2 u2 − φu1 u1)(u2 − u1)

+dx

= ‖(u2 − u1)
+‖2 +

∫
Ω1

(φu2 u2 − φu1 u1)(u2 − u1)dx

≥ ‖(u2 − u1)
+‖2 ≥ 0,

where we use f1 ≥ f2, γ > 1 and Lemma 2.1 (vii). So (u2 − u1)
+ ≡ 0 and hence u1 ≥ u2.

Proof of Theorem 1.3. The proof is exactly the same as Sun and Tan [21]. We omit the details
here.

Proof of Theorem 1.4. We prove Theorem 1.4 by contradiction that supΩ u < +∞. Motivated
by Sun and Tan [21], Choose a sequence of test functions {ϕδ} ⊂ C∞

0 (Ω) satisfying 0 ≤ ϕδ ≤ 1,
ϕδ ≡ 0 in Bδ(0), ϕδ ≡ 1 in B5δ/3(0) \ B4δ/3(0), ϕδ ≡ 0 in Ω \ B2δ(0) and |∆ϕδ| ≤ C5

δ2 in Ω. Thus,
we have ∫

Ω
∇u∇ϕδdx +

∫
Ω

φuuϕδdx−
∫

Ω
|x|−αu−γ ϕδdx = 0. (2.14)

According to the definition of ϕδ(x) and γ > 0, we have∫
Ω
|x|−αu−γ ϕδdx =

∫
B2δ(0)\Bδ(0)

|x|−αu−γ ϕδdx

≥
(

sup
Ω

u
)−γ ∫

B2δ(0)\Bδ(0)
|x|−α ϕδdx

≥
(

sup
Ω

u
)−γ ∫

B5δ/3(0)\B4δ/3(0)
|x|−αdx

=

(
sup

Ω
u
)−γ 4π

3− α

[ (5
3

)3−α

−
(

4
3

)3−α ]
δ3−α.

On the other hand, by Sobolev inequalities and Lemma 2.1 (i), (iv), we have∫
Ω
∇u∇ϕδdx +

∫
Ω

φuuϕδdx = −
∫

Ω
u∆ϕδdx +

∫
Ω

φuuϕδdx

≤
∫

Ω
u|∆ϕδ|dx +

∫
Ω

φuuϕδdx

≤
(

sup
Ω

u
) [ ∫

Ω
|∆ϕδ|dx +

∫
Ω

φu ϕδdx
]

≤
(

sup
Ω

u
) [ ∫

B2δ(0)\Bδ(0)
|∆ϕδ|dx +

∫
B2δ(0)\Bδ(0)

φudx
]

≤
(

sup
Ω

u
) [

28πC5δ

3
+ C6‖u‖2δ5/2

]
.
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Therefore(
sup

Ω
u
)1+γ

≥ 12π

(3− α)
[
28πC5 + 3C6‖u‖2δ3/2

][ (5
3

)3−α

−
(

4
3

)3−α ]
δ2−α → +∞

a contradiction as δ→ 0+ since α > 2 and this ends the proof of Theorem 1.4.
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